数学建模论文模板
- 格式:doc
- 大小:46.00 KB
- 文档页数:7
题名(三号黑体,居中,勿加副标题)摘要(小四黑体)小四宋体小四宋体宋体小四宋体小四宋体小四宋体小四宋体小四宋体小四宋体小四宋体小四宋体小四宋体小四宋体小四宋体小四宋体小四宋体小四宋体小四宋体小四宋体小四宋体小四宋体小四宋体小四宋体小四宋体小四宋体小四宋体小四宋体小四宋体小四宋体小四宋体小四宋体小四宋体小四宋体小四宋体小四宋体小四宋体小四宋体小四宋体小四宋体小四宋体小四宋体小四宋体小四宋体小四宋体小四宋体小四宋体小四宋体关键词(小四黑体)人口增长预测模型;关键词2;关键词3;关键词4(A题)关键词(小四黑体)公交线路选择;??优化模型;??算法(B题)一、问题重述(四号黑体)正文小四宋体二、问题分析(四号黑体)正文小四宋体三、模型假设(四号黑体)1. 小四宋体小四宋体小四宋体小四宋体小四宋体小四宋体小四宋体,第二行第一个字和第一行标题后第一个字对齐;2. 小四宋体.四、符号表示(四号黑体)小四宋体五、模型建立与求解(四号黑体)引语5.1 二级标题(小四黑体)引语5.1.1 三级标题小四宋体5.1.2 三级标题小四宋体5.2 二级标题(小四黑体)引语5.2.1 三级标题小四宋体5.2.2 三级标题小四宋体六、模型评价与推广(四号黑体)小四宋体参考文献(小四宋体加粗)[1] 作者,书名,出版地:出版社,出版年.(书籍)[2] 作者,论文名,杂志名,卷期号:起止页码,出版年.(期刊杂志)[3] 作者,资源标题,网址,访问时间(年月日).(网上资源)(小四宋体)注:1、公式用公式编辑器录入,公式中的字母也用公式编辑器录入,公式居中,公式的编号用(1)(2)等表示,并右对齐2、表格的标题放在表格上方并居中,例如:表1 2006-2010年人口预测值3、图形的编号放在图形的下方并居中,例如:图1 2006-2010年人口变化图4、所给结论尽可能用表格或者图形形式给出5、符号表示应唯一6、一级标题如果不是一页的开头,应在其上方空一行(空行的字号是小四)7、文章中尽可能不用“我们”,不能过于口语化,在一行中“的”字不能过多8、建模步骤要清晰,结论要明确,模型的给出要具有针对性9、结论分析要切合实际,不要给出模型与结论的夸张性评价语句10、所有的句号用圆圈,居中的公式后面不要标点。
数学建模论文_范文标题:基于数学建模的交通拥堵优化方案研究摘要:随着城市化的快速发展和汽车保有量的增加,交通拥堵问题成为了城市生活中的一种普遍现象。
为了有效解决交通拥堵问题,本论文综合运用了数学建模的方法,通过分析交通流量、路网结构和驾驶行为等因素,提出了一种基于信号灯优化的交通拥堵优化方案。
通过该方案的实施,我们可以有效降低交通拥堵状况,提高交通效率。
第一部分:引言交通拥堵问题给城市居民的出行带来了很大的不便,而且还对环境产生了很大的负面影响。
因此,解决交通拥堵问题一直是城市规划师和交通管理者关注的焦点。
本论文旨在通过数学建模的方法,提出一种可行的交通拥堵优化方案。
第二部分:问题分析在交通优化问题中,我们需要考虑的因素很多,包括交通流量、路网结构、驾驶行为等。
在本论文中,我们将主要关注以下几个因素:交通流量的分布特点、路网拓扑结构的复杂性以及驾驶行为对交通拥堵的影响。
第三部分:数学模型的建立在本论文中,我们将采用离散事件系统建模的方法。
首先,我们将城市划分为若干个交通区域,每个区域内部的交通流量将通过数学模型进行描述。
然后,我们将通过网络图的方法建立路网拓扑结构,并分析路网的关键节点和关键路径。
最后,我们将考虑驾驶行为对交通拥堵的影响,通过引入交通流模型来描述驾驶者的行为。
第四部分:模拟结果与优化方案通过对数学模型的求解和仿真,我们得到了模拟结果。
通过对模拟结果的分析,我们可以得出对交通拥堵问题的一些有效解决方案,如增加信号灯数量、优化信号灯的时序和采取智能交通系统等。
通过这些措施,我们可以有效减少交通拥堵情况,提高交通效率。
第五部分:结论在本论文中,我们综合运用了数学建模的方法,通过分析交通流量、路网结构和驾驶行为等因素,提出了一种基于信号灯优化的交通拥堵优化方案。
通过该方案的实施,我们可以有效降低交通拥堵状况,提高交通效率。
未来,我们还可以进一步完善数学模型,考虑更多的因素,以达到更好的交通拥堵优化效果。
数学建模竞赛获奖论文范文数学的运用越来越广泛了,利用建立数学模型解决实际问题的数学建模活动也应运而生了。
下面是店铺为大家推荐的数学建模论文,供大家参考。
数学建模论文范文篇一:《高中开设数学建模课程的意义与定位》1、高中开设数学建模课程的背景在高中设置的课程中,数学是一门必修课程,也是高考比重最大的一门课程,其最终目标是将数学知识融入现实问题中去,从而解决问题,这也是教育教学的最终目的。
要达到教育教学的最终目的,必须改革高中的数学课程教学,建设高中数学建模课程。
高中数学建模课程可以根据简单的现实问题设置,针对实际生活中的一些简单问题进行适当的假设,建立高中数学知识能解决该问题的数学模型,进而解决该实际问题。
因此,可以说高中数学建模课程是利用所学高中数学知识解决实际问题的课程,是将高中数学知识应用的一门课程,是培养出高技能人才的基础课程。
国家教育部制定的高中数学课程标准,重点强调:"要重视高中学生从自己的生活经验和所学知识中去理解数学、学习数学和应用数学,通过自己的感知和实际操作,掌握基本的高中数学知识和数学逻辑思维能力,让高中生体会到数学的乐趣,对数学产生兴趣,让其感觉到数学就在身边。
"但是现实中高中数学的教学情况堪忧,基本上都是满堂灌的教学,学生不会应用,对数学毫无兴趣可言,主要体现在三个方面。
第一,虽然有很多学生以高分成绩进入高中学习,但是其数学应用的基础非常差,基本上是会生搬硬套,不会解决实际问题,更不会将数学知识联系到生活中来;也有少数学生数学基础差,没有养成好的数学学习习惯,导致产生厌恶数学的情绪,数学基础知识都没学好,更不用说是用数学解决实际问题。
这少数学生就是上课睡觉混日子,根本不去学习,这与高中数学课程的开设目标截然不符。
第二,高中数学课程的教学内容与实际问题严重脱节,高中的数学教材中涉及的数学知识基本上都是计算内容,而不是用来处理和解决生活问题的,更是缺少数学与其他学科(比如化学、物理、生物、地理等)的相互渗透,即便高中数学课程中有一些数学应用的例子,也属于选学内容,教师根本不去讲、不涉及,这样导致高中数学课的教学达不到其教学目的,发挥不出功能。
论文标题摘要内容要点:1、研究目的:本文研究……问题。
2、建立模型思路、:首先,本文……。
然后针对第一问……问题,本文建立……模型:在第一个……模型中,本文对哪些问题进行简化,利用什么知识建立了什么模型在第二个……模型中,本文对哪些问题进行简化,利用什么知识建立了什么模型3、求解思路,使用的方法、程序针对模型的求解,本文使用什么方法,计算出,并只用什么工具求解出什么问题,进一步求解出什么结果。
4、建模特点(模型优点,建模思想或方法,算法特点,结果检验,灵敏度分析,模型检验等)5、在模型的检验模型中,本文分别讨论了以上模型的精度和稳定性6、最后,本文通过改变,得出什么模型。
关键词:结合问题、方法、理论、概念等一、问题重述内容要点:1、问题背景:结合时代、社会、民生等2、需要解决的问题问题一:问题二:问题三:二、问题分析内容要点:什么问题、需要建立什么样的模型、用什么方法来求解三、模型假设与约定内容要点:1、根据题目中条件作出假设2、根据题目中要求作出假设写作要求:细致地分析实际问题,从大量的变量中筛选出最能表现问题本质的变量,并简化它们的关系。
将一些问题理想化、简单化。
1、论文中的假设要以严格、确切的数学语言来表达,使读者不致产生任何曲解2、所提出的假设确实是建立数学模型所必需的,与建立模型无关的假设只会扰乱读者的思考3、假设应验证其合理性。
假设的合理性可以从分析问题过程中得出,例如从问题的性质出发作出合乎常识的假设,或者由观察所给数据的图象,得到变量的函数形式,也可以参考其他资料由类推得到。
对于后者应指出参考文献的相关内容四、符号说明及名词定义内容要点:包括建立方程符号、及编程中用到的符号等五、模型建立内容要点:1、模型一2、模型二3、模型三对于每一个模型的建立,需要写出的内容:问题分析→公式推导→基本模型→最终或简化模型。
基本模型要有数学公式、方案等。
简化模型要明确说明简化思想、依据。
写作要点:数学建模面临的、要解决的是实际问题,不追求数学上:高(级)、深(刻)、难(度大)。
大学生数学建模论文现代社会对数学应用的需要导致了全球范围内的数学教育改革,而数学建模是经济社会与数学教育相结合的重要发展的产物。
下文是店铺为大家搜集整理的关于大学生数学建模论文的内容,希望能对大家有所帮助,欢迎大家阅读参考!大学生数学建模论文篇1浅谈MATLAB在数学建模中的应用摘要:数学建模是运用数学的语言和方法,通过抽象、简化建立能近似刻画并解决实际问题的一种强有力的数学手段,是数学与各个领域沟通的桥梁,本文先介绍了数学建模的概念,然后对MATLAB软件相关特点做出介绍,其次从数学建模实例出发,说明了MATLAB软件在数学建模中的重要作用,结果表明MATLAB软件可以使数学建模效率提高,结果清晰、明确,同时在数学教学方面也有重大意义。
关键词:数学建模;MATLAB;数学模型;数值计算21世纪的今天,我们生活在“大数据”时代里,数据信息隐藏于各行各业,如互联网、股市、勘探、军工、商业等,可以说我们每天都在跟数据打交道,因此高效的数据处理方式显得尤为重要。
数学建模是联系实际问题与数学之间的桥梁,建模的思想与以往解决问题的思路有很大的不同,我们以往求解数学问题时,都有明确的目标和已知条件,我们只要通过合理的方法,进行多次的数学运算,便能得到问题的解析解,但在现实生活中,很多实际问题是很难得到解析解的,甚至求解的问题和结果的范围都是模糊不清的,数学建模主要就是解决这样的问题,我们以实际问题出发,根据已有的经验,对已有的数据进行相关的分析、处理,通过合理的简化,建立合适的模型,再求解模型,最终会得到结果,这种方法行之有效,在实际生活中,通过建模已经解决了大量难题,近年来,随着科技的飞速发展,很多数学软件应运而生,如MATLAB、Mathematic、Maple等,目前应用最为广泛的数学软件便是MATLAB,它是1984年由美国MathWork公司推出的商业数学软件,用于算法开发,数据可视化、数值计算的高级计算语言和交互式环境,凭借计算功能强大、操作简便的特点在数学软件中脱颖而出,使得很多人在建模中选择该软件。
(数学建模论文书写基本框架,仅供参考)题目(黑体不加粗三号居中)摘要(黑体不加粗四号居中)(摘要正文小4号,写法如下)(第1段)首先简要叙述所给问题的意义和要求,并分别分析每个小问题的特点(以下以三个问题为例)。
根据这些特点我们对问题1用。
的方法解决;对问题2用。
的方法解决;对问题3用。
的方法解决。
(第2段)对于问题1我们用。
数学中的。
首先建立了。
模型I。
在对。
模型改进的基础上建立了。
模型II。
对模型进行了合理的理论证明和推导,所给出的理论证明结果大约为。
,然后借助于。
数学算法和。
软件,对附件中所提供的数据进行了筛选,去除异常数据,对残缺数据进行适当补充,并从中随机抽取了3组数据(每组8个采样)对理论结果进行了数据模拟,结果显示,理论结果与数据模拟结果吻合。
(方法、软件、结果都必须清晰描述,可以独立成段,不建议使用表格)(第3段)对于问题2我们用。
(第4段)对于问题3我们用。
如果题目单问题,则至少要给出2种模型,分别给出模型的名称、思想、软件、结果、亮点详细说明。
并且一定要在摘要对两个或两个以上模型进行比较,优势较大的放后面,这两个(模型)一定要有具体结果。
(第5段)如果在……条件下,模型可以进行适当修改,这种条件的改变可能来自你的一种猜想或建议。
要注意合理性。
此推广模型可以不深入研究,也可以没有具体结果。
关键词:本文使用到的模型名称、方法名称、特别是亮点一定要在关键字里出现,5~7个较合适。
注:字数700~1000之间;摘要中必须将具体方法、结果写出来;摘要写满几乎一页,不要超过一页。
摘要是重中之重,必须严格执行!。
页码:1(底居中)目录可选:目录(4号黑体)(以下小4号)第一部分问题重述…………………………………………………………() 第二部分问题分析…………………………………………………………() 第三部分模型的假设…………………………………………………………() 第四部分定义与符号说明…………………………………………………() 第五部分模型的建立与求解………………………………………………() 1.问题1的模型………………………………………………………………() 模型I(…(随机规划)模型)……………………………………………() 模型II(………(数学)的模型)………………………………………….() ………………………………………………………………………………….2.问题2的模型…………………………………………………………………() 模型I(………数学的模型)………………………………………………()模型II(………数学的模型)…………………………………………….() ……………………………………………………………………………….第六部分对模型的评价………………………………………………………() 第七部分参考文献……………………………………………………………() 第八部分附录…………………………………………………………………………()一、问题重述(第二页起黑四号)在保持原题主体思想不变下,可以自己组织词句对问题进行描述,主要数据可以直接复制,对所提出的问题部分基本原样复制。
初中数学建模论文范文数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。
强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大.数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质.本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。
一、数学应用题的特点我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。
数学应用题具有如下特点:第一、数学应用题的本身具有实际意义或实际背景。
这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。
如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。
第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。
第三、数学应用题涉及的知识点多。
是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。
二、数学应用题如何建模第一层次:直接建模。
根据题设条件,套用现成的数学公式、定理等数学模型,注解图为:第二层次:直接建模。
可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。
第三层次:多重建模.对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。
第四层次:假设建模。
要进行分析、加工和作出假设,然后才能建立数学模型。
如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模.三、建立数学模型应具备的能力从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。
数学建模竞赛优秀大学生论文随着科学技术的高速发展,数学的应用价值越来越得到众人的重视,因此数学建模也被逐渐的引起重视了。
下面是店铺为大家整理的数学建模优秀论文,供大家参考。
数学建模优秀论文篇一:《数学建模用于生物医学论文》1数学建模的过程1.1模型准备首先要了解实际背景,寻找内在规律,形成一个比较清晰的轮廓,提出问题。
1.2模型假设在明确目的、掌握资料的基础上,抓住问题的本质,舍弃次要因素,对实际问题做出合理的简化假设。
1.3模型建立在所作的假设条件下,用适当的数学方法去刻画变量之间的关系,得出一个数学结构,即数学模型。
原则上,在能够达到预期效果的基础上,选择的数学方法应越简单越好。
1.4模型求解建模后要对模型进行分析、求解,求解会涉及图解、定理证明及解方程等不同数学方法,有时还需用计算机求数值解。
1.5模型分析、检验、应用模型的结果应当能解释已存的现象,处理方法应该是最优的决策和控制方案,所以,对模型的解需要进行分析检验。
把求得的数学结果返回到实际问题中去,检验其合理性。
如果理论结果符合实际情况,那么就可以用它来指导实践,否则需再重新提出假设、建模、求解,直到模型结果与实际相符,才能进行实际应用。
总之,数学建模是一项富有创造性的工作,不可能用一些条条框框的规则规定的十分死板,只要是能够做到全面兼顾、能抓住问题的本质、最终检验结果合理,都是一个好的数学模型。
2数学建模在生物医学中的应用2.1DNA序列分类模型DNA分子是遗传信息存储的基本单位,许多生命科学中的重大问题都依赖于对这种特殊分子的深入了解。
因此,关于DNA分子结构与功能的问题,成为二十一世纪最重大的课题之一。
DNA序列分类问题是研究DNA分子结构的基础,它常用的方法是聚类分析法。
聚类分析是使用数据建模简化数据的一种方法,它将数据分成不同的类或者簇,同一个簇中的数据有很大的同质性,而不同的簇中的数据有很大的相异性。
在对DNA序列进行分类时,需首先引入样品变量,比如说单个碱基的丰度、两碱基丰度之比等;然后计算出每条DNA序列的样品变量值,存入到向量中;最后根据相似度度量原理,计算出所有序列两两之间的Lance与Williams距离,依据距离的远近进行分类。
全国大学生数学建模竞赛论文范例摘要:本文通过对具体问题的深入研究,建立了数学模型并进行求解,旨在为相关领域提供有益的参考和决策支持。
文中首先对问题进行了详细的分析和阐述,然后构建了相应的数学模型,运用了列举所用的方法和工具等方法进行求解,最后对结果进行了分析和讨论,并提出了一些改进和优化的建议。
一、问题重述在当今社会,具体问题背景。
本次数学建模竞赛的问题是:详细描述问题。
需要我们通过建立合理的数学模型,来解决阐述问题的核心和关键,并得出具有实际意义的结论和建议。
二、问题分析为了有效地解决上述问题,我们首先对其进行了深入的分析。
从问题的性质来看,它属于定性问题的类型,如优化问题、预测问题等。
进一步分析发现,影响问题的主要因素有列举主要因素,这些因素之间可能存在着描述因素之间的关系,如线性关系、非线性关系等。
基于以上分析,我们决定采用列举解决问题的总体思路和方法的方法来建立数学模型。
三、模型假设为了简化问题并使模型更具可操作性,我们做了以下假设:假设 1:具体假设 1 的内容假设 2:具体假设 2 的内容假设 n:具体假设 n 的内容需要说明的是,这些假设在一定程度上简化了实际情况,但在后续的模型验证和改进中,我们会对其合理性进行检验和调整。
四、符号说明为了便于后续模型的建立和表述,我们对文中用到的符号进行如下说明:符号 1:符号 1 的名称和含义符号 2:符号 2 的名称和含义符号 n:符号 n 的名称和含义五、模型建立与求解(一)模型 1 的建立与求解基于前面的分析和假设,我们首先建立了模型 1。
详细描述模型 1 的数学表达式和原理通过求解模型 1 所使用的方法和工具,我们得到了模型 1 的解为:给出模型 1 的解(二)模型 2 的建立与求解为了进一步提高模型的精度和适用性,我们又建立了模型 2。
详细描述模型 2 的数学表达式和原理运用求解模型 2 所使用的方法和工具,解得模型 2 的结果为:给出模型 2 的解(三)模型的比较与选择对建立的多个模型进行比较和分析,从准确性、复杂性、适用性等方面综合考虑,最终选择了说明选择的模型作为最优模型。
以下是一篇数学建模优秀论文的范文,供您参考:题目:基于支持向量机的分类模型研究引言:分类是数学建模中的一个重要问题,其在很多领域都有着广泛的应用。
支持向量机(SVM)是一种基于统计学习理论的分类算法,具有较好的泛化能力和鲁棒性,被广泛应用于图像分类、文本分类、生物信息学等领域。
本文旨在研究支持向量机在分类问题中的应用,并对其性能进行评估。
问题分析:分类问题的核心在于根据已知标签的数据集,训练出一个能够对未知数据进行分类的模型。
支持向量机是一种基于结构风险最小化原则的分类算法,其基本思想是将输入空间映射到高维特征空间,并在此空间中构建最大间隔分类器。
在支持向量机中,关键参数的选择和核函数的选取对模型的性能有着重要影响。
模型建立:支持向量机是一种基于统计学习理论的分类算法,其基本思想是在高维空间中构建一个超平面,将不同类别的数据分隔开。
该算法的核心在于寻找到一个能够将数据分隔开的最优超平面,使得分类间隔最大化。
在训练过程中,支持向量机会通过求解一个二次规划问题来寻找最优超平面。
模型求解:在模型训练过程中,我们采用了LIBSVM工具包来实现支持向量机。
LIBSVM是一种常用的支持向量机实现工具包,其提供了高效的求解算法和方便的接口。
在实验中,我们采用了交叉验证和网格搜索等方法来选择最优的参数组合,并对其进行评估。
结果分析:在实验中,我们采用了多种数据集来验证支持向量机的性能,包括图像分类、文本分类和生物信息学等领域的数据集。
实验结果表明,支持向量机在多个领域中都取得了较好的分类效果,其准确率、召回率和F1得分等指标均优于其他传统分类算法。
同时,我们还对其进行了误差分析,发现支持向量机具有较好的泛化性能和鲁棒性。
结论与展望:本文研究了支持向量机在分类问题中的应用,并对其性能进行了评估。
实验结果表明,支持向量机在多个领域中都取得了较好的分类效果,其准确率、召回率和F1得分等指标均优于其他传统分类算法。
同时,支持向量机还具有较好的泛化性能和鲁棒性。
论文总标题(标题1,三号黑体字,段前后可空18磅)1摘要(标题1,四号黑体字,段前后可空12磅)本文针对×××××问题,对相关数据进行如何的处理,使×××、×××、×××、×××等方法,分别建立了×××、×××、×××、×××等模型,使用×××、×××、×××、×××等软件编程计算方法,得到关于什么问题的哪几个具体方面×××、×××、×××、×××结果,最后本文还做了误差分析及灵敏度分析。
针对问题一,详细交待一下问题的具体内容,使×××、×××、×××、×××等方法,建立了×××、×××模型,使用×××、×××等软件编程计算方法,得到关于什么问题的哪一个或几个具体方面×××、×××、×××、×××的结果,并分析了结果如何。
针对问题二,详细交待一下问题的具体内容,使×××、×××、×××、×××等方法,建立了×××、×××模型,使用×××、×××等软件编程计算方法,得到关于什么问题的哪一个或几个具体方面×××、×××、×××、×××的结果,并分析了结果如何。
BP 神经网络算法原理:输入信号i x 通过中间节点(隐层点)作用于输出节点,经过非线形变换,产生输出信号k y ,网络训练的每个样本包括输入向量x 和期望输出量d ,网络输出值y 与期望输出值d 之间的偏差,通过调整输入节点与隐层节点的联接强度取值ij w 和隐层节点与输出节点之间的联接强度jk T 以及阈值,使误差沿梯度方向下降,经过反复学习训练,确定与最小误差相对应的网络参数(权值和阈值),训练即告停止.此时经过训练的神经网络即能对类似样本的输入信息,自行处理输出误差最小的经过非线形转换的信息。
变量定义:设输入层有n 个神经元,隐含层有p 个神经元,输出层有q 个神经元 输入向量:()12,,,n x x x x =隐含层输入向量:()12,,,p hi hi hi hi = 隐含层输出向量:()12,,,p ho ho ho ho = 输出层输入向量:()12,,,q yi yi yi yi = 输出层输出向量:()12,,,q yo yo yo yo =期望输出向量: ()12,,,q do d d d =输入层与中间层的连接权值: ih w 隐含层与输出层的连接权值: ho w 隐含层各神经元的阈值:h b 输出层各神经元的阈值: o b 样本数据个数: 1,2,k m =激活函数: ()f ⋅误差函数:211(()())2qo o o e d k yo k ==-∑算法步骤:Step1.网络初始化 。
给各连接权值分别赋一个区间(—1,1)内的随机数,设定误差函数e ,给定计算精度值ε和最大学习次数M 。
Step2。
随机选取第k 个输入样本()12()(),(),,()n x k x k x k x k =及对应期望输出()12()(),(),,()q d k d k d k d k =oStep3。
计算隐含层各神经元的输入()1()()1,2,,nh ih i h i hi k w x k b h p ==-=∑和输出()()(())1,2,,h h ho k f hi k h p ==及输出层各神经元的输入()1()()1,2,po ho h o h yi k w ho k b o q ==-=∑和输出()()(())1,2,,o o yo k f yi k o p ==Step4。
大学数学建模论文范文第一部分,问题描述。
我们选取了某城市的交通拥堵问题作为研究对象。
该城市的交通拥堵问题严重影响了市民的出行和城市的发展。
我们希望通过数学建模的方法,分析该城市的交通拥堵问题,并提出解决方案。
第二部分,问题分析。
我们首先对该城市的交通情况进行了调研,了解了交通拥堵的主要原因包括道路狭窄、交通信号不畅、车辆过多等。
然后,我们运用数学模型对这些因素进行了量化分析,并得出了交通拥堵的数学描述。
第三部分,模型建立。
在模型建立过程中,我们运用了交通流理论、优化理论等数学知识,建立了一个包括道路网络、交通信号、车辆流量等因素的数学模型。
通过模型的建立,我们可以定量地分析交通拥堵问题,并找到最优的解决方案。
第四部分,模型求解。
我们采用了数值计算的方法,对建立的数学模型进行了求解。
通过对模型的求解,我们得出了一些有关交通拥堵问题的定量结论,并提出了一些解决方案。
第五部分,结果分析。
在结果分析部分,我们对模型的求解结果进行了分析和讨论。
我们发现了一些关于交通拥堵问题的规律性结论,并在此基础上提出了一些可行的解决方案。
第六部分,结论和展望。
在结论部分,我们总结了我们的研究成果,并提出了一些对未来研究的展望。
我们认为,通过数学建模的方法,可以有效地分析和解决实际问题,为城市的发展和居民的生活带来更多的便利。
通过以上范文的展示,我们可以看到一个完整的数学建模论文的写作过程。
在写作过程中,我们需要对问题进行深入的分析,建立合适的数学模型,并进行求解和结果分析,最终得出结论和展望。
希望这篇范文可以对大家在数学建模论文写作中有所帮助。
大一数学建模论文范文2000字(热门6篇)文章以数学建模课程为载体,以培养学生创新能力为核心,从完善课程教学体系入手,将数学建模培养创新能力贯穿在教学的全过程,探索课程教学模式对培养创新人才的新措施。
一、数学建模课程对培养创新人才的作用(一)提高实践能力(二)提高创新能力数学建模方法是解决现实问题的一种量化手段。
数学建模和传统数学课程相比,是一种创新性活动。
面对实际问题,根据数据和现象分析,用数学语言描述建模问题,再进行科学计算处理,最后反馈到现实中解释,这一过程没有固定的标准模式,可以采用不同方法和思路解决同样的问题,能锻炼学生的想象力、洞察力和创新能力。
(三)提高科学素质二、基于数学建模课程教学全方位推进创新能力培养的实践(一)分解教学内容增强课程的适应性根据学生的接受能力及数学建模的发展趋势,在保持课程理论体系完整性和知识方法系统性的基础上,教学内容分解为课堂讲授与课后实践两部分。
课堂教师讲授数学建模的基础理论和基本方法,精讲经典数学模型及建模应用案例,启发学生数学建模思维,激发学生数学建模兴趣;课后学生自己动手完成课堂内容扩展、模型运算及模型改进等,教师答疑解惑。
课堂教学注重数学建模知识的学习,课后教学重在知识的运用。
随着实际问题的复杂化和多元化,基本的数学建模方法及计算能力满足不了实际需求。
课程教学中还增加了图论、模糊数学等方法,计算机软件等初级知识。
(二)融入新的教学方法提高学生的参与度1.课堂教学融入引导式和参与式教学方法。
数学建模涉及的知识很多是学生学过的,对学生熟悉的方法,教师以引导学生回顾知识、增强应用意识为主,借助应用案例重点讲授问题解决过程中数学方法的应用,引导学生学习数学建模过程;对于学生不熟悉的'方法,则要先系统讲授方法,再分析講解方法在案例中的应用,引导学生根据问题寻找方法。
此外,为了增强学生学习的积极性和效果,组织1~2次专题研讨,要求学生参与教学过程,教师须做精心准备,选择合适教学内容、设计建模过程、引导学生讨论、纠正错误观点。
觉得数学建模论文格式这么样设置版权归郝竹林所有,材料仅学习参考版权:郝竹林备注☆※§等等字符都可以作为问题重述左边的。
一级标题所有段落一级标题设置成段落前后间距13磅二级标题设置成段落间距前0.5行后0.25行图和表的标题采用插入题注方式题注样式在样式表中设置居中五号字体中画出的折线表字体采用默认格式宋体正文10号图标题在图上方段落间距前0.25行后0行表标题在表下方段落间距前0行后0.25行行距均使用单倍行距所有段落均把4个勾去掉注意表格插入到的方式在中复制后,粘贴,2010粘贴选用使用目标主题嵌入当前所有软件名字第一个字母大写比如所有公式和字母均使用编写公式编号采用编号格式自己定义公式编号在右边显示农业化肥公司的生产与销售优化方案摘 要 要求总分总 本文针对储油罐的变位识别与罐容表标定的计算方法问题,运用二重积分法和最小二乘法建立了储油罐的变位识别与罐容表标定的计算模型,分别对三种不同变位情况推导出的油位计所测油位高度与实际罐容量的数学模型,运用软件编程得出合理的结论,最终对模型的结果做出了误差分析。
针对问题一要求依据图4及附表1建立积分数学模型研究罐体变位后对罐容表的影响,并给出罐体变位后油位高度间隔为1的罐容表标定值。
我们作图分析出实验储油罐出现纵向倾斜ο14.时存在三种不同的可能情况,即储油罐中储油量较少、储油量一般、储油量较多的情况。
针对于每种情况我们都利用了高等数学求容积的知识,以倾斜变位后油位计所测实际油位高度为积分变量,进行两次积分运算,运用软件推导出了所测油位高度与实际罐容量的关系式。
并且给出了罐体倾斜变位后油位高度间隔为1的罐容标定值(见表1),最后我们对倾斜变位前后的罐容标定值残差进行分析,得到样本方差为4103878.2-⨯,这充分说明残差波动不大。
我们得出结论:罐体倾斜变位后,在同一油位条件下倾斜变位后罐容量比变位前罐容量少L 243。
表 错误!未指定样式名。
本文部分内容来自网络整理,本司不为其真实性负责,如有异议或侵权请及时联系,本司将立即删除!== 本文为word格式,下载后可方便编辑和修改! ==数学建模论文参考文献篇一:数学建模优秀论文模板(经典中的经典)承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们参赛选择的题号是(从A/B/C/D中选择一项填写):我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):参赛队员(打印并签名) :1.指导教师或指导教师组负责人 (打印并签名):日期:年月日赛区评阅编号(由赛区组委会评阅前进行编号):201X高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):题目(黑体不加粗三号居中)摘要(黑体不加粗四号居中)(摘要正文小4号,写法如下)内容要点:1、研究目的:本文研究……问题。
2、建立模型思路、:首先,本文……。
然后针对第一问……问题,本文建立……模型:在第一个……模型中,本文对哪些问题进行简化,利用什么知识建立了什么模型在第二个……模型中,本文对哪些问题进行简化,利用什么知识建立了什么模型 3、求解思路,使用的方法、程序针对模型的求解,本文使用什么方法,计算出,并只用什么工具求解出什么问题,进一步求解出什么结果。
4、建模特点(模型优点,建模思想或方法,算法特点,结果检验,灵敏度分析,模型检验等)5、在模型的检验模型中,本文分别讨论了以上模型的精度和稳定性6、最后,本文通过改变,得出什么模型。
题目(黑体不加粗三号居中)摘要(黑体不加粗四号居中)(摘要正文小4号宋体)摘要所要表述内容主要为:钟对什么样的问题,经过分析,采用什么样的方法,得到什么样的结果,(如果是多个模型对同一个问题进行讨论,要有结果比较,把好的放后面。
)摘要是重中之重,必须严格执行!一般是全文结束后再写摘要。
关键词:页码:1(底居中)(目录可选)目录(4号黑体)(以下小4号)一、问题重述…………………………………………………………()二、问题分析…………………………………………………………()三、模型的假设…………………………………………………………()四、定义与符号说明…………………………………………………()五、模型的建立与求解………………………………………………()六、对模型的评价………………………………………………………()七、参考文献……………………………………………………………()八、附录…………………………………………………………………………()一、问题重述(第二页起黑四号)在保持原题主体思想不变下,可以自己组织词句对问题进行描述,主要数据可以直接复制,对所提出的问题部分基本原样复制。
篇幅建议不要超过一页。
大部分文字提炼自原题。
二、问题分析主要是表达对题目的理解,特别是对附件的数据进行必要分析、描述(一般都有数据附件),这是需要提到分析数据的方法、理由。
如果有多个小问题,可以对每个小问题进行分别分析。
(假设有3个问题)(一) 问题1的分析对问题1研究的意义的分析。
问题1属于。
数学问题,对于解决此类问题一般数学方法的分析。
对附件中所给数据特点的分析。
对问题1所要求的结果进行分析。
由于以上原因,我们可以将首先建立一个。
的数学模型I,然后将建立一个。
的模型II,。
对结果分别进行预测,并将结果进行比较.(二) 问题2的分析对问题2研究的意义的分析。
问题2属于。
数学问题,对于解决此类问题一般数学方法的分析。
对附件中所给数据特点的分析。
国际大学生数学建模竞赛论文数学建模不仅有助于提高学生的数学知识水平和数学应用能力,而且还能激发学生学习数学的兴趣。
下文是店铺为大家整理的关于国际大学生数学建模竞赛论文的范文,欢迎大家阅读参考!国际大学生数学建模竞赛论文篇1浅析数学建模培训中提高心理素质的方法数学建模是一项集数学、计算机水平和综合能力的工作,为了让学生更好地参加各类数学建模竞赛,通常准备参加的学生都要做一些准备,即参加学校举办的建模竞赛培训,在培训中,学生能尽早了解并掌握建模的基础理论知识及相关应用软件,有利于培养学生分析问题和解决实际问题的能力,并且有利于培养学生的团队合作精神,使队员间尽早磨合,相互了解,同时可以训练学生快速获取有用信息和资料的能力,有利于增强学生的写作技能和排版技术等。
数学建模竞赛培训是根据竞赛的发展动向,在认真进行调研和集体研究后,形成培训内容和培训方案,例如有线性与非线性优化、整数与多目标规划、多元统计分析、图论与网络方法、Matlab 与 Lingo 软件、各类竞赛题等等。
因此,指导教师讲授的内容是动态化和多样化的。
培训期间工作十分紧张,每天白天和晚上要进行,周六和周日也要进行,付出的辛苦是可想而知的。
特别是在模拟竞赛期间,要求学生按照竞赛规定的时间完成模拟训练赛题,并写成一篇完整的论文,由于题目比较难,学生往往就会在思想上出现各种畏难和波动情绪。
参加过建模的同学收获很多,不但领会到数学之美,建模之乐,还体会到团队合作的强大,专业交叉的益处,可以说对学生是一个专业,性格,心智等全方面的锻炼和提高。
1. 心理素质在竞赛中的作用心理素质是人综合素质的重要组成部分,一般指人的情绪、信心和意志力等。
很多学生通过《高等数学》、《概率统计》及《复变函数》等数学课程的学习,对数学的抽象性、实用性和理论性产生怀疑,或多或少的会对数学产生抵触情绪或者畏惧心理。
因此,每每提到"数学"都会产生疑问,对数学缺乏信心,失去兴趣,在比赛中,负面情绪占主导地位的学生,只要碰到一点弄不懂的地方,就容易焦躁沮丧,甚至于失去信心,中途放弃比赛,而意志力强的学生正好相反,同样的困难反而更能激发他们的斗志,往往坚持到最后,都取得不错的成绩。
附件一:数学建模论文模板(注:论文标题、摘要、关键词为单独的第1页;第2页开始为正文,原则上应该包括问题提出、问题分析、…、模型的评价与改进及参考文献;若需写短文的则另起一页附在最后)论文标题姓名1;姓名2;姓名3(学院班级1,学院班级2,学院班级3,)摘要:XXXXXX(字数至少3百,但不得超过8百)关键词:XXXXXXXXXXXXX1 问题的提出XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX2 问题的分析XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXX3 基本假设XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX4 定义符号说明XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX5 模型的建立XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXX6 模型的求解XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX7 结果分析XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXX8 模型的评价与改进XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXX参考文献[1]XXX,XXXXXXXXXXXXXXXXXXX,XXXXXXX,XXXXX;[2]XXX,XXXXXXXXXXXXXXXXXXXXXXXXXXXXX,XXXXXXXXXXXX,XXXXX。
(数学建模论文书写基本框架,仅供参考)题目(黑体不加粗三号居中)摘要(黑体不加粗四号居中)(摘要正文小4号,写法如下)(第1段)首先简要叙述所给问题的意义和要求,并分别分析每个小问题的特点(以下以三个问题为例)。
根据这些特点我们对问题1用。
的方法解决;对问题2用。
的方法解决;对问题3用。
的方法解决。
(第2段)对于问题1我们用。
数学中的。
首先建立了。
模型I。
在对。
模型改进的基础上建立了。
模型II。
对模型进行了合理的理论证明和推导,所给出的理论证明结果大约为。
,然后借助于。
数学算法和。
软件,对附件中所提供的数据进行了筛选,去除异常数据,对残缺数据进行适当补充,并从中随机抽取了3组数据(每组8个采样)对理论结果进行了数据模拟,结果显示,理论结果与数据模拟结果吻合。
(方法、软件、结果都必须清晰描述,可以独立成段,不建议使用表格)(第3段)对于问题2我们用。
(第4段)对于问题3我们用。
如果题目单问题,则至少要给出2种模型,分别给出模型的名称、思想、软件、结果、亮点详细说明。
并且一定要在摘要对两个或两个以上模型进行比较,优势较大的放后面,这两个(模型)一定要有具体结果。
(第5段)如果在……条件下,模型可以进行适当修改,这种条件的改变可能来自你的一种猜想或建议。
要注意合理性。
此推广模型可以不深入研究,也可以没有具体结果。
关键词:本文使用到的模型名称、方法名称、特别是亮点一定要在关键字里出现,5~7个较合适。
注:字数700~1000之间;摘要中必须将具体方法、结果写出来;摘要写满几乎一页,不要超过一页。
摘要是重中之重,必须严格执行!。
页码:1(底居中)目录可选:目录(4号黑体)(以下小4号)第一部分问题重述…………………………………………………………() 第二部分问题分析…………………………………………………………() 第三部分模型的假设…………………………………………………………() 第四部分定义与符号说明…………………………………………………() 第五部分模型的建立与求解………………………………………………() 1.问题1的模型………………………………………………………………() 模型I(…(随机规划)模型)……………………………………………() 模型II(………(数学)的模型)………………………………………….() ………………………………………………………………………………….2.问题2的模型…………………………………………………………………() 模型I(………数学的模型)………………………………………………()模型II(………数学的模型)…………………………………………….() ……………………………………………………………………………….第六部分对模型的评价………………………………………………………() 第七部分参考文献……………………………………………………………() 第八部分附录…………………………………………………………………………()一、问题重述(第二页起黑四号)在保持原题主体思想不变下,可以自己组织词句对问题进行描述,主要数据可以直接复制,对所提出的问题部分基本原样复制。
篇幅建议不要超过一页。
大部分文字提炼自原题。
二、问题分析主要是表达对题目的理解,特别是对附件的数据进行必要分析、描述(一般都有数据附件),这是需要提到分析数据的方法、理由。
如果有多个小问题,可以对每个小问题进行分别分析。
(假设有3个问题)(一)问题1的分析对问题1研究的意义的分析。
问题1属于。
数学问题,对于解决此类问题一般数学方法的分析。
对附件中所给数据特点的分析。
对问题1所要求的结果进行分析。
由于以上原因,我们可以将首先建立一个。
的数学模型I,然后将建立一个。
的模型II,。
对结果分别进行预测,并将结果进行比较.(二)问题2的分析对问题2研究的意义的分析。
问题2属于。
数学问题,对于解决此类问题一般数学方法的分析。
对附件中所给数据特点的分析。
对问题2所要求的结果进行分析。
由于以上原因,我们可以将首先建立一个。
的数学模型I,然后将建立一个。
的模型II,。
对结果分别进行预测,并将结果进行比较.。
三、模型假设(4号黑体)(以下小4号)1.假设题目所给的数据真实可靠;2.3.4.5.6.。
注意:假设对整篇文章具有指导性,有时决定问题的难易。
一定要注意假设的某种角度上的合理性,不能乱编,完全偏离事实或与题目要求相抵触。
注意罗列要工整。
四、定义与符号说明(4号黑体)(对文章中所用到的主要数学符号进行解释小4号)。
尽可能借鉴参考书上通常采用的符号,不宜自己乱定义符号,对于改进的一些模型,符号可以适当自己修正(下标、上标、参数等可以变,主符号最好与经典模型符号靠近)。
对文章自己创新的名词需要特别解释。
其他符号要进行说明,注意罗列要工整。
如“x~第i种疗法的第j项指标值”等,注意格式统一,不ij要出现零乱或前后不一致现象,关键是容易看懂。
五、模型的建立与求解(4号黑体)第一部分:准备工作(4号宋体)(一)数据的处理1、。
数据全部缺失,不予考虑。
2、对数据测试的特点,如,周期等进行分析。
3、。
数据残缺,根据数据挖掘等理论根据。
变化趋势进行补充。
4、对数据特点(后面将会用到的特征)进行提取。
(二)聚类分析(进行采样)用。
软件聚类分析和各个不同问题的需要,采得。
组采样,每组5-8个采样值。
将采样所对应的特征值进行列表或图示。
(二)预测的准备工作根据数据特点,对总体和个体的特点进行比较,以表格或图示方式显示。
第二部分:问题1的。
模型(4号宋体)(一)模型I(。
的模型)1.该种模型的一般数学表达式,意义,和式中各种参数的意义。
注明参考文献。
2.。
模型I的建立和求解(1)说明问题1适用用此模型来解决,并将模型进行改进以适应问题1。
(2)借助准备工作中的采样,(用拟合等方法)确定出模型中的参数。
(3)给出问题1的数学模型I表达式和图形表示式。
(4)给出误差分析的理论估计。
3.模型I的数值模拟将模型I进行数值计算,并与附件中的真实采样值(进行列表或图示)比较。
对误差进行数据分析。
(二)模型II(。
的模型)1.该种模型的一般数学表达式,意义,和式中各种参数的意义。
注明参考文献。
2.。
模型II的建立和求解(1)说明问题1适用用此模型来解决,并将模型进行改进以适应问题1。
(2)借助准备工作中的采样,通过确定出模型中的参数。
(3)给出问题1的数学模型I表达式和图形表示式。
(4)给出误差分析的理论估计。
3.模型II的数值模拟将模型II进行数值计算,并与附件中的真实采样值(进行列表或图示)比较。
对误差进行数据分析(三)模型III(。
的模型)。
(四)问题1的三种数学模型的比较。
对三种模型的优点和缺点结合原始数据和模拟预测数据进行比较。
给出各自得优点和缺点。
第三部分:问题2的。
个模型(4号宋体)。
第四部分:问题3的。
个模型(4号宋体)。
六、模型评价与推广对本文中的模型给出比较客观的评价,必须实事求是,有根据,以便评卷人参考。
推广和优化,需要挖空心思,想出合理的、甚至可以合理改变题目给出的条件的、不一定可行但是具有一定想象空间的准理想的方法、模型。
(大胆、合理、心细。
反复推敲,这段500字半页左右的文字,可能决定生死存亡。
)七、参考文献(4号黑体)(书写格式如下)[1] 作者名1,作者名2.文章名字.杂志名字,年,卷(期):起始页码-结束页码[2] 作者名1,作者名2.书名.出版地:出版社,年,起始页码-结束页码[3] 作者名1,作者名2.文章名字. 年,卷(期):起始页码-结束页码,网页地址。
[4] 李传鹏,什么是中国标准书号,/mypage/page2.asp?pgid=51440&pid=46275,2006-9-18。
[5] 徐玖平、胡知能、李军,运筹学(II类),北京:科学出版社,2004。
[6]Ishizuka Y, AiyoshiE. Double penalty method for bilevel optimization problems. Annals of Operations Research, 24: 73- 88,1992。
注意:5篇以上!八、附件(4号黑体)(正文中不许出现程序,如果要附程序只能以附件形式给出)2006年数学建模评分参考标准:摘要(很重要) 5分数据筛选 35分数学模型 35分数据模拟 15分总体感觉 10分特别注意:1、问题的结果要让评卷人好找到;显要位置---独立成段2、摘要中要将方法、结果讲清楚;3、可以有目录也可以不要目录;4、建模的整个过程要清楚,自圆其说,有结果、有创新;5、采样要足够多,每组不少于7个;6、模型要与数据结合,用数据验证过;7、如果数学方法选错,肯定失败;8、规范、整洁;总页数在35~45之间为宜。