青岛版八年级下册数学期末测试卷【及含答案】
- 格式:docx
- 大小:230.34 KB
- 文档页数:9
青岛版八年级下册数学期末测试卷一、单选题(共15题,共计45分)1、若平行四边形的一边长为2,面积为,则此边上的高介于( )A.3与4之间B.4与5之间C.5与6之间D.6与7之间2、小亮家与姥姥家相距24km,小亮8:00从家出发,骑自行车去姥姥家妈妈8:30从家出发,乘车沿相同路线去姥姥家在同一直角坐标系中,小亮和妈妈的行进路程与北京时间的函数图象如图所示,根据图象得到如下结论,其中错误的是()A.9:00妈妈追上小亮B.妈妈比小亮提前到达姥姥家C.小亮骑自行车的平均速度是D.妈妈在距家13km处追上小亮3、下列说法中正确的是()A.平移和旋转都不改变图形的形状和大小B.任意多边形都可以进行镶嵌C.有两个角相等的四边形是平行四边形D.对角线互相垂直的四边形是菱形4、如图,在直角坐标系中有线段AB,AB=50cm,A、B到x轴的距离分别为10cm和40cm,B点到y轴的距离为30cm,现在在x轴、y轴上分别有动点P、Q,当四边形PABQ的周长最短时,则这个值为()A.50B.50C.50 -50D.50 +505、如图,将绕点逆时针旋转得到点的对应点分别为则的长为()A. B. C. D.6、下列命题中:真命题的个数是()①两条对角线互相平分且相等的四边形是正方形;②菱形的一条对角线平分一组对角;③顺次连结四边形各边中点所得的四边形是平行四边形;④两条对角线互相平分的四边形是矩形;⑤平行四边形对角线相等.A.1B.2C.3D.47、对于一次函数y=x+6,下列结论错误的是()A.函数值随自变量增大而增大B.函数图象与两坐标轴围成的三角形面积为18.C.函数图象不经过第四象限D.函数图象与x轴交点坐标是(0,﹣6)8、关于的不等式只有2个正整数解,则的取值范围为A. B. C. D.9、的立方根是()A.8B.2C.4D.±410、如图,在平面直角坐标系xOy中,已知点A(3,4),将OA绕坐标原点O 逆时针旋转90°至OA′,则点A′的坐标是().A.(-4,3)B.(-3,4)C.(3,-4)D.(4,-3)11、下列选项中,对任意实数a都有意义的二次根式是()A. B. C. D.12、下列运算错误的是()A. B. C. D.13、在实数,,,中,最大的数是()A. B. C. D.14、甲、乙两人沿相同的路线由A地到B地匀速前进,A、B两地间的路程为20km.他们前进的路程为s(km),甲出发后的时间为t(h),甲、乙前进的路程与时间的函数图象如图所示.根据图象信息,下列说法正确的是( )A.甲的速度是4km/hB.乙的速度是10km/hC.乙比甲晚出发1h D. 甲比乙晚到B地3h15、一次函数y=-3x-2的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限二、填空题(共10题,共计30分)16、如图,三角形DEF是三角形ABC沿射线BC平移的得到的,BE=2,DE与AC 交于点G,且满足DG=2GE.若三角形CEG的面积为1,CE=1,则点G到AD的距离为________.17、不等式组的解集为________.18、的平方根是________,已知一个数的平方是,则这个数的立方是________.19、如图,在平面直角坐标系中,▱ABCD的顶点B位于y轴的正半轴上,顶点C,D位于x轴的负半轴上,双曲线y=(k<0,x<0)与▱ABCD的边AB,AD交于点E、F,点A的纵坐标为10,F(﹣12,5),把△BOC沿着BC所在直线翻折,使原点O落在点G处,连接EG,若EG∥y轴,则△BOC的面积是________.20、等腰三角形底边长10cm,周长为36cm,则一底角的正切值为________21、如图,Rt△ABC≌Rt△DCB,两斜边交于点O,如果AC=3,那么OD的长为________.22、在Rt△ABC中,∠C=90°,CA=8,CB=6,则△ABC内切圆的面积为________.23、如图,在Rt△ABC中,∠ACB = 90°,,点D、E分别在边AB上,且AD = 2,∠DCE = 45°,那么DE =________.24、如图,折叠直角三角形纸片的直角,使点C落在斜边AB上的点E处,已知CD=1,∠B=30°,则AC的长是________.25、如图,Rt△ABC中,∠ACB=90°,AC=4,将斜边AB绕点A逆时针旋转90°至AB′,连接B′C,则△AB′C的面积为________三、解答题(共5题,共计25分)26、解不等式组:.27、如果一个正数的两个平方根是a+1和2a﹣22,求出这个正数的立方根.28、解不等式组,并把它的解集在数轴上表示出来.29、如图,菱形ABCD的对角线AC,BD相交于点O,AC=6,BD=8,且DE∥AC,AE∥BD.求OE的长.30、如图,矩形ABCD中,E为BC上一点,DF⊥AE于F.若AB=6,AD=12,BE=8,求:DF的长,以及四边形DCEF的面积。
八年级数学下学期期末考试试题注意事项:1.本试卷共7页,满分100分,考试时间120分钟。
2.答题前,请考生仔细阅读答题纸上的注意事项,并务必按照相关要求作答。
3.考试结束后,监考人员只收回答题纸。
一、选择题: 在下列各小题中,均给出四个答案,其中有且只有一个正确答案.1结果是A .4B .4-C .4±D .2± 2.下列二次根式中,最简二次根式是 A .31B .3.0C .3a 2+D .2ab3.如图,四边形ABCD 的对角线互相平分,要使它成为矩形,那么需要添加的条件是A .AB CD = B .AD BC = C .AB BC =D .AC BD = 4.下列各式中,计算不正确的是 A .5353⨯=⨯B .20812=+C .1065322=⨯D .255105=5.不等式组⎩⎨⎧->-≥-71212x x 的解集在数轴上表示正确的是6.如图,在平面直角坐标系中,将△ABC 绕点定P 旋转180º,得到△A 1B 1C 1,则A 1,B 1,C 1的坐标分别为A. A 1(-4,-6),B 1(-3,-3),C 1(-5,-1)B. A 1(-6,-4),B 1(-3,-3),C 1(-5,-1)C. A 1(-4,-6),B 1(-3,-3),C 1(-1,-5)D. A 1(-6,-4),B 1(-3,-3),C 1(-1,-5) 7=成立的条件是 A .x ≥0 B .-3<x ≤0 C .x >3 D .x >3或x <0 8.将一次函数12y x =的图像向上平移2个单位,平移后,若y >0,则x 的取值范围是 A. x >4 B. x >-4 C. x >2 D. x >-29.如图,过A 点的一次函数图象与正比例函数2y x =的图象相交于点B ,则这个一次函数的解析式是A .23y x =+B .3y x =-C .23y x =-D .3y x =-+ 10.如图,在平行四边形ABCD 中,AB =4,∠BAD =平分线与BC 的延长线相交于点E ,与DC交于点F ,且点F 为边DC 的中点,DG ⊥AE ,垂足为G ,若DG =1,则AE 的长为 A .23 B .43 C .4D .811.直线1y x =+与2y x a =-+的交点在第一象限,则a 的取值可以是 A .-1B .0C . 1D .212.如图,函数2y x =和4y ax =+的图象相交于点A (m ,3),则不等式2x ≥4ax + 的解集为 A .x ≥32 B .x ≤3 C .x ≤32D .x ≥313.如图,矩形ABCD 中,E 是AD 的中点,将△ABE 沿直线BE 折叠后得到△GBE ,延长BG 交CD 于点F ,若AB =6,BC =,则FD 的长为 A .2B .4C D .14.实数a 在数轴上的位置如图所示,则化简结果为A .7B .-7C .2a -15D .无法确定15.如图,正方形ABCD 中,AB =3,点E 在边CD 上,且CD =3DE .将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连接AG ,CF .下列结论: ①点G 是BC 的中点;②FG =FC ;③S △FGC =910.其中正确的是 A .①② B .①③ C .②③ D .①②③二、填空题(本大题共5小题,只要求填写最后结果) 16.÷⨯的结果为_________.17.如果P (-2,a )是正比例函数y=-2x 图象上的一点,那么P 点关于y 轴对称点的坐标为_________.18.如图,在矩形ABCD 中,M ,N 分别是边AD ,BC 的中点,E 、F 分别是线段BM 、CM 的中点.若AB =8,AD =12,则四边形ENFM 的周长为_________.19.一次越野跑中,当小明跑了1600米时,小刚跑了1400米,小明、小刚在此后所跑的路程y (米)与时间t (秒)之间的函数关系如图,则这次越野跑的全程为_________米.20.若不等式组0,122x a x x +≥⎧⎨->-⎩有解,则a 的取值范围是_________.三、解答题(本大题共7小题,解答应写出必要的文字说明、证明过程或推演步骤)21.解不等式组12432362273(1)x x x x x ---⎧-≥⎪⎨⎪-≤-⎩,并把它的解集在数轴上表示出来.22. 已知水银体温计的读数y (℃)与水银柱的长度x (cm)之间是一次函数关系.现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水第13题图 第15题图银柱的长度.42.0(1)求y 关于x 的函数关系式(不需要写出函数的定义域);(2)用该体温计测体温时,水银柱的长度为6.2cm ,求此时体温计的读数.23. 如图,四边形ABCD 的对角线AC 、BD 交于点O ,若O 是AC 的中点,AE=CF , DF ∥BE .(1)求证:△BOE ≌△DOF ; (2)若OD =12AC ,则四边形ABCD 是什么特殊四边形?请证明你的结论.24. 如图所示,x 轴所在直线是一条东西走向的河,A (-2,3)、B (4,5)两个村庄位于河的北岸,现准备在河上修建一净水站P ,并利用管道为两个村庄供水(单位:千米). (1)欲使所修管道最短,应该把净水站P 修在什么位置,作出正确图形(用尺规作图),求出P 点坐标并及PB 所在直线解析式;(2)若管道每米费用需要200元,求修管道的最低费用.25. 如图,点E 、F 分别在正方形ABCD 的边CD 与BC 上,45EAF ∠=.(1)求证:EF =DE +BF ;(2)作AP ⊥EF 于点P ,若AD =10,求AP 的长.26. 甲、乙两商场以同样的价格出售同样的商品,并且又各自推出不同的优惠方案:在甲商场累计购物超过100元后,超出100元的部分按90℅收费:在乙商场累计购物超过50元后,超出50元的部分按95℅收费.设小红在同一商场累计购物x 元,其中x >100. (1)根据题意,填写下表(单位:元):(2)当x取何值时,小红在甲、乙两商场的实际花费相同?(3)当小红在同一商场累计购物超过100元时,在哪家商场的实际花费少?27. 如图,△ABC是直角三角形,且∠ABC=90°,四边形BCDE是平行四边形,E为AC 的中点,BD平分∠ABC,点F在AB上,且BF=BC.求证:(1)DF=AE;(2)DF⊥AC.八年级数学试题参考答案一、选择题: 每小题3分,满分45分二、填空题:每小题3分,满分15分 1617.(2,4) 18.20 19.2200 20.a >-1 三、解答题:本大题满分60分 21.(本题满分5分)原式可化为2(12)(43)3(2)4---≥-⎧⎨≥-⎩x x x x ………………………………2分解得:﹣4≤x≤1.………………………………………………………………3分数轴略……………………………………………………………………………5分 22.(本题满分8分)解:(1)设一次函数解析式为:y=kx+b ,由题意得:⎩⎨⎧+=+=b k bk 2.80.402.40.35,…………………………………………………3分解得:⎩⎨⎧==75.2925.1b k∴一次函数的解析式是:y=1.25x+29.75;………………………………………5分 (2)当x=6.2时,y=1.25×6.2+29.75=37.5.答:此时体温计的读数是37.5℃. ………………………………………………8分 23.(本题满分9分) (1)证明:∵DF ∥BE ,∴∠FDO=∠EBO ,∠DFO=∠BEO , ∵O 为AC 的中点,即OA=OC ,AE=CF ,………………………………………………………………2分∴OA ﹣AE=OC ﹣CF ,即OE=OF , 在△BOE 和△DOF 中,FDO=EBO DFO=BEO OE=OF ⎧⎪⎨⎪⎩∠∠∠∠, ∴△BOE≌△DOF……………………………………………………………………………………………………5分 (2)若OD=12AC ,则四边形ABCD 是矩A形,……………………………………………………………7分 理由为:证明:∵△BOE ≌△DOF , ∴OB=OD ,∴OA =OB=OC=OD ,即BD=AC ,∴四边形ABCD 为矩形.……………………………………………………………9分 24.(本题满分9分)解:(1)作点A 关于x 轴的对称A ’,连接A ’B 交x 轴于点P ,则点P 就是所求…3分 设PB 所在直线解析式为=+y kx b , 因为PB 过点A ’(-2,-3),B(4,5),所以可得2345-+=-⎧⎨+=⎩k b k b ,解得4313⎧=⎪⎪⎨⎪=-⎪⎩k b所以PB 所在直线解析式为4133=-y x ……………………………………6分 (2)根据题意,A ’B 即为所修管道长,分别过A ’和B 作平行于x 轴和y 轴的直线交于点B ’,在直角三角形A ’B ’B 中,A ’B ’=6,B ’B=8,所以A ’B=10,所以最少费用为200×10×1000=2000000元…………………………………9分 25.(本题满分9分)(1)证明:将△ABC 绕以点A 为旋转中心顺时针旋转90,此时点D 位于CB 的延长线上D ’处………………………………………1分根据旋转的性质,DE=BD ’,∠=∠'B DAE D A 又因为45EAF ∠=,90DAE BAC EAF ∠+∠+∠=所以45DAE BAF ∠+∠=……………………………………………………………………………2分所以∠+∠=’45oD AB BAF …………………………………………………………3分即∠=o ’45D AF所以’45D AF EAF ∠=∠=在△EAF 与△D ’AF 中,另有AF=AF ,AE=AD ’所以△EAF ≌△D ’AF ………………………………………………………………5分 所以EF=D ’F=B D ’ +BF=DE+BF ……………………………………………………6分(2)因为AP⊥EF,由(1)知,AP与AB同为全等三角形对应边上的高,所以AP=AB=10…………………………………………………………………9分26.(本题满分10分)解:(1)在甲商场:271,0.9x+10: ……………………………………………2分在乙商场:278,0.95x+2.5. ……………………………………………4分(2)根据题意,有0.9x+10=0.95x+2.5,解得x=150,∴当x=150时,小红在甲、乙两商场的实际花费相同;…………………7分(3)由0.9x+10<0.95x+2.5,解得x>150,由0.9x+10>0.95x+2.5,解得x<150.∴当小红累计购物超过150元时,在甲商场的实际花费少.当小红累计购物超过100元而不到150元时,在乙商场的实际花费少.…10分27.(本题满分10分)证明:(1)延长DE交AB于点G,连接AD.∵ED∥BC,E是AC中点,∠ABC=90°∴AG=BG,DG⊥AB∴AD=BD………………………………………………………………………2分∵BD平分∠ABC∴∠ABC=45°,∠BAD=45°,∠BDG=∠ADG=45°…………………4分∵四边形BCDE是平行四边形.∴ED=BC,又∵BF=BC,∴BF=DE. ……………………………………………………………6分∴△AED≌△DFB∴AE=BE……………………………………………………………7分(2)∵△AED≌△DFB∴∠AED=∠DFB,∴∠DFG=∠DEC,∵∠DFG与∠FDG互余,…………………………………………………9分∴∠DEC与∠FDG互余,∴DF⊥AC. ………………………………………………………………10分。
八年级下册数学青岛数学期末试卷模拟练习卷(Word 版含解析) 一、选择题 1.使式子2a -有意义的a 的取值范围是( )A .2a >B .2a ≥C .2a ≠D .2a ≤ 2.下列几组数不能作为直角三角形三边长的是( )A .8,15,17B .1,1,2C .3,4,5D .2,3,4 3.下列能判定一个四边形是平行四边形的是( )A .对角线相等,且一组对角相等的四边形是平行四边形B .一对邻角的和为180°的四边形是平行四边形C .两条对角线相互垂直的四边形是平行四边形D .一组对边平行且相等的四边形是平行四边形4.一组数据为2,3,4,4,4,则这一组数据的众数是( )A .2B .3C .4D .65.如图,在矩形纸片ABCD 中,AB =6,AD =8,折叠该纸片,使得AB 边落在对角线AC 上,点B 落在点F 处,折痕为AE ,则线段EF 的长为( )A .3B .4C .5D .66.如图所示,在菱形ABCD 中,AC ,BD 相交于O ,∠ABC =50°,E 是线段AO 上一点则∠BEC 的度数可能是( )A .95°B .75°C .55°D .35°7.如图,在四边形ABCD 中,E 、F 分别是AB 、AD 的中点,若6EF =,13BC =,5CD =,则BCD △的面积为( )A .60B .48C .30D .158.一条公路旁依次有A 、B 、C 三个村庄,甲、乙两人骑自行车分别从A 村、B 村同时出发前往C 村,甲、乙之间的距离()km s 与骑行时间()t h 之间的函数关系如图所示,下列结论:①A 、B 两村相距8km ;②甲出发2h 后到达C 村;③甲每小时比乙我骑行8km ;④相遇后,乙又骑行了15min 或45min 时两人相距2km .其中正确结论的个数是( )A .1B .2C .3D .4二、填空题9.若代数式11x x -+有意义,则x 的取值范围是_____________. 10.如图,在菱形ABCD 中,E ,F ,G 分别是AD ,AB ,CD 的中点,且10cm FG =,6cm EF =,则菱形ABCD 的面积是___2cm .11.如图,在Rt △ABC 中,∠C =90°,AB =6,则正方形ADEC 与正方形BCFG 的面积之和为_____.12.如图,在矩形ABCD 中,对角线AC ,BD 交于点O ,若120AOD ∠=︒,12BD =,则DC 的长为________.13.小明从家步行到学校需走的路程为2000米.图中的折线OAB 反映了小明从家步行到学校所走的路程s (米)与时间t (分钟)的函数关系,根据图象提供的信息,当小明从家出发去学校步行20分钟时,距离学校还有__米.14.在平行四边形ABCD 中,对角线AC ,BD 相交于点O ,添加一个条件(不再添加辅助线和字母),使得平行四边形ABCD 变成菱形,你添加的条件是:_____________ . 15.如图,直线l 1:y =x +2与x 轴交于点A ,与y 轴交于点B .直线l 2:y =4x ﹣4与y 轴交于点C ,与x 轴交于点D ,直线l 1,l 2交于点P .若x 轴上存在点Q ,使以A 、C 、P 、Q 为顶点的四边形是平行四边形,则点Q 的坐标是 _____.16.如图,在长方形纸片ABCD 中,6AB cm =,8BC cm =,点E 是BC 边上一点,连接AE 并将AEB ∆沿AE 折叠,得到AEB '∆,以C ,E ,B '为顶点的三角形是直角三角形时,BE 的长为____________cm .三、解答题17.(1148312242(2)(32126)2352--⨯+18.如图,一架长2.5m的梯子AB斜靠在墙AC上,∠C=90°,此时,梯子的底端B离墙底C的距离BC为0.7m(1)求此时梯子的顶端A距地面的高度AC;(2)如果梯子的顶端A下滑了0.9m,那么梯子的底端B在水平方向上向右滑动了多远?19.如图,网格中每个小正方形的边长都为1.(1)求四边形ABCD的面积;∠的度数.(2)求BCD=.20.如图,已知AD平分BAC∠,AB AC=;(1)求证:BD CD=,求证:四边形BECD是菱形.(2)若点E在AD上,且BE DC21.先化简,再求值:a+2-+,其中a=1007.12a a如图是小亮和小芳的解答过程.(1)的解法是错误的;(2)错误的原因在于未能正确地运用二次根式的性质: ;(3)先化简,再求值:a+2269a a -+,其中a =﹣2018.22.亮亮奶茶店生产A 、B 两种奶茶,由于地处旅游景点区域,每天都供不应求,经过计算,亮亮发现A 种奶茶每杯生产时间为4分钟,B 种奶茶每杯生产时间为1分钟,由于原料和运营时间限制,每天生产的总时间为300分钟.(1)设每天生产A 种奶茶x 杯,生产B 种奶茶y 杯,求y 与x 之间的函数关系式; (2)由于A 种奶茶比较受顾客青睐,亮亮决定每天生产A 种奶茶不少于73杯,那么不同的生产方案有多少种?(3)在(2)的情况下,若A 种奶茶每杯利润为3元,B 种奶茶每杯利润为1元,求亮亮每天获得的最大利润.23.如图,正方形ABCD 的顶点C 处有一等腰直角三角形CEP ,∠PEC =90°,连接AP ,BE .(1)若点E 在BC 上时,如图1,线段AP 和BE 之间的数量关系是 ;(2)若将图1中的△CEP 顺时针旋转使P 点落在CD 上,如图2,则(1)中的结论是否仍然成立?若成立,请证明;若不成立,请说明理由;(3)在(2)的基础上延长AP ,BE 交于F 点,若DP =PC =2,求BF 的长.24.如图,在平面直角坐标系中,直线2y x =+与x 轴、y 轴分别交A 、B 两点,与直线12y x b =-+相交于点(2,)C m , (1)求点A 、B 的坐标;(2)求m 和b 的值;(3)若直线12y x b =-+与x 轴相交于点D .动点P 从点D 开始,以每秒1个单位的速度向x 轴负方向运动,设点P 的运动时间为t 秒,①若点P 在线段DA 上,且ACP ∆的面积为10,求t 的值;②是否存在t 的值,使ACP ∆为等腰三角形?若存在,求出t 的值;若不存在,请说明理由.25.如图,四边形ABCD 为正方形.在边AD 上取一点E ,连接BE ,使60AEB ∠=︒.(1)利用尺规作图(保留作图痕迹):分别以点B 、C 为圆心,BC 长为半径作弧交正方形内部于点T ,连接BT 并延长交边AD 于点E ,则60AEB ∠=︒;(2)在前面的条件下,取BE 中点M ,过点M 的直线分别交边AB 、CD 于点P 、Q . ①当PQ BE ⊥时,求证:2BP AP =;②当PQ BE =时,延长BE ,CD 交于N 点,猜想NQ 与MQ 的数量关系,并说明理由.【参考答案】一、选择题1.B解析:B【分析】根据二次根式的性质,被开方数大于或等于0即可求解.【详解】解:根据题意得:a -2≥0,解得:a ≥2.故选B .【点睛】此题考查二次根式有意义的条件,明白被开方数的非负性是关键.2.D解析:D【分析】根据勾股定理的逆定理判断即可.【详解】A 、22281528917+==,故能作为直角三角形的三边长;B、222+==,故能作为直角三角形的三边长;112C、222==,故能作为直角三角形的三边长;3+4255D、222=≠,故不能作为直角三角形的三边长;2+3134故选:D.【点睛】本题考查了勾股定理的逆定理,判定一个三角形是否是直角三角形,关键是两短边的平方和是否等于长边的平方.3.D解析:D【解析】【分析】分别利用平行四边形的判定方法结合梯形的判定方法分析得出答案.【详解】解:A、对角线相等,且一组对角相等的四边形无法确定是平行四边形,故此选项不合题意;B、一对邻角的和为180°的四边形是平行四边形,错误,有可能是梯形,故此选项不合题意;C、两条对角线相互垂直的四边形无法确定是平行四边形,故此选项不合题意;D、一组对边平行且相等的四边形是平行四边形,正确,符合题意.故选D.【点睛】本题主要考查了平行四边形的判定,解题的关键在于能够熟练掌握平行四边形的判定条件. 4.C解析:C【解析】【分析】根据众数的定义求解即可,众数为一组数据中出现次数最多的数.【详解】解:这组数中4出现了3次,出现次数最多,众数为4故选C.【点睛】此题考查了众数的有关定义,熟练掌握众数的定义是解题的关键.5.A解析:A【分析】根据矩形的性质可得BC=AD,∠B=90°,利用勾股定理可求出AC的长,根据折叠的性质可得AF=AB,∠B=∠AFE=90°,BE=EF,在Rt△CEF中利用勾股定理列方程求出EF的长即可得答案.【详解】∵四边形ABCD 是矩形,AD =8,∴∠B =90°,BC =AD =8,∴AC10,∵折叠该纸片,使得AB 边落在对角线AC 上,点B 落在点F 处,折痕为AE ,∴BE =EF ,AF =AB =6,∠AFE =∠B =90°,∴CF =AC -AF =10﹣6=4,在Rt △CEF 中,由勾股定理得,EF 2+CF 2=CE 2,∴EF 2+CF 2=(BC -EF )2,即EF 2+42=(8-EF )2,解得:EF =3,故选:A .【点睛】本题主要考查了翻折变换的性质、勾股定理等几何知识点及其应用问题;解题的关键是灵活运用翻折变换的性质、勾股定理等几何知识点来分析、判断、推理或解答.6.B解析:B【解析】【分析】由菱形的性质,得∠AOB =90°,∠ABO =1=252∠ABC ,从而得:∠BAO =65°,进而可得:65°<BEC ∠<90°,即可得到答案.【详解】解:∵在菱形ABCD 中,∴AC BD ⊥,即:∠AOB =90°,∴BEC ∠<90°,∵50ABC ∠=,∴∠ABO =1150=2522ABC ∠=⨯, ∴∠BAO =65°,∵BEC ∠=∠BAO +∠ABE ,∴BEC ∠>55°,即:55°<BEC ∠<90°.故选B .【点睛】本题主要考查菱形的性质定理以及三角形内角和定理与外角的性质,掌握菱形的性质是解题的关键.7.C解析:C【解析】【分析】连接BD,根据三角形中位线定理求出BD,根据勾股定理的逆定理得到∠BDC=90°,然后求得面积即可.【详解】解:连接BD,∵E、F分别是A B、AD中点,∴BD=2EF=12,∵CD2+BD2=25+144=169,BC2=169,∴CD2+BD2=BC2,∴∠BDC=90°,∴S△DBC=12BD•CD=12×12×5=30,故选:C.【点睛】本题考查的是三角形中位线定理、勾股定理的逆定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.8.C解析:C【分析】由图像与纵轴的交点可得出A、B两地的距离;当s=0时,即为甲、乙相遇的时候,同理根据图像的拐点判断其他即可.【详解】解:由图像可知A村、B村相离8km,故①正确;甲出发2h后到达C村,故②正确;当0≤t≤1时,易得一次函数的解析式为s=-8t+8,故甲的速度比乙的速度快8km/h,故③正确;当1≤t≤1.5时,函数图象经过点(1,0)(1.5,4)设一次函数的解析式为s=kt+b则有:104 1.5k bk b=+⎧⎨=+⎩解得21kb=⎧⎨=⎩∴s=2t+1当s=2时,得2=2t+1,解得t=0.5<1,不符合题意,④错误.故答案为C.【点睛】本题考查了一次函数的应用和函数与方程的思想,解题的关键在于读懂图象,根据图像的信息进行解答.二、填空题9.1x ≤且1x ≠-【解析】【分析】根据二次根式和分式有意义的条件即可得出答案.【详解】解:根据题意得:1-x ≥0,且x +1≠0,∴1x ≤且1x ≠-故答案为:1x ≤且1x ≠-.【点睛】本题考查了二次根式和分式有意义的条件,掌握二次根式中的被开方数是非负数和分母≠0是解题的关键.10.A解析:96【解析】【分析】连接AC ,BD ,交点为O ,EF 与AC 交于点M ,EG 与BD 交于点N ,由三角形中位线定理得出//EF BD ,12EF BD =,//EG AC ,12EG AC =,得出90FEG ∠=︒,由勾股定理求出EG 的长,根据菱形的面积公式可得出答案.【详解】解:如图,连接AC ,BD ,交点为O ,EF 与AC 交于点M ,EG 与BD 交于点N ,四边形ABCD 是菱形,AC BD ∴⊥,E ,F ,G 分别是AD ,AB ,CD 的中点,//EF BD ∴,12EF BD =,//EG AC ,12EG AC =, ∴四边形OMEN 是矩形,90FEG ∴∠=︒,10FG cm =,6EF cm =,22221068EG FG EF cm ∴=--=,16AC cm ∴=,12BD cm =,∴菱形ABCD 的面积是211161296()22AC BD cm ⋅=⨯⨯=. 故答案为96.【点睛】本题考查了菱形的性质,三角形中位线定理,勾股定理,菱形的面积,根据三角形的中位线定理求出AC 和BD 的长是解题的关键.11.A解析:36【解析】【分析】根据勾股定理、正方形的面积公式计算即可.【详解】在Rt △ACB 中,222AC BC AB +=,6AB =2236AC BC ∴+=则正方形ADEC 与正方形BCFG 的面积之和2236AC BC =+=故答案为:36.【点睛】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a ,b ,斜边长为c ,那么222+=a b c .12.D解析:6【分析】由题意易得OD =OC ,∠DOC =60°,进而可得△DOC 是等边三角形,然后问题可求解.【详解】解:∵四边形ABCD 是矩形,BD =12, ∴162OD OC BD ===, ∵∠AOD =120°,∴∠DOC =60°,∴△DOC 是等边三角形,∴6CD OC OD ===;故答案为:6.【点睛】本题主要考查矩形的性质及等边三角形的性质与判定,熟练掌握矩形的性质及等边三角形的性质与判定是解题的关键.13.240【分析】当8≤t ≤23时,设s =kt +b ,将(8,800)、(23,2000)代入求得s =kt +b ,,求出t =20时s 的值,从而得出答案.【详解】解:当8≤t ≤23时,设s =kt +b ,将(8,800)、(23,2000)代入,得:8800232000k b k b +=⎧⎨+=⎩, 解得:80160k b =⎧⎨=⎩, ∴s =80t +160;当t =20时,s =1760,∵2000﹣1760=240,∴当小明从家出发去学校步行20分钟时,到学校还需步行240米.故答案为:240.【点睛】本题主要考查一次函数的应用,解题的关键是理解题意,从实际问题中抽象出一次函数的模型,并熟练掌握待定系数法求一次函数的解析式.14.A解析:AB=BC【分析】菱形的判定方法有三种: ①定义:一组邻边相等的平行四边形是菱形; ②四边相等; ③对角线互相垂直平分的四边形是菱形. 利用菱形的判定方法可得答案.【详解】 解: AB=BC .平行四边形ABCD ,ABCD ∴是菱形.故答案为:AB=BC .【点睛】此题主要考查了菱形的判定,熟练地掌握菱形的判定定理是解决问题的关键.15.(4,0)【分析】根据一次函数的性质分别求得点A 、点C 、点P 的坐标,然后结合平行四边形的性质求解.【详解】解:在y=x+2中,当y=0时,x+2=0,解得:x=-2,∴点A 的坐标为(-2解析:(4,0)【分析】根据一次函数的性质分别求得点A 、点C 、点P 的坐标,然后结合平行四边形的性质求解.【详解】解:在y =x +2中,当y =0时,x +2=0,解得:x =-2,∴点A 的坐标为(-2,0),在y =4x -4中,当x =0时,y =-4,∴C 点坐标为(0,-4),联立方程组244y x y x =+⎧⎨=-⎩, 解得:24x y =⎧⎨=⎩, ∴P 点坐标为(2,4),设Q 点坐标为(x ,0),∵点Q 在x 轴上,∴以A 、C 、P 、Q 为顶点的四边形是平行四边形时,AQ 和PC 是对角线, ∴22022x -++=, 解得:x =4,∴Q 点坐标为(4,0),故答案为:(4,0).【点睛】本题考查了一次函数的性质,平行四边形的性质,理解一次函数的图象性质,掌握平行四边形对角线互相平分,利用数形结合思想解题是关键.16.3或6【分析】分①∠B′EC =90°时,根据翻折变换的性质求出∠AEB =45°,然后判断出△ABE 是等腰直角三角形,从而求出BE =AB ;②∠EB′C =90°时,∠AB′E =90°,判断出A 、B′解析:3或6【分析】分①∠B′EC =90°时,根据翻折变换的性质求出∠AEB =45°,然后判断出△ABE 是等腰直角三角形,从而求出BE =AB ;②∠EB′C =90°时,∠AB′E =90°,判断出A 、B′、C 在同一直线上,利用勾股定理列式求出AC ,再根据翻折变换的性质可得AB′=AB ,BE =B′E ,然后求出B′C ,设BE =B′E =x ,表示出EC ,然后利用勾股定理列出方程求解即可.【详解】①∠B′EC =90°时,如图1,∠BEB′=90°,由翻折的性质得∠AEB =∠AEB′=12×90°=45°,∴△ABE 是等腰直角三角形,∴BE =AB =6cm ;②∠EB′C =90°时,如图2,由翻折的性质∠AB′E =∠B =90°,∴A 、B′、C 在同一直线上,AB′=AB,BE=B′E,由勾股定理得,AC=22AB BC+=2268+=10cm,∴B′C=10−6=4cm,设BE=B′E=x,则EC=8−x,在Rt△B′EC中,B′E2+B′C2=EC2,即x2+42=(8−x)2,解得x=3,即BE=3cm,综上所述,BE的长为6或3cm.故答案为:6或3.【点睛】本题考查了翻折变换,等腰直角三角形的判断与性质,勾股定理的应用,难点在于分情况讨论,作出图形更形象直观.三、解答题17.(1);(2)【分析】(1)先计算二次根式的除法和乘法,再进行二次根式的加减运算;(2)先化简最简二次根式,然后进行二次根式的乘法,最后合并同类二次根式即可.【详解】(1)原式;解析:(1)46;(2)182-【分析】(1)先计算二次根式的除法和乘法,再进行二次根式的加减运算;(2)先化简最简二次根式,然后进行二次根式的乘法,最后合并同类二次根式即可.【详解】(1)原式233326 =466=46=(2)原式(336)352=⨯624=--18=-【点睛】本题考查了二次根式的混合运算,掌握二次根式的运算法则并能正确进行运算是关键.18.(1)2.4米;(2)1.3m【分析】(1)直接利用勾股定理求出AC的长,进而得出答案;(2)直接利用勾股定理得出B′C,进而得出答案.【详解】解:(1)∵∠C=90°,AB=2.5,BC解析:(1)2.4米;(2)1.3m【分析】(1)直接利用勾股定理求出AC的长,进而得出答案;(2)直接利用勾股定理得出B′C,进而得出答案.【详解】解:(1)∵∠C=90°,AB=2.5,BC=0.7,∴AC2.4=(米),答:此时梯顶A距地面的高度AC是2.4米;(2)∵梯子的顶端A下滑了0.9米至点A′,∴A′C=AC−A′A=2.4−0.9=1.5(m),在Rt△A′CB′中,由勾股定理得:A′C2+B′C2=A′B′2,∴1.52+B′C2=2.52,∴B′C=2(m),∴BB′=CB′−BC=2−0.7=1.3(m),答:梯子的底端B在水平方向滑动了1.3m.【点睛】此题主要考查了勾股定理的实际应用,熟练掌握勾股定理是解题关键.19.(1);(2).【解析】【分析】(1)利用图形的割补法可得四边形的面积等于长方形的面积减去四边形周边的三角形与长方形的面积,从而可得答案;(2)连,利用勾股定理分别求解,,,证明是直角三角形解析:(1)352;(2)90BCD∠=︒.【解析】【分析】(1)利用图形的割补法可得四边形ABCD 的面积等于长方形的面积减去四边形周边的三角形与长方形的面积,从而可得答案;(2)连BD ,利用勾股定理分别求解25CD =,220BC =,225BD =,证明BCD △是直角三角形,从而可得答案.【详解】解:(1)1111357517241234322222ABCD S =⨯-⨯⨯-⨯⨯-⨯⨯-⨯⨯-=四边形 (2)连接BD ,∵222125CD =+=,2222420BC =+=,2224325BD =+=∴222CD BC BD +=∴BCD △是直角三角形,∴90BCD ∠=︒【点睛】本题考查的是勾股定理与勾股定理的逆定理的应用,利用割补法求网格多边形的面积,掌握勾股定理与勾股定理的逆定理是解题的关键. 20.(1)见解析;(2)见解析.【分析】(1)证明,由全等三角形的性质得出;(2)同理(1)可得,结合已知,可得菱形的判定定理:四边相等的四边形是菱形可得出结论.【详解】证明:(1)平分,,解析:(1)见解析;(2)见解析.【分析】(1)证明()ABD ACD SAS ≅,由全等三角形的性质得出BD CD =;(2)同理(1)可得BE CE =,结合已知BE CE BD CD ===,可得菱形的判定定理:四边相等的四边形是菱形可得出结论.【详解】证明:(1)AD 平分BAC ∠,BAD CAD ∴∠=∠,在ABD △和ACD △中,AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩, ()ABD ACD SAS ∴≅,BD CD ∴=;(2)同理(1)可得ABE ACE ≅△△,∴BE CE =,∵BE DC =,BD CD =,∴BE CE BD CD ===,∴四边形BECD 是菱形.【点睛】本题考查了菱形的判定,全等三角形的判定与性质,能熟记菱形的性质和判定定理是解此题的关键.21.(1)小亮(2)=-a (a <0)(3)2024.【解析】【详解】试题分析:(1)根据二次根式的性质=|a|,判断出小亮的计算是错误的; (2)错误原因是:二次根式的性质=|a|的应用错误;(解析:(1)小亮(2(a <0)(3)2024.【解析】【详解】试题分析:(1,判断出小亮的计算是错误的; (2的应用错误;(3)先根据配方法把被开方数配成完全平方,然后根据正确的性质化简,再代入计算即可. 试题解析:(1)小亮(2(a <0)(3)原式=a+2(3-a )=6-a=6-(-2018)=2024.22.(1);(2)3种;(3)227元【分析】(1)依据每天生产的时间为300分钟列出函数关系式即可;(2)由种奶茶不少于73杯,种奶茶的杯数为非负数列不等式组求解即可; (3)列出利润与的函数关解析:(1)4300y x =-+;(2)3种;(3)227元【分析】(1)依据每天生产的时间为300分钟列出函数关系式即可;(2)由A 种奶茶不少于73杯,B 种奶茶的杯数为非负数列不等式组求解即可; (3)列出利润与x 的函数关系式,然后依据一次函数的性质求解即可.【详解】(1)∵每天生产的时间为300分钟,由题意得:4300x y +=,4300y x ∴=-+(2)由题意得:7343000x x ≥⎧⎨-+≥⎩解得:7375x ≤≤ x 为整数,73x ∴=,74,75∴不同的生产方案有3种.(3)设每天的利润为w 元,则()343001300W x x x =+-+⨯=-+即300w x =-+10k =-<,w ∴随x 的增大而减小∴当73x =时,w 取最大值,此时73300227W =-+=(元)答:每天获得的最大利润为227元【点评】本题主要考查的是一次函数的应用,列出关于x 的不等式组是解题的关键.23.(1)AP=BE ;(2)成立,理由见解析;(3)【分析】(1)首先说明A ,P ,C 三点共线,设正方形ABCD 的边长为1,CE=x ,根据正方形和等腰直角三角形的性质求出AP 和BE 的长,即可判断;(解析:(1)AP ;(2)成立,理由见解析;(3【分析】(1)首先说明A ,P ,C 三点共线,设正方形ABCD 的边长为1,CE =x ,根据正方形和等腰直角三角形的性质求出AP 和BE 的长,即可判断;(2)过点B 作BH ⊥BE ,且BH =BE ,连接AH ,EH ,证明△ABH ≌△BEC ,得到AH =EC =PE ,∠AHB =∠CEB ,从而证明四边形AHEP 是平行四边形,同理可得AP =EH;(3)过B ,D 分别作AF 的垂线,垂足为K ,M ,证明△ABK ≌△DAM ,得到BK =AM ,求出AP ,在△ADP 中利用面积法求出DM ,可得AM 和BK ,再利用勾股定理求出BF 即可.【详解】解:(1)∵点E 在BC 上,△PEC 为等腰直角三角形,∴PE =CE ,∠PCE =45°,∵四边形ABCD 是正方形,∴∠ACB =45°,∴A,P,C三点共线,设正方形ABCD的边长为1,CE=x,∴PE=x,PC=2x,AC=22+=,112∴AP=AC-PC=()x x-=-,BE=BC-CE=1-x,2221∴AP=2BE;(2)成立,如图,过点B作BH⊥BE,且BH=BE,连接AH,EH,∵∠ABC=∠EBH=90°,∴∠CBE+∠ABE=∠ABH+∠ABE=90°,∴∠CBE=∠ABH,又∵BH=BE,AB=BC,∴△ABH≌△BEC(SAS),∴AH=EC=PE,∠AHB=∠CEB,∴∠AHE=∠AHB-∠EHB=∠CEB-45°,∵∠HEP=360°-∠CEB-∠HEB-∠CEP=360°-∠CEB-45°-90°=225°-∠CEB,∴∠AHE+∠HEP=∠CEB-45°+225°-∠CEB=180°,∴AH∥PE,∴四边形AHEP是平行四边形,∴AP=EH=2BE;(3)如图,过B,D分别作AF的垂线,垂足为K,M,∵∠BAD=∠BAK+∠DAM=90°,∠ABK+∠BAK=90°,∴∠ABK=∠DAM,又∵AB=AD,∠AKB=∠AMD=90°,∴△ABK≌△DAM(AAS),∴BK=AM,∵四边形ABCD 是正方形,DP =PC =2,∴AD =CD =4,∠AHE =90°,∴AP∴S △ADP =1122AD DP AP DM ⨯⨯=⋅, ∴114222DM ⨯⨯=⨯,∴DM =∴AM , 由(2)可知:△EBH 为等腰直角三角形,HE ∥AP ,∴∠KBF =12∠HBE =45°,∴∠F =45°,∴BF【点睛】本题考查了正方形的性质,等腰直角三角形的判定和性质,勾股定理,全等三角形的判定和性质,解题的关键是正确寻找全等三角形解决问题,属于中考压轴题.24.(1),;(2);(3)①;②存在,或或或【解析】【分析】(1)分别使,,代入,即可求出点、的坐标;(2)把代入直线,可求,可得C 点的坐标,再把C 点坐标代入直线,即可得出的值; (3)①根据解析:(1)(2,0)A -,(0,2)B ;(2)4,5m b ==;(3)①7t =;②存在,4t =或12t =-1242t 或8t =【解析】【分析】(1)分别使0x =,0y =,代入2y x =+,即可求出点A 、B 的坐标;(2)把(2,)C m 代入直线2y x =+,可求m ,可得C 点的坐标,再把C 点坐标代入直线12y x b =-+,即可得出b 的值; (3)①根据ACP ∆的面积公式列等式可得t 的值;②存在,分三种情况:.a 当AC CP =时,如图①,.b 当AC AP =时,如图②,.c 当AP PC =时,如图③,分别求t 的值即可.【详解】解(1)在2y x =+中当0x =时,2y =当0y =时,2x =-(2,0)A ∴-,(0,2)B(2)点(2,)C m 在直线2y x =+上224m ∴=+= 又点(2,4)C 也在直线12y x b =-+上 ∴即1452x解得5b =(3)在152y x =-+中 当0x =时,10x =(10,0)D ∴(2,0)A -12AD ∴=①设PD t =,则12AP t过C 作CE AP ⊥于E ,则4CE =由ACP ∆的面积为10得1(12)4102t解得7t =②过C 作CE AP ⊥于E则4CE =,4AE =AC ∴=.a 当AC CP =时,如图①所示 则28AP AE4PD AD AP4t ∴=.b 当1242AP AP AC 时,如图②所示 11242DP t ,21242DP t .c 当CP AP =时,如图③所示设EP a 则224CP a ,4AP a 2244a a解得0a =4AP ∴=8PD8t ∴=综上所述,当4t =或1242t =-或1242t 或8t =时,ACP ∆为等腰三角形【点睛】本题属于一次函数综合题,涉及的知识有:待定系数法求一次函数解析式,坐标与图形性质,勾股定理,等腰三角形的判定,以及一次函数与坐标轴的交点,熟练掌握性质及定理是解本题的关键,并注意运用分类讨论的思想解决问题.25.(1)作图见解析;(2)①见解析;②数量关系为:或.理由见解析;【分析】(1)按照题意,尺规作图即可;(2)连接PE ,先证明PQ 垂直平分BE ,得到PB=PE ,再证明,得到,利用在直角三角形中,解析:(1)作图见解析;(2)①见解析;②数量关系为:2NQ MQ =或NQ MQ =.理由见解析;【分析】(1)按照题意,尺规作图即可;(2)连接PE ,先证明PQ 垂直平分BE ,得到PB=PE ,再证明60APE ∠=︒,得到30AEP ∠=︒,利用在直角三角形中,30°所对的直角边等于斜边的一半,即可解答; (3)NQ=2MQ 或NQ=MQ ,分两种情况讨论,作辅助线,证明ABE FQP ∆≅∆,即可解答.【详解】(1)如图1,分别以点B 、C 为圆心,BC 长为半径作弧交正方形内部于点T ,连接BT 并延长交边AD 于点E ;图1(2)①连接PE ,如图2,图2点M 是BE 的中点,PQ BE ⊥∴PQ 垂直平分BE .∴PB PE =,∴90906030PEB PBE AEB ∠=∠=︒-∠=︒-︒=︒,∴60APE PBE PEB ∠=∠+∠=︒,∴90906030AEP APE ∠=︒∠=︒-︒=︒,∴60APE PBE PEB ∠=∠+∠=︒,∴90906030AEP APE ∠=︒∠=︒-︒=︒,∴2BP EP AP ==.②数量关系为:2NQ MQ =或NQ MQ =.理由如下,分两种情况:I 、如图3所示,过点Q 作QF AB ⊥于点F 交BC 于点G ,则QF CB =.图3正方形ABCD 中,AB BC =,∴FQ AB =.在Rt ABE △和Rt FQP 中,BE PQAB FQ=⎧⎨=⎩ ∴()ABE FQP HL ≌.∴30FQP ABE ∠=∠=︒. 又60MGO AEB ∠=∠=︒,∴90GMO ∠=︒,CD AB .∴30N ABE ∠=∠=︒.∴2NQ MQ =.Ⅱ、如图4所示,过点Q 作QF AB ⊥于点F 交BC 于点G ,则QF CB =.图4同理可证ABE FQP ≌.此时60FPQ AEB ∠=∠=︒. 又FPQ ABE PMB ∠=∠+∠,30N ABE ∠=∠=︒.∴30EMQ PMB ∠=∠=︒.∴N EMQ ∠=∠,∴NQ MQ =.【点睛】本题为正方形和三角形变化综合题,难度较大,熟练掌握相关性质定理以及分类讨论思想是解答本题的关键.。
【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】期末数学试卷一、选择题1.下列二次根式中,是最简二次根式的是()A.B.C.D.2.下列命题中的真命题是()A.有一组对边平行的四边形是平行四边形B.有一个角是直角的四边形是矩形C.对角线互相垂直平分的四边形是正方形D.有一组邻边相等的平行四边形是菱形3.实数(相邻两个1之间依次多一个0),其中无理数有()A.1个B.2个C.3个D.4个4.如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF交BC于点D,交AB于点E,且BE=BF,添加一个条件,仍不能证明四边形BECF为正方形的是()A.BC=AC B.CF⊥BF C.BD=DF D.AC=BF5.若一个直角三角形的两边长分别为3和4,则它的第三边长为()A.5B.C.5或4D.5或6.函数y=﹣4x﹣3的图象经过()A.第一、二、三象限B.第一、二、四象限C.第二、三、四象限D.第一、三、四象限7.如图,Rt△ABC沿直角边BC所在直线向右平移到Rt△DEF,则下列结论中,错误的是()A.BE=EC B.BC=EF C.AC=DF D.△ABC≌△DEF 8.已知:如图,在矩形ABCD中,E、F、G、H分别为边AB、BC、CD、DA的中点.若AB=2,AD=4,则图中阴影部分的面积为()A.8B.6C.4D.39.下列图形中,绕某个点旋转180°能与自身重合的图形有()(1)正方形;(2)等边三角形;(3)长方形;(4)角;(5)平行四边形;(6)圆.A.2个B.3个C.4个D.5个10.化简:a的结果是()A.B.C.﹣D.﹣11.已知关于x的不等式组的整数解共有4个,则a的最小值为()A.2B.2.1C.3D.112.已知(﹣5,y1),(﹣3,y2)是一次函数y=x+2图象上的两点,则y1与y2的关系是()A.y1<y2B.y1=y2C.y1>y2D.无法比较二、填空题13.若最简二次根式与是同类二次根式,则a=.14.一次函数y=﹣x﹣3与x轴交点的坐标是.15.如图,将一根25cm长的细木棒放入长、宽、高分别为8cm、6cm和cm 的长方体无盖盒子中,则细木棒露在盒外面的最短长度是cm.16.请你写出一个图象过点(1,2),且y随x的增大而减小的一次函数解析式.17.如图,已知面积为1的正方形ABCD的对角线相交于点O,过点O任意作一条直线分别交AD、BC于E、F,则阴影部分的面积是.18.观察图象,可以得出不等式组的解集是.三、解答题19.计算.20.计算:(﹣3)0﹣+|1﹣|+.21.已知x=+2,求x2﹣4x+6的值.22.如图,△ABC是等腰直角三角形,BC是斜边,P为△ABC内一点,将△ABP 绕点A逆时针旋转后与△ACP′重合.如果AP=3,那么线段P P′的长是多少?23.已知,在平面直角坐标系中,直线y=2x+3与直线y=﹣2x﹣1交于点C.(1)求两直线与y轴交点A,B的坐标;(2)求点C的坐标;(3)求△ABC的面积.24.如图,在矩形ABCD中,M、N分别是AD、BC的中点,P、Q分别是BM、DN的中点.(1)求证:△MBA≌△NDC;(2)四边形MPNQ是什么样的特殊四边形?请说明理由.25.光华农机租赁公司共有50台联合收割机,其中甲型20台,乙型30台,先将这50台联合收割机派往A、B两地区收割小麦,其中30台派往A地区,20台派往B地区.两地区与该农机租赁公司商定的每天的租赁价格见表:每台甲型收割机的租金每台乙型收割机的租金A地区18001600B地区16001200(1)设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),求y与x间的函数关系式,并写出x的取值范围;(2)若使农机租赁公司这50台联合收割机一天获得的租金总额不低于79 600元,说明有多少种分配方案,并将各种方案设计出来;(3)如果要使这50台联合收割机每天获得的租金最高,请你为光华农机租赁公司提一条合理化建议.26.如图,矩形OABC中,O为直角坐标系的原点,A、C两点的坐标分别为(a,0)、(0,b),且(a﹣3)2+=0.(1)求出点A、B、C的坐标;(2)若过点C的直线CD交矩形OABC的边于点D,且把矩形OABC的面积分为1:4两部分,求直线CD的解析式.参考答案一、选择题1.【解答】解:A、被开方数含分母,故A错误;B、被开方数含能开得尽方的因数或因式,故B错误;C、被开方数含能开得尽方的因数或因式,故C错误;D、被开方数不含分母且被开方数不含能开得尽方的因数或因式,故D正确;故选:D.2.【解答】解:A、有两组对边平行的四边形是平行四边形,所以A选项错误;B、有一个角是直角的平行四边形是矩形,所以B选项错误;C、对角线互相垂直平分且相等的四边形是正方形,所以C选项错误;D、有一组邻边相等的平行四边形是菱形,所以D选项正确.故选:D.3.【解答】解:无理数有﹣π,0.1010010001…,共2个,故选:B.4.【解答】解:∵EF垂直平分BC,∴BE=EC,BF=CF,∵BF=BE,∴BE=EC=CF=BF,∴四边形BECF是菱形;当BC=AC时,∵∠ACB=90°,则∠A=45°时,菱形BECF是正方形.∵∠A=45°,∠ACB=90°,∴∠EBC=45°∴∠EBF=2∠EBC=2×45°=90°∴菱形BECF是正方形.故选项A正确,但不符合题意;当CF⊥BF时,利用正方形的判定得出,菱形BECF是正方形,故选项B正确,但不符合题意;当BD=DF时,利用正方形的判定得出,菱形BECF是正方形,故选项C正确,但不符合题意;当AC=BF时,无法得出菱形BECF是正方形,故选项D错误,符合题意.故选:D.5.【解答】解:分为两种情况:①斜边是4有一条直角边是3,由勾股定理得:第三边长是=;②3和4都是直角边,由勾股定理得:第三边长是=5;即第三边长是5或,故选:D.6.【解答】解:∵k=﹣4<0,∴函数y=﹣4x﹣3的图象经过第二、四象限,∵b=﹣3<0,∴函数y=﹣4x﹣3的图象与y轴的交点在x轴下方,∴函数y=﹣4x﹣3的图象经过第二、三、四象限.故选:C.7.【解答】解:∵RRt△ABC沿直角边BC所在直线向右平移到Rt△DEF∴Rt△ABC≌Rt△DEF∴BC=EF,AC=DF所以只有选项A是错误的,故选A.8.【解答】解:连接AC,BD,FH,EG,∵E,F,G,H分别为边AB,BC,CD,DA的中点,∴AH=AD,BF=BC,∵四边形ABCD是矩形,∴AD=BC,AD∥BC,∴AH=BF,AH∥BF,∴四边形AHFB是平行四边形,∴FH=AB=2,同理EG=AD=4,∵四边形ABCD是矩形,∴AC=BD,∵E,F,G,H分别为边AB,BC,CD,DA的中点,∴HG∥AC,HG=AC,EF∥AC,EF=AC,EH=BD,∴EH=HG,GH=EF,GH∥EF,∴四边形EFGH是平行四边形,∴平行四边形EFGH是菱形,∴FH⊥EG,∴阴影部分EFGH的面积是×HF×EG=×2×4=4,故选:C.9.【解答】解:(1)正方形是中心对称图形;(2)等边三角形不是中心对称图形;(3)长方形是中心对称图形;(4)角不是中心对称图形;(5)平行四边形是中心对称图形;(6)圆是中心对称图形.所以一共有4个图形是中心对称图形.故选:C.10.【解答】解:由题意可得:a<0,则a=﹣=﹣.故选:C.11.【解答】解:解不等式组得﹣2<x≤a,因为不等式有整数解共有4个,则这四个值是﹣1,0,1,2,所以2≤a<3,则a的最小值是2.故选:A.12.【解答】解:∵﹣5<﹣3,∴y1>y2.故选:C.二、填空题13.【解答】解:∵最简二次根式与是同类二次根式,∴4a2+1=6a2﹣1,∴a2=1,解得a=±1.故答案为:±1.14.【解答】解:在y=﹣x﹣3中,令y=0可得﹣x﹣3=0,解得x=﹣3,∴一次函数y=﹣x﹣3与x轴交点的坐标是(﹣3,0),故答案为:(﹣3,0).15.【解答】解:由题意知:盒子底面对角长为=10cm,盒子的对角线长:=20cm,细木棒长25cm,故细木棒露在盒外面的最短长度是:25﹣20=5cm.故答案为:5.16.【解答】解:设一次函数的解析式为y=kx+b,将x=1,y=2代入得:k+b=2,又此一次函数y随x的增大而减小,∴k<0,若k=﹣1,可得出b=3,则一次函数为y=﹣x+3.故答案为:y=﹣x+317.【解答】解:依据已知和正方形的性质及全等三角形的判定可知△AOE≌△COF,则得图中阴影部分的面积为正方形面积的,因为正方形的边长为1,则其面积为1,于是这个图中阴影部分的面积为.故答案为18.【解答】解:由图象知,函数y=3x+1与x轴交于点(,0),即当x>﹣时,函数值y的范围是y>0;因而当y>0时,x的取值范围是x>﹣;函数y=3x+1与x轴交于点(2,0),即当x<2时,函数值y的范围是y>0;因而当y>0时,x的取值范围是x<2;所以,原不等式组的解集是﹣<x<2.故答案是:﹣<x<2.三、解答题19.【解答】解:原式=(10﹣6+4)÷=(10﹣6+4)÷=(40﹣18+8)÷=30÷=15.20.【解答】解:原式=1﹣3+﹣1+﹣=﹣2.21.【解答】解:原式=(x2﹣4x+4)+2=(x﹣2)2+2=(+2﹣2)2+2=2+2=4.22.【解答】解:根据旋转的性质可知将△ABP绕点A逆时针旋转后与△ACP′重合,则△ABP≌△ACP′,所以AP=AP′,∠BAC=∠PAP′=90°,所以在Rt△APP′中,PP′=.23.【解答】解:(1)把x=0,代入y=2x+3,得y=3∴A(0,3)把x=0代入y=﹣2x﹣1,得y=﹣1∴B(0,﹣1)(2)由题意得方程组,解之得,∴C(﹣1,1)(3)由题意得AB=4,点C到AB边的高为1,=×4×1=2.∴S△ABC24.【解答】证明:(1)∵四边形ABCD是矩形,∴AB=CD,AD=BC,∠A=∠C=90°,∵在矩形ABCD中,M、N分别是AD、BC的中点,∴AM=AD,CN=BC,∴AM=CN,在△MAB和△NDC中,∵,∴△MBA≌△NDC(SAS);(2)四边形MPNQ是菱形.理由如下:连接AP,MN,则四边形ABNM是矩形,∵AN和BM互相平分,则A,P,N在同一条直线上,易证:△ABN≌△BAM,∴AN=BM,∵△MAB≌△NDC,∴BM=DN,∵P、Q分别是BM、DN的中点,∴PM=NQ,∵,∴△MQD≌△NPB(SAS).∴四边形MPNQ是平行四边形,∵M是AD中点,Q是DN中点,∴MQ=AN,∴MQ=BM,∵MP=BM,∴MP=MQ,∴平行四边形MQNP是菱形.25.【解答】解:(1)若派往A地区的乙型收割机为x台,则派往A地区的甲型收割机为(30﹣x)台,派往B地区的乙型收割机为(30﹣x)台,派往B地区的甲型收割机为20﹣(30﹣x)=(x﹣10)台.∴y=1600x+1800(30﹣x)+1200(30﹣x)+1600(x﹣10)=200x+74 000,x的取值范围是:10≤x≤30,(x是正整数);(2)由题意得200x+74 000≥79 600,解不等式得x≥28,由于10≤x≤30,x是正整数,∴x取28,29,30这三个值,∴有3种不同的分配方案.①当x=28时,即派往A地区的甲型收割机为2台,乙型收割机为28台;派往B地区的甲型收割机为18台,乙型收割机为2台;②当x=29时,即派往A地区的甲型收割机为1台,乙型收割机为29台;派往B地区的甲型收割机为19台,乙型收割机为1台;③当x=30时,即30台乙型收割机全部派往A地区;20台甲型收割机全部派往B地区;(3)由于一次函数y=200x+74 000的值y是随着x的增大而增大的,所以当x=30时,y取得最大值,如果要使农机租赁公司这50台联合收割机每天获得租金最高,只需x=30,此时y=6000+74 000=80 000.建议农机租赁公司将30台乙型收割机全部派往A地区;20台甲型收割机全部派往B地区,可使公司获得的租金最高.26.【解答】解:(1)由(a﹣3)2+=0.可知(a﹣3)2+|b﹣5|=0,∴a=3 b=5,∵矩形OABC中,O为直角坐标系的原点,A、C两点的坐标分别为(a,0)、(0,b),∴A(3,0)B(3,5)C(0,5);=OA•OC=3×5=15(2)S矩形OABC由题意知CD分矩形OABC的两部分面积为3和12①CD与OA交于点DS△ODC=3 即•OD•OC=3OD=,即D(,0)C(0,5)y=﹣x+5②CD与AB交于点DS△CBD=3×3×BD=3BD=2即D(3,3)y=﹣x+5.中考数学知识点代数式一、重要概念分类:1.代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。
一、选择题1.(0分)[ID:10226]甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500m,先到终点的人原地休息.已知甲先出发2s.在跑步过程中,甲、乙两人的距离y(m)与乙出发的时间t(s)之间的关系如图所示,给出以下结论:①a=8;②b=92;③c=123.其中正确的是()A.①②③B.仅有①②C.仅有①③D.仅有②③2.(0分)[ID:10218]某体育用品商店一天中卖出某种品牌的运动鞋15双,其中各种尺码的鞋的销售量如表所示:鞋的尺码/cm2323.52424.525销售量/双13362则这15双鞋的尺码组成的一组数据中,众数和中位数分别为()A.24.5,24.5 B.24.5,24 C.24,24 D.23.5,243.(0分)[ID:10217]已知M、N是线段AB上的两点,AM=MN=2,NB=1,以点A为圆心,AN长为半径画弧;再以点B为圆心,BM长为半径画弧,两弧交于点C,连接AC,BC,则△ABC一定是( )A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形4.(0分)[ID:10216]如图,矩形OABC的顶点O与平面直角坐标系的原点重合,点A,C 分别在x轴,y轴上,点B的坐标为(-5,4),点D为边BC上一点,连接OD,若线段OD绕点D顺时针旋转90°后,点O恰好落在AB边上的点E处,则点E的坐标为()A.(-5,3)B.(-5,4)C.(-5,52)D.(-5,2)5.(0分)[ID :10145]计算4133÷的结果为( ). A .32B .23C .2D .26.(0分)[ID :10143]如图,一棵大树在离地面6米高的B 处断裂,树顶A 落在离树底部C 的8米处,则大树断裂之前的高度为( )A .10米B .16米C .15米D .14米7.(0分)[ID :10135]若函数()0y kx k =≠的值随自变量的增大而增大,则函敷2y x k =+的图象大致是( )A .B .C .D .8.(0分)[ID :10191]在体育课上,甲,乙两名同学分别进行了5次跳远测试,经计算他们的平均成绩相同.若要比较这两名同学的成绩哪一个更为稳定,通常需要比较他们成绩的( ) A .众数 B .平均数 C .中位数 D .方差9.(0分)[ID :10185]若顺次连接四边形的各边中点所得的四边形是菱形,则该四边形一定是( ) A .矩形B .一组对边相等,另一组对边平行的四边形C .对角线互相垂直的四边形D .对角线相等的四边形 10.(0分)[ID :10181]若一个直角三角形的两边长为12、13,则第三边长为( ) A .5B .17C .5或17D .5或√313 11.(0分)[ID :10175]函数y =√x+3的自变量取值范围是( ) A .x ≠0 B .x >﹣3 C .x ≥﹣3且x ≠0 D .x >﹣3且x ≠0 12.(0分)[ID :10163]下列各组数,可以作为直角三角形的三边长的是( )A .2,3,4B .7,24,25C .8,12,20D .5,13,1513.(0分)[ID :10159]将根24cm 的筷子,置于底面直径为15cm ,高8cm 的圆柱形水杯中,设筷子露在杯子外面的长度hcm ,则h 的取值范围是( )A .h 17cm ≤B .h 8cm ≥C .7cm h 16cm ≤≤D .15cm h 16cm ≤≤14.(0分)[ID :10153]正方形具有而菱形不一定具有的性质是( )A .对角线互相平分B .每条对角线平分一组对角C .对边相等D .对角线相等15.(0分)[ID :10152]正比例函数()0y kx k =≠的函数值y 随x 的增大而增大,则y kx k =-的图象大致是( )A .B .C .D .二、填空题16.(0分)[ID :10324]若x=2-1, 则x 2+2x+1=__________.17.(0分)[ID :10319]在平面直角坐标系xOy 中,一次函数y =kx 和y =﹣x +3的图象如图所示,则关于x 的一元一次不等式kx <﹣x +3的解集是_____.18.(0分)[ID :10311]2(3)x -3-x ,则x 的取值范围是__________. 19.(0分)[ID :10298]函数1y x =-x 的取值范围是 . 20.(0分)[ID :10269]已知0,0a b <>2()a b -=________21.(0分)[ID :10268]在三角形ABC 中,点,,D E F 分别是,,BC AB AC 的中点,AH BC ⊥于点H ,若50DEF ∠=,则CFH ∠=________.22.(0分)[ID :10264]某公司需招聘一名员工,对应聘者甲、乙、丙从笔试、面试、体能三个方面进行量化考核,甲、乙、丙各项得分如下表:笔试 面试 体能 甲 83 79 90 乙 85 80 75 丙809073该公司规定:笔试、面试、体能得分分别不得低于80分、80分、70分,并按60%,30%,10%的比例计入总分,根据规定,可判定_____被录用.23.(0分)[ID :10259]甲、乙、丙三人进行飞镖比赛,已知他们每人五次投得的成绩如图6-Z -2所示,那么三人中成绩最稳定的是________.24.(0分)[ID :10247]已知数据:﹣1,4,2,﹣2,x 的众数是2,那么这组数据的平均数为_____.25.(0分)[ID :10235]将正比例函数y =﹣3x 的图象向上平移5个单位,得到函数_____的图象.三、解答题26.(0分)[ID :10411]如图,点B 、E 、C 、F 在一条直线上,AB =DF ,AC =DE ,BE =FC .(1)求证:△ABC ≌△DFE ;(2)连接AF 、BD ,求证:四边形ABDF 是平行四边形.27.(0分)[ID :10386]某经销商从市场得知如下信息:A 品牌手表B 品牌手表 进价(元/块)700100售价(元/块)900160他计划用4万元资金一次性购进这两种品牌手表共100块,设该经销商购进A品牌手表x 块,这两种品牌手表全部销售完后获得利润为y元.(1)试写出y与x之间的函数关系式;(2)若要求全部销售完后获得的利润不少于1.26万元,该经销商有哪几种进货方案;(3)选择哪种进货方案,该经销商可获利最大;最大利润是多少元.28.(0分)[ID:10358]如图,在正方形网格中,小正方形的边长为1,A,B,C为格点()1判断ABC的形状,并说明理由.()2求BC边上的高.29.(0分)[ID:10348]如图,一个长5m的梯子AB,斜靠在一竖直的墙AO上,这时AO的距离为4m,如果梯子的顶端A沿墙下滑1m至C点.(1)求梯子底端B外移距离BD的长度;(2)猜想CE与BE的大小关系,并证明你的结论.30.(0分)[ID:10336]如图,将□ABCD的对角线BD向两个方向延长至点E和点F,使BE=DF,证:四边形AECF是平行四边形.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.A2.A3.B4.A5.D6.B7.C8.D9.D10.D11.B12.B13.C14.D15.B二、填空题16.2【解析】【分析】先利用完全平方公式对所求式子进行变形然后代入x的值进行计算即可【详解】∵x=-1∴x2+2x+1=(x+1)2=(-1+1)2=2故答案为:2【点睛】本题考查了代数式求值涉及了因式17.x<1【解析】观察图象即可得不等式kx<-x+3的解集是x<1点睛:本题主要考查了一次函数的交点问题及一次函数与一元一次不等式之间的关系会利用数形结合思想是解决本题的关键18.【解析】试题解析:∵=3﹣x∴x-3≤0解得:x≤319.x>1【解析】【分析】【详解】解:依题意可得解得所以函数的自变量的取值范围是20.【解析】【分析】根据二次根式的性质得出|a−b|根据绝对值的意义求出即可【详解】∵a<0<b∴|a−b|=b−a故答案为:【点睛】本题主要考查对二次根式的性质绝对值等知识点的理解和掌握能根据二次根式21.80°【解析】【分析】先由中位线定理推出再由平行线的性质推出然后根据直角三角形斜边上的中线等于斜边的一半得到HF=CF最后由三角形内角和定理求出【详解】∵点分别是的中点∴(中位线的性质)又∵∴(两直22.乙【解析】【分析】由于甲的面试成绩低于80分根据公司规定甲被淘汰;再将乙与丙的总成绩按比例求出测试成绩比较得出结果【详解】解:∵该公司规定:笔试面试体能得分分别不得低于80分80分70分∴甲淘汰;乙23.乙【解析】【分析】通过图示波动的幅度即可推出【详解】通过图示可看出一至三次甲乙丙中乙最稳定波动最小四至五次三人基本一样故选乙【点睛】考查数据统计的知识点24.【解析】试题分析:数据:﹣142﹣2x的众数是2即的2次数最多;即x=2则其平均数为:(﹣1+4+2﹣2+2)÷5=1故答案为1考点:1众数;2算术平均数25.y=-3x+5【解析】【分析】平移时k的值不变只有b发生变化【详解】解:原直线的k=-3b=0;向上平移5个单位得到了新直线那么新直线的k=-3b=0+5=5∴新直线的解析式为y=-3x+5故答案为三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷参考解析【参考解析】**科目模拟测试一、选择题1.A解析:A【解析】【分析】【详解】解:∵乙出发时甲行了2秒,相距8m,∴甲的速度为8/2=4m/ s.∵100秒时乙开始休息.∴乙的速度是500/100=5m/ s.∵a秒后甲乙相遇,∴a=8/(5-4)=8秒.因此①正确.∵100秒时乙到达终点,甲走了4×(100+2)=408 m,∴b=500-408=92 m.因此②正确.∵甲走到终点一共需耗时500/4=125 s,,∴c=125-2=123 s.因此③正确.终上所述,①②③结论皆正确.故选A.2.A解析:A【解析】【分析】根据众数和中位数的定义进行求解即可得.【详解】这组数据中,24.5出现了6次,出现的次数最多,所以众数为24.5,这组数据一共有15个数,按从小到大排序后第8个数是24.5,所以中位数为24.5,故选A.【点睛】本题考查了众数、中位数,熟练掌握中位数、众数的定义以及求解方法是解题的关键.3.B解析:B【解析】【分析】依据作图即可得到AC=AN=4,BC=BM=3,AB=2+2+1=5,进而得到AC2+BC2=AB2,即可得出△ABC是直角三角形.【详解】如图所示,AC=AN=4,BC=BM=3,AB=2+2+1=5,∴AC2+BC2=AB2,∴△ABC是直角三角形,且∠ACB=90°,故选B.【点睛】本题主要考查了勾股定理的逆定理,如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.4.A解析:A【解析】【分析】先判定△DBE≌△OCD,可得BD=OC=4,设AE=x,则BE=4﹣x=CD,依据BD+CD=5,可得4+4﹣x=5,进而得到AE=3,据此可得E(﹣5,3).【详解】由题可得:AO=BC=5,AB=CO=4,由旋转可得:DE=OD,∠EDO=90°.又∵∠B=∠OCD=90°,∴∠EDB+∠CDO=90°=∠COD+∠CDO,∴∠EDB=∠DOC,∴△DBE≌△OCD,∴BD=OC=4,设AE=x,则BE=4﹣x=CD.∵BD+CD=5,∴4+4﹣x=5,解得:x=3,∴AE=3,∴E(﹣5,3).故选A.【点睛】本题考查了全等三角形的判定与性质,矩形的性质以及旋转的性质的运用,解题时注意:全等三角形的对应边相等.5.D解析:D【解析】【分析】根据二次根式的除法法则进行计算即可.【详解】原式414342 333÷=⨯==.故选:D. 【点睛】本题考查二次根式的除法,掌握二次根式的除法法则是解答本题的关键.6.B解析:B 【解析】 【分析】根据大树折断部分、下部、地面恰好构成直角三角形,根据勾股定理解答即可. 【详解】由题意得BC=6,在直角三角形ABC 中,根据勾股定理得:=10米. 所以大树的高度是10+6=16米. 故选:B . 【点睛】此题是勾股定理的应用,解本题的关键是把实际问题转化为数学问题来解决.此题也可以直接用算术法求解.7.C解析:C 【解析】 【分析】根据正比例函数和一次函数的图像与性质逐项判断即可求解. 【详解】∵函数()0y kx k =≠的值随自变量的增大而增大, ∴k >0,∵一次函数2y x k =+, ∴1k =1>0,b=2k >0,∴此函数的图像经过一、二、四象限; 故答案为C. 【点睛】本题考查了正比例函数和一次函数的图像与性质,熟练掌握正比例函数和一次函数的图像特点是解题的关键.8.D解析:D 【解析】 【分析】方差是反映一组数据的波动大小的一个量.方差越大,则各数据与其平均值的离散程度越大,稳定性也越小;反之,则各数据与其平均值的离散程度越小,稳定性越好。
最新青岛版八年级数学下册期末测试卷及答案班级___________ 姓名___________ 成绩_______时间:100分钟,满分:120分注意事项:请将所有答案写在答案纸上一、选择题:请将答案填在答题栏中,每小题3分,共30分. 1.如图,在□ABCD 中,DE 平分∠ADC ,AD=6,BE=2, 则□ABCD 的周长是( )A.16B.14C.20D. 24 2.用不等式表示“x 的2倍与3的差不大于8”为( )A. 2x-3<8B. 2x-3>8C. 2x-3≥8D. 2x-3≤8 3.二次根式2x+1中x 的取值范围是( ) A.x ≥-12 B.x ≥12 C.x >12 D.x >-124.正比例函数y=-3x 的大致图象是( )5.-8的立方根是( )A.-2B.±2C.2D.126. 已知点M(1,a)和点N(2,b)是一次函数y=-2x+1图象上的两点,则a 与b 的大小关系是( ) A. a ≤b B. a <b C. a ≥b D. a >b7.如图,函数y=3x 与y=kx+b 的图象交于点A (2,6), 不等式3x <kx+b 的解集为( ) A. x <4 B. x <2 C. x >2 D. x >48. 如图,观察图形,找出规律,确定第四个图形是( 第1题图EDCBAoxyoxyoxyyxoyxoA第7题图DCBA(4)(3)(2)(1)9.下列图形既是轴对称图形,又是中心对称图形的是( )A B C D10.将图a 绕中心按顺时针方向旋转60°后可得到的图形是( )二、填空题:请将答案填在答题纸的横线上,每小题3分,共24分.11.直角三角形的两直角边长分别是3cm 和4cm ,则连接两直角边的中点的线段长是 ; 12.22的相反数是 ; 13.不等式x+1<2x-4的解集是 ; 14.化简1123+的结果是 ; 15.已知∆ABC ∽∆A 1B 1C 1,AB :A 1B 1=2:3,若S ∆ABC =12,则111A B C S ∆= ;16.直线y=kx+3与y=-x+3的图象如图所示,则 方程组y x 3y x 3k =+⎧⎨=-+⎩的解集为 .17. 点P (-2,3)关于原点的对称点的坐标是 18.如图,有两棵树,一棵高10m ,另一棵高4m ,第16题图-223321-11y xo两树相距8m.一只小鸟从一棵树的树尖飞到另一棵树的树尖,那么这只小鸟至少要飞行m.三、解答题:(共66分)19.(8分)计算(1)122432+--(2)2)21(27486-+÷20.(12分)解下列不等式(组):(1)解不等式13x-≤5-x; (2)解不等式组:31,2(1)1,xx x+>⎧⎨+-≤⎩①②.21. (6分)已知x-1=5,求代数式(x+1)2-4(x+1)+422.(8分)作图题:(1)把△ABC向右平移5个方格; (2)绕点B的对应点顺时针方向旋转90°23.(10分)如图,直线y=kx+b经过A(2,1),B(-1,-2)两点,(1)求直线y=kx+b的表达式;(2)求不等式12x>kx+b>-2的解集.24. (10分) 如图,已知△ABC中,AB=25,AC=45,BC=6,点M为AB的中点,在线段AC上取点N,使△AMN与△ABC相似,求MN的长.25.(12分)某蔬菜培育中心决定向某灾区配送无辐射蔬菜和水果共3200箱,其中水果比蔬菜多800箱.CBACBA(1)求水果和蔬菜各有多少箱?(2)现计划租用甲、乙两种货车共8辆,一次性将这批水果和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装水果400箱和蔬菜100箱,每辆乙种货车最多可装水果和蔬菜各200箱,则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;(3)在(2)的条件下,如果甲种货车每辆需付运费4000元,乙种货车每辆需付运费 3600元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?参考答案一、题号 1 2 3 4 5 6 7 8 9 10 分数 答案CDACADBCBA二、11.2.5cm ; 12.-22; 13.x >5; 14.306; 15.27; 16.x=0y=3⎧⎨⎩ 17.(2,-3) ;18. 10米三、19.(1)3;(2)11-22 20.(1) x≤4;(2)-2<x≤1.21. 5 22.略 23.(1)y=x-1;(2)-1<x <2 24.解:①图1,当△AMN ∽△ABC 时,有AM MNAB BC=,∵M 为AB 中点,,AB =25,∴AM =5,∵BC =6∴MN =3;图1 图2○2图2,当△ANM ∽△ABC 时,有AM MNAC BC=,∵M 为AB 中点,,AB =25, ∴AM =5,∵BC =6,AC =45,∴MN =32∴MN 的长为3或32.25. (1)水果和蔬菜分别为2000箱和1200箱.(2)设租用甲种货车a 辆,则租用乙种货车(8-a)辆.根据题意,得400200(8)2000,100200(8)1200.a a a a +-≥⎧⎨+-≥⎩解得2≤a≤4. 因为a 为整数,所以a =2或3或4,安排甲、乙两种货车时有3种方案. 设计方案分别为:①甲车2辆,乙车6辆;②甲车3辆,乙车5辆;③甲车4辆,乙车4辆; (3)3种方案的运费分别为:①2×4000+6×3600=29600元;②3×4 000+5×3600=30000元; ③4×4000+4×3600=30400元.故方案①的运费最少,最少运费是29600元.所以,运输部门应选择甲车2辆,乙车6辆,可使运费最少,最少运费是29600元.附:初中数学学习方法总结1.先看笔记后做作业有的同学感到,老师讲过的,自己已经听得明明白白了。
最新人教版八年级(下)期末模拟数学试卷(答案)一、 选择题(每小题3分,共30分)1.下列各点中位于第四象限的点是( )A.(3,4)B.(- 3,4)C.(3,--4)D.(-3,-4)2.下列代数式变形正确的是( A. 221x y x y x y -=-- B. 22x y x y -++=- C. 11111xy x y y x⎛⎫÷+=+ ⎪⎝⎭ D. 222()x y x y x y x y --=++ 3.如图,下面不能判定四边形ABCD 是平行四边形的是( )A. AB //CD,AB CD =B. ,AB CD AD BC ==C. B DAB 180,AB CD ︒∠+∠==D. B D,BCA DAC ∠=∠∠=∠4.小明调查了班级里20位同学本学期购买课外书的花费情况,并将结果绘制成了如图的统计图。
在这20位同学中,本学期购买课外书的花费的众数和中位数分别是( )A.50,50B.50,30C.80,50D.30,505.已知菱形的面积为10,对角线的长分别为x 和y ,则y 关于x 的函数图象是()A. B.C. D.6.如图,在矩形ABCD 中,点E 是AD 中点,且AE 2=,BE 的垂直平分线MN 恰好过点C ,则矩形的一边AB 的长度为( )A.2B.C. D.4 7.已知方程233x m x x -=--无解,则m 的值为( ) A.0 B.3 C.6 D.28.如图,在正方形ABCD 中,点F 为CD 上一点,BF 与AC 交于点E ,若C B F 20︒∠=.则DEF∠的度数是( )A.25°B.40°C.45°D.50°9.如图,双曲线m y x=与直线y kx b =+交于点M ,N ,并且点M 坐标为(1,3)点N 坐标为(-3,-1),根据图象信息可得关于x 的不等式” kx b m x<+的解为( )A.3x <-B. 30x -<<C. 3 01x x <-<<或D. 30 1x x -<<>或10.如图,矩形ABCD 中, E 是AD 的中点,将ABE ∆沿直线BE 折叠后得到GBE ∆,延长BG 交CD 于点F 若AB 6,BC 10==, 则FD 的长为( )A.3B.72 C. 256 D. 254二、填空题(共5小题,每小题3分,共15分):11.要使分式21x -的值为1,则x 应满足的条件是_____ 12.计算: 01( 3.14)3π--+=13.反比例函数k y x =在第一象限内的图象如图,点M 是图象上一点,MP x ⊥轴于点P ,如果MOP ∆的面积为1,那么的值是_14.如图在菱形ABCD 中,BAD 120,CE AD ︒∠=⊥,且CE BC =连接BE 交对角线AC 于点F ,则EFC ∠= .。
青岛版八年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、如图,点A、B、C是圆O上的三点,且四边形ABCO是平行四边形,OF⊥OC 交圆O于点F,则∠BAF等于()A.12.5°B.15°C.20°D.22.5°2、如图,平行四边形ABCD中,M是BC的中点,且AM=9,BD=12,AD=10,则ABCD的面积是()A.30B.36C.54D.723、下列命题正确的是()A.圆内接四边形的对角互补B.平行四边形的对角线相等C.菱形的四个角都相等D.等边三角形是中心对称图形4、已知是整数,则正整数n的最小值是()A.2B.6C.12D.185、定义:点A(x,y)为平面直角坐标系内的点,若满足x=y,则把点A 叫做“平衡点”.例如:M(1,1),N(﹣2,-2)都是“平衡点”.当﹣1≤x≤3 时,直线y=2x+m 上有“平衡点”,则m 的取值范围是()A.0≤m≤1B.﹣1≤m≤0C.﹣3≤m≤3D.﹣3≤m≤16、如图,在菱形ABCD中,对角线AC、BD相交于点O,BD=24,tan∠ABD=,则线段AB的长为()A.9B.12C.15D.187、在下列各数0.51515354,0,0. ,3π,,6.1010010001…,中,无理数的个数是()A.1B.2C.3D.48、直角三角形斜边上的中线与连结两直角边中点的线段的关系是()A.相等且平分B.相等且垂直C.垂直平分D.垂直平分且相等9、如图,在中,,分别是、的中点,点在的延长线上.添加一个条件使四边形为平行四边形,则这个条件是()A. B. C. D.10、下列图形既是轴对称图形又是中心对称图形的是()A. B. C. D.11、不等式组的整数解共()A.3个B.4个C.5个D.6个12、函数和在同一平面直角坐标系中的大致图象可能是()A. B. C.D.13、数轴上两点A、C表示的数分别为-2,6,以为对角线做菱形,连接交于O点,则O点所表示的数为()A.-1B.1C.2D.314、下列各点中,一定不在正比例函数y=3x的图象上的是()A.(1,3)B.C.(﹣2,﹣6)D.(﹣3,﹣9)15、若6-的整数部分为x,小数部分为y,则(2x+)y的值是( )A.5-3B.3C.3 -5D.-3二、填空题(共10题,共计30分)16、如图,在正方形 ABCD 中,点 E 为 BC 的中点,F 为 AB 上一点,AE,CF 交于点 O.若 AB=4,∠AOF=45°,则 BF 的长为________.17、 0.81的平方根是________.18、二次根式有意义的条件是________.19、如图,在Rt△ABC中,∠C=90°,AD是△ABC的角平分线,若CD=4,AC=12,BC=9,则S=________.△ABD20、如图,已知△ABC中,AB=5 cm,BC=12 cm,AC=13 cm,那么AC边上的中线BD的长为________cm.21、比较大小:________ .22、如图所示,在正方形ABCD中,AB=12,点E在CD 边上,且CD=3DE,将△ADE沿着AE 对折至△AFE, 延长EF交边BC与点G, 连接AG, CF.有下列结论:①△ABG≌△AFG ②BG=GC ③AG//CF ④S=12正确的是________(填序△FGC号)23、二项方程在实数范围内的解是________.24、如图,直线(,,为常数)经过,则不等式的解为________.25、如图,正方形OABC的边长为2,以O为圆心,EF为直径的半圆经过点A,连接AE,CF相交于点P,将正方形OABC从OA与OF重合的位置开始,绕着点O 逆时针旋转90°,交点P运动的路径长是________.三、解答题(共5题,共计25分)26、27、试求不等式x+3≤6的正整数解.28、如图所示,∠B=∠OAF=90°,BO=3cm,AB=4cm,AF=12cm,求图中半圆的面积.29、如图,学校要把宣传标语掛到教学楼的顶部D处.已知楼顶D处离地面的距离DA为8m,云梯的长度为9m,为保证安全,梯子的底部和墙基的距离AB至少为3m,云梯的顶部能到达D处吗?为什么?30、实数a,b,c在数轴上的位置知图所示,试化简.参考答案一、单选题(共15题,共计45分)1、B2、D3、A4、E5、D6、C7、C8、A9、C10、A11、C12、D13、C14、E15、B二、填空题(共10题,共计30分)17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、29、30、。
2019-2020学年八年级数学下册期末测试卷一、选择题(本大题共14小题,共42分)1.若y=x+2-b是正比例函数,则b的值是()A.0 B.-2 C.2 D.-0.5 2.下列二次根式中,最简二次根式的是()A B C D 3.下列各组数中能作为直角三角形的三边长的是()A.32,42,52B.13,14,15C.9,41,40 D.2,3,44.已知一次函数y=kx+b,若k+b=0,则该函数的图象可能()A.B.C.D.5.九(2)班“环保小组”的5位同学在一次活动中捡废弃塑料袋的个数分别为:4,6,8,16,16.这组数据的中位数、众数分别为()A.16,16 B.10,16 C.8,8 D.8,166合并的是()A B C D7.根据如图所示的程序计算函数y的值,若输入的x值是4或7时,输出的y值相等,则b等于()A.9 B.7 C.-9 D.-78.如图,已知矩形ABCD沿着直线BD折叠,使点C落在C′处,BC′交AD于E,AD=8,AB=4,则DE的长为()A.3 B.4 C.5 D.69.甲、乙二人沿相同的路线由A到B匀速行进,A,B两地间的路程为20km.他们行进的路程s(km)与甲出发后的时间t(h)之间的函数图象如图所示.根据图象信息,下列说法正确的是()A.甲的速度是4km/h B.乙的速度是10km/hC.乙比甲晚出发1h D.甲比乙晚到B地3h10.如图,平面直角坐标系中,△ABC的顶点坐标分别是A(1,1),B(3,1),C(2,2),当直线y=12b与△ABC有交点时,b的取值范围是()A.-1≤b≤1B.-12≤b≤1C.-12≤b≤12D.-1≤b≤1211.若顺次连接四边形ABCD四边的中点,得到的图形是一个矩形,则四边形ABCD一定是()A.矩形B.菱形C.对角线相等的四边形D.对角线互相垂直的四边形12.如图,菱形纸片ABCD,∠A=60°,P为AB中点,折叠菱形纸片ABCD,使点C落在DP所在的直线上,得到经过点D的折痕DE,则∠DEC等于()A.60°B.65°C.75°D.80°13.如图,P是矩形ABCD的边AD上一个动点,PE⊥AC于E,PF⊥BD于F,当P从A 向D运动(P与A,D不重合),则PE+PF的值()A.增大B.减小C.不变D.先增大再减小14.如图,大小两个正方形在同一水平线上,小正方形从图①的位置开始,匀速向右平移,到图③的位置停止运动.如果设运动时间为x,大小正方形重叠部分的面积为y,则下列图象中,能表示y与x的函数关系的图象大致是()A.B.C.D.15有意义,则x 的取值范围是 16.如图,利用函数图象可知方程组32x ky y x ⎨⎩+⎧==的解为.17.已知:Rt △ABC 中,∠C=90°,AC=3,BC=4,P 为AB 上任意一点,PF ⊥AC 于F ,PE ⊥BC 于E ,则EF 的最小值是18.如图,F 是△ABC 内一点,BF 平分∠ABC 且AF ⊥BF ,E 是AC 中点,AB=6,BC=8,则EF 的长等于19.如图,先画一个边长为1的正方形,以其对角线为边画第二个正方形,再以第二个正方形的对角线为边画第三个正方形…,如此反复下去,那么第2019个正方形的对角线长为20.(1)计算:0;(2)已知x=2,求221.学校为了提高学生跳远科目的成绩,对全校500名九年级学生开展了为期一个月的跳远科目强化训练.王老师为了了解学生的训练情况,强化训练前,随机抽取了该年级部分学生进行跳远测试,经过一个月的强化训练后,再次测得这部分学生的成绩,将两次测得的成绩制作成如图所示的统计图和不完整的统计表训练后学生成绩统计表根据以上信息回答下列问题(1)训练后学生成绩统计表中n=,并补充完成下表:(2)若跳远成绩9分及以上为优秀,估计该校九年级学生训练后比训练前达到优秀的人数增加了多少?22.如图,直线l1:y=2x+1与直线l2:y=mx+4相交于点P(1,b),与x轴交于A,B两点,(1)求b,m的值;(2)求△ABP的面积;(3)垂直于x轴的直线x=a与直线l1,l2分别相交于C,D,若线段CD长为2,求a的值.23.如图是单位长度为1的正方形网格.(1)在图1中画出一条长度为10的线段AB;(2)在图2中画出一个以格点为顶点,面积为5的正方形.24.如图1,将一张矩形纸片ABCD沿着对角线BD向上折叠,顶点C落到点E处,BE交AD于点F.(1)求证:△BDF是等腰三角形;(2)如图2,过点D作DG∥BE,交BC于点G,连接FG交BD于点O.①判断四边形BFDG的形状,并说明理由;②若AB=6,AD=8,求FG的长为152.25.为了减少二氧化碳的排放量,大家提倡绿色出行,越来越多市民选择租用共享单车出行,已知某共享单车公司为市民提供了手机支付和会员卡支付两种支付方式,如图描述了两种方式应支付金额y(元)与骑行时间x(时)之间的函数关系,根据图象回答下列问题:(1)求手机支付金额y(元)与骑行时间x(时)的函数关系式;(2)李老师经常骑行共享单车,请根据不同的骑行时间帮他确定选择哪种支付方式比较合算.26.如图,四边形ABCD是正方形,点E是BC边上的点,∠AEF=90°,且EF交正方形外角的平分线CF于点F.(1)如图①,当点E是BC边上任一点(不与点B、C重合)时,求证:AE=EF.(2)如图②当点E是BC边的延长线上一点时,(1)中的结论还成立吗?(填成立或者不成立).(3)当点E是BC边上任一点(不与点B、C重合)时,若已知AE=EF,那么∠AEF的度数是否发生变化?证明你的结论.参考答案与试题解析1.【分析】根据正比例函数的定义可得关于b的方程,解出即可.【解答】解:由正比例函数的定义可得:2-b=0,解得:b=2.故选:C.【点评】考查了正比例函数的定义,解题关键是掌握正比例函数的定义条件:正比例函数y=kx的定义条件是:k为常数且k≠0,自变量次数为1.2.【分析】最简二次根式满足:(1)被开方数不含分母;(2)被开方数中不含能开得尽方的因数或因式,满足上述两个条件的二次根式,叫做最简二次根式.【解答】解:ABCD故选:C.【点评】本题主要考查了最简二次根式的定义,判定一个二次根式是不是最简二次根式的方法,就是逐个检查被开方数不含分母,也不含能开的尽方的因数或因式,同时满足的就是最简二次根式,否则就不是.3.【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、92+162≠252,故不是直角三角形,故不符合题意;B、(13)2+(14)2≠(15)2,故不是直角三角形,故不符合题意;C、92+402=412,故是直角三角形,故符合题意;D、22+32≠42,故不是直角三角形,故不符合题意.故选:C.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.4.【分析】由k+b=0可得出一次函数y=kx+b的图象过点(1,0),观察四个选项即可得出结论.【解答】解:∵在一次函数y=kx+b中k+b=0,∴一次函数y=kx+b的图象过点(1,0).故选:A.【点评】本题考查了一次函数的图象,由k+b=0找出一次函数y=kx+b的图象过点(1,0)是解题的关键.5.【分析】根据众数和中位数的定义求解.找出次数最多的数为众数;把5个数按大小排列,位于中间位置的为中位数.【解答】解:在这一组数据中16是出现次数最多的,故众数是16;而将这组数据从小到大的顺序排列后,处于中间位置的数是8,那么由中位数的定义可知,这组数据的中位数是8.故选:D.【点评】本题考查统计知识中的中位数和众数的定义.将一组数据从小到大依次排列,把中间数据(或中间两数据的平均数)叫做中位数.一组数据中出现次数最多的数据叫做众数.6.【分析】将各式化为最简二次根式后即可判断.【解答】解:(A)原式,故不能合并,(B)原式,故不能合并,(C)原式,故能合并,(D)原式,故不能合并,故选:C.【点评】本题考查最简二次根式,解题的关键是熟练运用二次根式的性质,本题属于基础题型7.【分析】先求出x=7时y的值,再将x=4、y=-1代入y=2x+b可得答案.【解答】解:∵当x=7时,y=6-7=-1,∴当x=4时,y=2×4+b=-1,解得:b=-9,故选:C.【点评】本题主要考查函数值,解题的关键是掌握函数值的计算方法.8.【分析】先根据翻折变换的性质得出CD=C′D,∠C=∠C′=90°,再设DE=x,则AE=8-x,由全等三角形的判定定理得出Rt△ABE≌Rt△C′DE,可得出BE=DE=x,在Rt△ABE中利用勾股定理即可求出x 的值,进而得出DE 的长. 【解答】解:∵Rt △DC′B 由Rt △DBC 翻折而成, ∴CD=C′D=AB=8,∠C=∠C′=90°, 设DE=x ,则AE=8-x ,∵∠A=∠C′=90°,∠AEB=∠DEC′, ∴∠ABE=∠C′DE , 在Rt △ABE 与Rt △C′DE 中,90A C AB C DABE C DE ∠∠'︒'∠∠⎧⎪'⎪⎨⎩====, ∴Rt △ABE ≌Rt △C′DE (ASA ), ∴BE=DE=x ,在Rt △ABE 中,AB 2+AE 2=BE 2, ∴42+(8-x )2=x 2, 解得:x=5, ∴DE 的长为5. 故选:C .【点评】本题考查的是翻折变换的性质及勾股定理,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等的知识是解答此题的关键.9.【分析】由图可得,该图象是路程与时间的关系,乙比甲晚出发一小时且乙的速度比甲的速度快.【解答】解:由图可知,甲用4小时走完全程20km ,可得速度为5km/h ; 乙比甲晚出发一小时,用1小时走完全程,可得速度为20km/h . 故选:C .【点评】此题主要考查学生的读图获取信息的能力,要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.10.【分析】将A (1,1),B (3,1),C (2,2)的坐标分别代入直线y =12x+b 中求得b 的值,再根据一次函数的增减性即可得到b 的取值范围.【解答】解:直线y=12x+b经过点B时,将B(3,1)代入直线y=12x+b中,可得32+b=1,解得b=-12;直线y=12x+b经过点A时:将A(1,1)代入直线y=12x+b中,可得12+b=1,解得b=12;直线y=12x+b经过点C时:将C(2,2)代入直线y=12x+b中,可得1+b=2,解得b=1.故b的取值范围是-12≤b≤1.故选:B.【点评】考查了一次函数的性质:k>0,y随x的增大而增大,函数从左到右上升;k<0,y随x的增大而减小,函数从左到右下降.11.【分析】首先根据三角形中位线定理知:所得四边形的对边都平行且相等,那么其必为平行四边形,若所得四边形是矩形,那么邻边互相垂直,故原四边形的对角线必互相垂直,由此得解.【解答】已知:如右图,四边形EFGH是矩形,且E、F、G、H分别是AB、BC、CD、AD 的中点,求证:四边形ABCD是对角线垂直的四边形.证明:由于E、F、G、H分别是AB、BC、CD、AD的中点,根据三角形中位线定理得:EH∥FG∥BD,EF∥AC∥HG;∵四边形EFGH是矩形,即EF⊥FG,∴AC⊥BD,故选:D.【点评】本题主要考查了矩形的性质和三角形中位线定理,解题的关键是构造三角形利用三角形的中位线定理解答.12.【分析】连接BD,由菱形的性质及∠A=60°,得到三角形ABD为等边三角形,P为AB 的中点,利用三线合一得到DP为角平分线,得到∠ADP=30°,∠ADC=120°,∠C=60°,进而求出∠PDC=90°,由折叠的性质得到∠CDE=∠PDE=45°,利用三角形的内角和定理即可求出所求角的度数.【解答】解:连接BD,∵四边形ABCD为菱形,∠A=60°,∴△ABD为等边三角形,∠ADC=120°,∠C=60°,∵P为AB的中点,∴DP为∠ADB的平分线,即∠ADP=∠BDP=30°,∴∠PDC=90°,∴由折叠的性质得到∠CDE=∠PDE=45°,在△DEC中,∠DEC=180°-(∠CDE+∠C)=75°.故选:C.【点评】此题考查了翻折变换(折叠问题),菱形的性质,等边三角形的性质,以及内角和定理,熟练掌握折叠的性质是解本题的关键.13.【分析】首先过A作AG⊥BD于G.利用面积法证明PE+PF=AG即可.【解答】解:如图,过A作AG⊥BD于G,则S△AOD=12×OD×AG,S△AOP+S△POD=12×AO×PF+12×DO×PE=12×DO×(PE+PF),∵S△AOD=S△AOP+S△POD,四边形ABCD是矩形,∴OA=OD,∴PE+PF=AG,∴PE+PF的值是定值,故选:C.【点评】本题考查矩形的性质、等腰三角形的性质、三角形的面积计算.解决本题的关键是证明等腰三角形底边上的任意一点到两腰距离的和等于腰上的高.14.【分析】小正方形运动过程中,y与x的函数关系为分段函数,即当0≤x<完全重叠前,函数为为增函数;当完全重叠时,函数为平行于x轴的线段;当不再完全重叠时,函数为为减函数.即按照自变量x分为三段.【解答】解:依题意,阴影部分的面积函数关系式是分段函数,面积由“增加→不变→减少”变化.故选:C.【点评】本题考查了动点问题的函数图象.关键是理解图形运动过程中的几个分界点.本题也可以通过分析s随x的变化而变化的趋势及相应自变量的取值范围,而不求解析式来解决问题.15.【分析】直接利用二次根式有意义的条件进而分析得出答案.【解答】有意义,∴x≥0,故答案为:x≥0.【点评】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.16.【分析】观察函数的图象y=2x与x+ky=3相交于点(1,2),从而求解;【解答】解:观察图象可知,y=2x与x+ky=3相交于点(1,2),可求出方方程组32x kyy x⎨⎩+⎧==的解为12xy⎧⎨⎩==,故答案为:12 xy⎧⎨⎩==【点评】此题主要考查一次函数与二元一次方程组,关键是能根据函数图象的交点解方程组.17.【分析】根据已知得出四边形CEPF是矩形,得出EF=CP,要使EF最小,只要CP最小即可,根据垂线段最短得出即可.【解答】解:连接CP,如图所示:∵∠C=90°,PF⊥AC于F,PE⊥BC于E,∴∠C=∠PFC=∠PEC=90°,∴四边形CEPF是矩形,∴EF=CP,要使EF最小,只要CP最小即可,当CP⊥AB时,CP最小,在Rt△ABC中,∠C=90°,AC=3,BC=4,由勾股定理得:AB=5,由三角形面积公式得:12×4×3=12×5×CP,∴CP=2.4,即EF=2.4,故答案为:2.4.【点评】本题利用了矩形的性质和判定、勾股定理、垂线段最短的应用,解此题的关键是确定出何时,EF最短,题目比较好,难度适中.18.【分析】根据直角三角形斜边上中线是斜边的一半可得DF=12AB=AD=BD=4且∠ABF=∠BFD,结合角平分线可得∠CBF=∠DFB,即DE∥BC,进而可得DE=4,由EF=DE-DF 可得答案.【解答】解:∵AF⊥BF,∴∠AFB=90°,∵AB=6,D为AB中点,∴DF=12AB=AD=BD=3,∴∠ABF=∠BFD,又∵BF平分∠ABC,∴∠ABF=∠CBF,∴∠CBF=∠DFB,∴DE∥BC,∴△ADE∽△ABC,∴DE ADCB AB=,即386DE=解得:DE=4,∴EF=DE-DF=1,故答案为:1.【点评】本题主要考查直角三角形的性质和相似三角形的判定与性质,熟练运用其判定与性质是解题的关键.19.【分析】第1个正方形的边长是1,对角)2=2,第3)3;得出规律,即可得出结果.【解答】解:第1个正方形的边长是1)2=2第3个正方形的边长是2,对角线长为)3;…,∴第n n;∴第20192019,.【点评】本题主要考查了正方形的性质、勾股定理;求出第一个、第二个、第三个正方形的对角线长,得出规律是解决问题的关键.20.【分析】(1)根据二次根式的运算法则即可求出答案.(2)根据完全平方公式进行化简,然后将x的值代入即可求出答案.【解答】解:(1)原式+1−1(2)原式=)2x2+(=)2()2+((=(4-3)2【点评】本题考查学生的运算能力,解题的关键是熟练运用运算法则,本题属于基础题型.21.【分析】(1)利用强化训练前后人数不变计算n的值;利用中位数对应计算强化训练前的中位数;利用平均数的计算方法计算强化训练后的平均分;利用众数的定义确定强化训练后的众数;(2)用500分别乘以样本中训练前后优秀的人数的百分比,然后求差即可;【解答】解:(1)n=20-1-3-8-5=3;强化训练前的中位数为7+82=7.5;强化训练后的平均分为120(1×6+3×7+8×8+9×5+10×3)=8.3;强化训练后的众数为8,故答案为3;7.5;8.3;8;(2)500×(820-320)=125,所以估计该校九年级学生训练后比训练前达到优秀的人数增加了125人;【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.22.【分析】(1)由点P(1,b)在直线l1上,利用一次函数图象上点的坐标特征,即可求出b值,再将点P的坐标代入直线l2中,即可求出m值;(2)根据解析式求得A、B的坐标,然后根据三角形面积公式即可求得;(3)由点C、D的横坐标,即可得出点C、D的纵坐标,结合CD=2即可得出关于a的含绝对值符号的一元一次方程,解之即可得出结论.【解答】解:(1)把点P(1,b)代入y=2x+1,得b=2+1=3,把点P(1,3)代入y=mx+4,得m+4=3,∴m=-1;(2)∵L1:y=2x+1 L2:y=-x+4,∴A(-12,0)B(4,0)∴1192732248 ABPS AB h=⋅=⨯⨯=;(3)解:直线x=a与直线l1的交点C为(a,2a+1)与直线l2的交点D为(a,-a+4).∵CD=2,∴|2a+1-(-a+4)|=2,即|3 a-3|=2,∴3 a-3=2或3 a-3=-2,∴a=53或a=13.【点评】本题考查了两条直线相交或平行问题、一次函数图象上点的坐标特征以及三角形的面积,解题的关键是:(1)利用一次函数图象上点的坐标特征求出b、m的值;(2)根据解析式求得与坐标轴的交点;(3)根据CD=2,找出关于a的含绝对值符号的一元一次方程.23.【分析】(1)根据勾股定理作出以1和3直角边的三角形的斜边即可;(2【解答】解:如图所示.【点评】本题考查了勾股定理,是基础题,熟练掌握网格结构以及勾股定理的应用是解题的关键.24.【分析】(1)证明△BDF是等腰三角形,可证明BF=DF,可通过证明∠EBD=∠FDB实现,利用折叠的性质和平行线的性质解决.(2)①先判断四边形BFDG是平行四边形,再由(1)BF=FD得到结论;②要求FG的长,可先求出OF的长,在Rt△BFO中,BO可由AB、AD的长及菱形的性质求得,解决问题的关键是求出BF的长.在Rt△BFA中,知AB=6、AF+BF=AD=8,可求出BF的长,问题得以解决.【解答】解:∵四边形ABCD是矩形,∴AD∥BC,∴∠ADB=∠CBD,由折叠的性质可知:∠EBD=∠CBD,∴ADB=∠EBD,∴BF=FD∴△BDF是等腰三角形(2)①四边形BFDG是菱形.理由:∵FD∥BG,DG∥BE,∴四边形BFDG是平行四边形又∵BF=DF,∴四边形BFDG是菱形②设AF=x,则FD=8-x,∴BF=FD=8-x在Rt△ABF中,62+x2=(8-x)2,解得:x=74,∴FD=8-74=254,在Rt△ABD中,∵AB=6,AD=8,∴BD=10∵四边形BFDG是菱形,∴OD=12BD=5,FO=12FG,FG⊥BD,在Rt△ODF中,∵FO2+DO2=FD2,即FO2+52=(254)2,∴FO=154,∴FG=2FO=152.故答案为:152.【点评】本题考查了等腰三角形的判定、矩形的性质、菱形的性质及判定、勾股定理等知识,学会分析、把各个知识点有机的联系在一起是解决本题的关键.25.【分析】(1)由图象可知:当0≤x<1时,y=0;当x≥1时,观察函数图象可得出点的坐标,利用待定系数法可求出手机支付金额y(元)与骑行时间x(时)的函数关系式,综上,此题得解;(2)观察函数图象找出点的坐标,利用待定系数法可求出会员卡支付对应的函数关系式,令2x=4x-4可求出两种支付费用相同时的时间,再结合函数图象可找出比较合算的付款方式.【解答】解:(1)当0≤x <1时,y=0;当x≥1时,设手机支付金额y (元)与骑行时间x (时)的函数关系式为y=kx+b (k≠0), 将(1,0),(1.5,2)代入y=kx+b ,得:01.52k b k b ⎨+⎩+⎧==,解得:44k b -⎧⎨⎩==, ∴当x≥1时,手机支付金额y (元)与骑行时间x (时)的函数关系式为y=-4x-4.综上所述:手机支付金额y (元)与骑行时间x (时)的函数关系式为y=()4(00141)x x x -⎩≤≥⎧⎨<. (2)设会员卡支付对应的函数关系式为y=ax ,将(1.5,3)代入y=ax ,得:3=1.5a ,解得:a=2,∴会员卡支付对应的函数关系式为y=2x .令2x=4x-4,解得:x=2.由图象可知,当0<x <2时,李老师李老师选择手机支付比较合算;当x=2时,李老师选择两种支付都一样;当x >2时,李老师选择会员卡支付比较合算.【点评】本题考查了一次函数的图象、待定系数法求一次函数解析式以及解一元一次方程,解题的关键是:(1)观察函数图象找出点的坐标,利用待定系数法求出函数关系式;(2)令两支付方式费用相等,求出两种支付费用相同时的时间.26.【分析】(1)在AB 上取点G ,使得BG=BE ,连接EG ,根据已知条件利用ASA 判定△AGE ≌△ECF ,因为全等三角形的对应边相等,所以AE=EF ;(2)在BA 的延长线上取一点G ,使AG=CE ,连接EG ,根据已知利用ASA 判定△AGE ≌△ECF ,因为全等三角形的对应边相等,所以AE=EF ;(3)在BA 边取一点G ,使BG=BE ,连接EG .作AP ⊥EG ,EQ ⊥FC ,先证AGP ≌△ECQ 得AP=EQ ,再证Rt △AEP ≌Rt △EFQ 得∠AEP=∠EFQ ,∠BAE=∠CEF ,结合∠AEB+∠BAE=90°知∠AEB+∠CEF=90°,从而得出答案.【解答】(1)证明:在BA 边取一点G ,使BG=BE ,连接EG ,∵四边形ABCD 是正方形,∴∠B=900,BA=BC ,∠DCM═900,∴BA-BG=BC-BE,即 AG=CE.∵∠AEF=90°,∠B=90°,∴∠AEB+∠CEF=90°,∠AEB+∠BAE=90°,∴∠CEF=∠BAE.∵BG=BE,CF平分∠DCM,∴∠BGE=∠FCM=45°,∴∠AGE=∠ECF=135°,∴△AGE≌△ECF(ASA),∴AE=EF.(2)成立,理由:在BA的延长线上取点G,使得AG=CE,连接EG.∵四边形ABCD为正方形,AG=CE,∴∠B=90°,BG=BE,∴△BEG为等腰直角三角形,∴∠G=45°,又∵CF为正方形的外角平分线,∴∠ECF=45°,∴∠G=∠ECF=45°,∵∠AEF=90°,∴∠FEM=90°-∠AEB,又∵∠BAE=90°-∠AEB,∴∠FEM=∠BAE,∴∠GAE=∠CEF,在△AGE和△ECF中,∵G CEFAG CEGAE CEF ∠∠∠∠⎧⎪⎨⎪⎩===,∴△AGE≌△ECF(ASA),∴AE=EF.故答案为:成立.(3)∠AEF=90°不发生变化.理由如下:在BA边取一点G,使BG=BE,连接EG.分别过点A、E作AP⊥EG,EQ⊥FC,垂足分别为点P、Q,∴∠APG=∠EQC=90°,由(1)中知,AG=CE,∠AGE=∠ECF=135°,∴∠AGP=∠ECQ=45°,∴△AGP≌△ECQ(AAS),∴AP=EQ,∴Rt△AEP≌Rt△EFQ(HL),∴∠AEP=∠EFQ,∴∠BAE=∠CEF,又∵∠AEB+∠BAE=90°,∴∠AEB+∠CEF=90°,∴∠AEF=90°.【点评】此题是四边形综合题,主要考查的是正方形的性质、全等三角形的判定和性质,正确作出辅助线、灵活运用全等三角形的判定定理和性质定理是解题的关键,解答时,注意类比思想的正确运用.1、生活不相信眼泪,眼泪并不代表软弱。
2020-2021学年度第二学期期末教育质量检测八年级数学试卷(满分:120分;时间:120分钟)说明:1.本试题分第Ⅰ卷和第Ⅱ卷两部分,共有24道题;2.所有题目均在答题卡上作答,在试卷上作答无效.第Ⅰ卷一、选择题(本题满分24分,共有8道小题,每小题3分)下列每小题都给出标号为A 、B 、C 、D 的四个结论,其中只有一个是正确的.每小题选对得分;不选、选错或选出的标号超过一个的不得分.1.下列图形中,是中心对称图形不是轴对称图形的是( )A .B .C .D .2.四边形ABCD 的对角线AC 、BD 相交于点O ,下列选项中,能判定四边形ABCD 是平行四边形的是( )A .AD AB =,BC CD =B .AD BC ,AB CD = C .AD BC =,AD BC D .AO BO =,CO DO =3.不等式236x x +<+的解集在数轴上表示正确的是( )A .B .C .D . 4.若把分式25x y xy+中的x 、y 都缩小为原来的一半,则分式的值( ) A .缩小为原来的四分之一 B .缩小为原来的一半C .不变D .扩大为原来的2倍 5.如图,ABC △中,90A ∠=︒,点M 、N 分别为边AB 和AC 的中点,若2AB =,4AC =,则MN 的长度为( )A .BC .D 6.已知分式方程5263x m x x -=--有增根,则m 的值是( ) A .1- B .5 C .1 D .37.已知平行四边形ABCD 周长为26cm ,对角线AC 、BD 相交于点O ,已知BOC △的周长比AOB △的周长多3cm ,则BC 的长度为( )A .5cmB .6cmC .7cmD .8cm 8.如图,函数112y x =与25y ax =+图象交于点(),2A m ,则关于x 的不等式152x ax ≤+的解集是( )A .4x ≤B .4x ≥C .2x ≤D .2x ≥二、填空题(本题满分18分,共有6道小题,每小题3分)9.因式分解:282x -= .10.如图,Rt ABC △中,90A ∠=︒,30B ∠=︒,边BC 的中垂线分别交BC 、AB 于点D 、点E ,若1cm DE =,则ABC △的周长为 cm .11.某工程队进行爆破时,为了安全,人要撤离到距爆破点50米以外的安全区域.已知引线的燃烧速度为0.2米/秒,爆破者离开速度为3米/秒,点燃时引线向远离爆破点的方向拉直,则引线的长度应满足什么条件?设引线长x 米,请根据题意列出关于x 的不等式 .12.某装修公司拟用三种边长相同的正多边形地砖无缝隙、无重叠的铺满整个客厅,如图所示,已知点A 周围有三块地砖,则第三块地砖的边数为 .13.在平行四边形ABCD 中,10cm AD =,AE 平分BAD ∠交BC 于点E ,DF 平分ADC ∠交BC 于点F ,且4cm EF =,则AB = cm .14.如图,ABC △是边长为2的等边三角形,点B 、点C 的坐标分别为()1,0-、()1,0.第一次将ABC △绕点O 顺时针旋转60︒得到111A B C △(点A 、B 、C 的对应点分别是点1A 、1B 、1C ,以此类推),第二次仍将111A B C △绕点O 顺时针旋转60︒得到222A B C △,……,按此方法进行下去,则点2021A 的坐标为 .三、作图题(本题满分4分)用圆规、直尺作图,不写作法,但要保留作图痕迹.15.如图,已知点B 是MAN ∠边AN 上一点.求作:平行四边形ABCD ,使点D 在射线AM 上,且90ABD ∠=︒.三、解答题(本题满分74分,共有9道小题)16.(1)化简:211x x x -++ (2)解方程:874322x x x--=-- 17.(1)解不等式组()21511325131x x x x -+⎧-≤⎪⎨⎪-<+⎩,并写出它的非负整数解.(2)先化简,再求值:2211111x x x x x x ⎛⎫++-÷ ⎪---⎝⎭,并从1-,0,1,2四个数中选一个合适的数代入求值. 18.某儿童游乐中心设置两种收费方式:普通消费每次收费30元;会员消费每月交120元会员费,可以免费游玩2次,超过2次后每次按普通消费打六折收费.小明每个月去此游乐中心多少次时选择会员消费合算?19.为庆祝建党100周年,学校组织学生前往距学校132千米的某革命根据地参观学习.一班先乘车前往,二班所乘汽车因事耽搁,50分钟后二班再乘车出发,为了赶上一班,平均车速是一班平均车速的1.2倍,结果还是比一班晚到20分钟.求一班的平均车速是多少千米/时?20.(1)如图1,现有编号为①②③④的四种长方体各若干块,现取其中两块拼成一个大长方体如图2,据此写出一个多项式的因式分解:________.(2)若要用这四种长方体拼成一个棱长为()1x +的正方体,需要②号长方体________个,③号长方体________个,据此写出一个多项式的因式分解:__________.21.已知:如图,在ABC △中,AB AC =,BD AC ⊥于点D ,CE AB ⊥于点E ,过点D 作CE 的平行线交BC 延长线于点F ,连接DE .求证:(1)DBC BCB ∠=∠;(2)DE CF =.22.某餐厅推出健康套餐,一份套餐A 含鸡肉0.05千克,牛肉0.1千克,这两种肉类的成本共11元;一份套餐B 含鸡肉0.1千克,牛肉0.05千克,这两种肉类的成本共7元.(1)每千克鸡肉和牛肉成本各多少元?(2)若每千克鸡肉含胆固醇11个单位,每千克牛肉含胆固醇6个单位,一份健康套餐的胆固醇含量不得超过1个单位,现用鸡肉、牛肉这两种肉类共0.15千克制作一份健康套餐,则这份套餐的肉类成本最低是多少元?23.(1)如图1,线段AB 绕端点B 顺时针旋转x ︒,得到线段A B ',此时线段AB 与线段A B '的夹角ABA x '∠=︒;(2)将线段MN 绕点O 顺时针旋转()0x x ︒<<180,得到线段M N '',①如图2,两条线段相交于点P ,那么线段MN 与线段M N ''的夹角NPN '∠是多少度?请写出推导过程. ②如图3,当线段MN 与线段M N ''的位置如图所示时,这两条线段所在直线的夹角(小于或等于90︒的角)是多少度?请写出推导过程.③由以上探究可得结论:一个图形绕某点旋转x ︒后,对应线段或对应线段所在直线的夹角(小于或等于90︒的角)为__________度.(3)如图4,点E 是正方形ABCD 内一点,30BCE ∠=︒,1BE =,CE =,将BCE △绕点B 逆时针旋转90︒,得到BAE '△,连接EE ',延长CE 交AE '于点F ,则以下结论正确的是________(只填序号).①CE AE '⊥;②点F 为AE '的中点;③AEE '△为等边三角形;④22AB =+ 24.如图,ABC △中,90A ∠=︒,5cm AB AC ==,点P 是AC 边上一动点,以1cm /s 的速度由A 向C 运动,同时点Q 从点B 出发,在CB 延长线上,/s 的速度向左运动,运动时间为t 秒,当点P 到达点C 时,两点停止运动.连接PQ 交AB 于点D ,过点P 作PE BC ⊥于E ,过点Q 作BC 的垂线交AB 延长线于F ,连接EF .(1)用含t 的代数式表示线段长度:PC =________,PE =________;(2)当t 取何值时,四边形PQFE 是平行四边形?请写出推理过程.(3)在运动过程中,点D 是否总是PQ 的中点?请说明理由.(4)是否存在某一时刻t ,使得BDQ △是等腰三角形?若存在,求出t 的值;若不存在,请说明理由.试卷答案一、选择题1-5:B C B D D 6-8:A D A二、填空题9.()()22121x x +- 10.(3+ 11.500.23x x -≥. 12.十二13.7或3 14.3,22⎛- ⎝⎭15.略16.(1)()()222111111x x x x x x x ----==+++. (2)3x =.17.(1)12x -≤< 0.1(2)原式1x =+, 当0x =时,原式1=.18.设x 次,普:130y x =,会:()21202300.61884y x x =+-⨯⨯=+.12y y ≥时,7x ≥,大于等于7次.19.设1班k m /h x ,2班12km /h x . 132113253 1.26x x +=+, 44km /h x =20.(1)()3221 x x xx +=+.(2)3 3 323331(1)x x x x +++=+,21.(1)BCE BCD ⊆△△.(2)ECB DBC F ∠=∠=∠,BD DF CE ∴==. CE DF ∴.22.(1)0.050.1g 11,0.1cos 7.x x y +=⎧⎨+=⎩20100.x y =⎧⎨=⎩ (2)015a b +=,0.15a b →=-.(0.15)61b b ∴-+≤.0.13b ∴≥,20100W a b =+()200.15100b b =⋅-+803b =+ 0k >,∴当0.13x =时,min 800.13313.4W =⨯+=23.(1)①x ︒.(8字)②()18x -︒.③x 或()180x -.③①②③ 2⨯④24.(1)5t -)t -.(2) PE QF =)t -=,53t =. (3)过Q 作 QG AF ⊥,QG t =,QG AP . AQGP ∴得证.(4)BQ BD =,BD DG BG DG t =-=-. 52t t +=-,()517t =.。
青岛版八年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、若3m﹣5x3+m>4是关于x的一元一次不等式,则该不等式的解集是()A.x<-B.x>-C.x<﹣2D.x>﹣22、如图,⊙O的半径为1,正方形ABCD的对角线长为6,OA=4.若将⊙O绕点A按顺时针方向旋转360°,在旋转过程中,⊙O与正方形ABCD的边只有一个公共点的情况一共出现()A.3次B.4次C.5次D.6次3、如图,在半径为1的⊙O中,∠AOB=45°,则sinC的值为A. B. C. D.4、下列图案中,既是轴对称图形又是中心对称图形的是()A. B. C. D.5、小明到离家900米的春晖超市卖水果,从家中到超市走了20分钟,在超市购物用了10分钟,然后用15分钟返回家中,下列图形中表示小明离家的时间与距离之间的关系是()A. B. C. D.6、一次函数y=ax﹣a(a≠0)的大致图象是()A. B. C. D.7、不能判定四边形为平行四边形的条件是()A. B. C.D.8、已知整数k使得关于x、y的二元一次方程组的解为正整数,且关于x的不等式组有且仅有四个整数解,则所有满足条件的k的和为()A.4B.9C.10D.129、如图,在矩形ABCD中,AB=6,BC=8,若将矩形折叠,使B点与D点重合,则折痕EF的长为( )A. B. C.5 D.610、对于一次函数y=x+6,下列结论错误的是()A.函数值随自变量增大而增大B.函数图象与x轴正方向成45°角 C.函数图象不经过第四象限 D.函数图象与x轴交点坐标是(0,6)11、在同一平面直角坐标系中,函数与(k为常数,且k≠0)的图象大致是()A. B. C.D.12、如图,四边形ABCD中,AB=CD,对角线AC,BD交于点O,下列条件中,不能说明四边形ABCD是平行四边形的是()A.AD=BCB.AC=BDC.AB∥CDD.∠BAC=∠DCA13、下列叙述中,不正确的是( )A.绝对值最小的实数是零B.算术平方根最小的实数是零C.平方最小的实数是零D.立方根最小的实数是零14、下列四个图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.15、要使代数式有意义,的取值范围是()A. B. C. D.二、填空题(共10题,共计30分)16、已知直角三角形的两边长为3、5,则另一边长是________.17、的倒数________.18、已知点P(a,b)在一次函数y=4x+3的图象上,则代数式4a﹣b的值等于________.19、在平面直角坐标系中,函数y= kx+b的图象如图所示,则________ 0 ( 填“>”、“=”或“<” ) .20、在矩形ABCD中,∠B的角平分线BE与AD交于点E,∠BED的角平分线EF 与DC交于点F,若AB=9,DF=2FC,则BC=________.(结果保留根号)21、如图,矩形ABCD中,AB=8,点E是AD上的一点,有AE=4,BE的垂直平分线交BC的延长线于点F,连结EF交CD于点G.若G是CD的中点,则BC的长是________.22、要使代数式有意义,则的取值范围为________.23、如图,直线y=x+b与直线y=kx+6交于点P(3,5),则关于x的不等式x+b>kx+6的解集是________.24、已知直线y=kx+b经过第一、二、四象限,那么直线y=﹣bx+k经过第________ 象限.25、下列个数:,,其中无理数有________个.三、解答题(共5题,共计25分)26、解不等式组:.27、解不等式组,并写出不等式的正整数解.28、已知x=, y=,且19x2+123xy+19y2=1985.试求正整数n.29、一块试验田的形状如图,已知:∠ABC=90°,AB=4m,BC=3m,AD=12m,CD=13m.求这块试验田的面积.30、如图,在▱ABCD中, BE、DF分别是∠ABC和∠CDA的平分线.求证:四边形BEDF是平行四边形.参考答案一、单选题(共15题,共计45分)1、C2、B3、B4、C5、D6、A8、C9、A10、D11、C12、B13、D14、A15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、23、24、25、三、解答题(共5题,共计25分)26、27、29、30、。
青岛版八年级数学下册期末试卷期末数学试卷一、选择题1.下列二次根式中,是最简二次根式的是(B)。
2.下列命题中的真命题是(A)。
3.实数$\sqrt{2}+\sqrt{3}+\sqrt{5}+\sqrt{7}$(多一个),其中无理数有(C)个。
4.如图,在△ABC中,∠ACB=90°,BC的垂直平分线EF 交BC于点D,交AB于点E,且BE=BF,添加一个条件,仍不能证明四边形BECF为正方形的是(C)。
5.若一个直角三角形的两边长分别为3和4,则它的第三边长为(A)。
6.函数y=-4x-3的图象经过(B)第一、二、四象限。
7.如图,Rt△ABC沿直角边BC所在直线向右平移到Rt△DEF,则下列结论中,错误的是(B)BC=EFC。
8.已知:如图,在矩形ABCD中,E、F、G、H分别为边AB、BC、CD、DA的中点.若AB=2,AD=4,则图中阴影部分的面积为(A)8.9.下列图形中,绕某个点旋转180°能与自身重合的图形有(A)2个:正方形和圆。
10.化简:$\sqrt{a^2}+\sqrt{a^2+4a+4}$的结果是(B)$a+2$。
11.已知关于x的不等式组$x+2>0.2x-1<0$的整数解共有4个,则a的最小值为(D)1.12.已知(-5,y1),(-3,y2)是一次函数y=kx+b图象上的两点,则y1与y2的关系是(A)y1<y2.二、填空题13.若最简二次根式与$\sqrt{a^2+4a+4}$是同类二次根式,则a=(2)。
14.一次函数y=-x-3与x轴交点的坐标是(3,0)。
15.如图,将一根25cm长的细木棒放入长、宽、高分别为8cm、6cm和10cm的长方体无盖盒子中,则细木棒露在盒外面的最短长度是(7)cm。
16.一个图象过点(1,2),且y随x的增大而减小的一次函数解析式可以是y=4-2x。
D、被开方数为2的倍数,且无法化简,符合条件,故D 为正确选项。
xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx 题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:下列各式中,无论x取何实数值,分式都有意义的是()A.B.C.D.试题2:下列四个图形,既是轴对称图形又是中心对称图形的是()A.B.C.D.试题3:已知,a,b两个实数在数轴上的对应点如图,则下列各式一定成立的是()(第3题图)A. a﹣1>b﹣1 B. 3a>3b C.﹣a>﹣b D. a+b>a﹣b试题4:如图,在四边形ABCD中,AB=CD,对角线AC,BD交于点O,下列条件,不能说明四边形ABCD是平行四边形的是()评卷人得分(第4题图)A. AD=BC B. AC=BD C. AB∥CD D.∠BAC=∠DCA试题5:将点A(1,﹣2)先向左平移2个单位长度,再向上平移3个单位长度得到点A′,点A′的坐标为() A.(﹣1,1) B.(﹣1,5) C.(3,1) D.(3,﹣5)试题6:如图,在▱ABCD中,∠B=50°,CE平分∠BCD,交AD于E,则∠DCE等于()(第6题图)A. 25° B. 40° C. 50° D. 65°试题7:如图,在Rt△ABC中,∠C=90°,∠A=30°,DE垂直平分AB.若AD=6,则CD的长等于()(第7题图)A.2 B. 3 C. 4 D. 6试题8:一车间有甲、乙两个工作小组,甲组的工作效率比乙组高25%,因此甲组加工200个零件所用的时间比乙组加工180个零件所用的时间还少30分钟.若设乙组每小时加工x个零件,则可列方程为()A.=30 B.C.D.试题9:如图,在△ABC中,AD平分∠BAC,DE⊥AB于E,S△ABC=15,DE=3,AB=6,则AC长是()(第9题图)A. 7 B. 6 C. 5 D. 4试题10:如图,将△ABC绕顶点A逆时针旋转30°得到△ADE.若此时BC的对应边DE恰好经过点C,且AE⊥AB,则∠B的度数为()(第10题图)A. 30° B. 45° C. 60° D. 75°试题11:分解因式:3a﹣3ab2= .试题12:小明准备用15元钱买笔和笔记本,已知每支笔2元,每本笔记本2.2元,他买了3本笔记本后,最多还能购买支笔.试题13:如图,在Rt△ABC中,∠ACB=90°,D是AB边的中点,连接CD.若AC=3,AB=6,则∠BDC= °.(第13题图)(第14题图)试题14:如图,在▱ABCD中,E是BC延长线上一点,连接AE,DE,若▱ABCD的面积为24,则△ADE的面积为.试题15:不等式的正整数解是.试题16:如图,在△ABC中,D,E分别是AB,AC的中点,F是DE上一点,且AF⊥FC,若BC=9,DF=1,则AC的长为.试题17:如图,在△ABC中,∠ACB=90°,AC=BC=1cm,如果以AC的中点O为旋转中心,将△ABC旋转180°,点B落在点D处,连接BD,那么线段BD的长为cm.试题18:在对多项式x2+ax+b进行因式分解时,小明看错了b,分解的结果是(x﹣10)(x+2);小亮看错了a,分解的结果是(x ﹣8)(x﹣2),则多项式x2+ax+b进行因式分解的正确结果为.试题19:>1;试题20:=1;试题21:解不等式组:.试题22:化简与求值:()试题23:化简与求值:,其中m=.试题24:如图,D是线段AB的中点,AP平分∠BAC,DE∥AC,交AP于E,连接BE,请运用所学知识,确定∠AEB的度数.试题25:如果一个多边形的各边都相邻,且各内角也都相等,那么这个多边形就叫做正多边形.如图,就是一组正多边形,观察每个正多边形中∠α的变化情况,解答下列问题:(第22题图)(1)将下面的表格补充完整:正多边形边数 3 4 5 6 … n∠α的度数 60° 45°…(2)根据规律,是否存在一个正多边形,其中的∠α=21°?若存在,请求出n的值,若不存在,请说明理由.试题26:某市在市政建设过程中需要修建一条是全长4800m的公路,在铺设完成600m后,为了尽量减少施工对城市交通造成的影响,该工程队增加人力,每天铺设公路的长度是原来的2倍,结果9天完成了全部施工任务,求该施工队原来每天能铺设公路的长度.试题27:为了防控流行病毒传播,某学校积极进行校园环境消毒,计划购买甲、乙两种消毒液.已知每瓶乙种消毒液的价格是甲种消毒液的1.5倍,且用120元单独购买甲种消毒液的数量比单独购买乙种消毒液的数量多5瓶.(1)求每瓶甲种消毒液的每瓶的价格分别是多少元.(2)已知该学校计划用不超过1300元购买消毒液,且使乙瓶消毒液的数量是甲种消毒液的2倍,该学校最多能购买甲种消毒液多少瓶?试题28:如图,P是△ABC的边AB上一点,连接CP,BE⊥CP于E,AD⊥CP,交CP的延长线于D,试解答下列问题:(1)如图①,当P为AB的中点时,连接AE,BD,证明:四边形ADBE是平行四边形;(2)如图②,当P不是AB的中点时,取AB中点Q,连接QD,QE,证明:△QDE是等腰三角形.试题1答案:D 解析: A、x=﹣1时,x+1=0,分式无意义,故此选项错误;B、x=1时,x﹣1=0,分式无意义,故此选项错误;C、x=0时,分式无意义,故此选项错误;D、无论x取何实数值,分式都有意义,故此选项正确;故选:D.试题2答案:D 解析: A、不是轴对称图形,是中心对称图形.故错误;B、不是轴对称图形,是中心对称图形.故错误;C、不是轴对称图形,是中心对称图形.故错误;D、是轴对称图形,也是中心对称图形.故正确.故选D.试题3答案:C 解析:根据图示,可得a<b<0,∵a<b,∴a﹣1<b﹣1,∴选项A不正确;∵a<b,∴3a<3b,∴选项B不正确;∵a<b,∴﹣a>﹣b,∴选项C正确;∵a<b<0,∴b<﹣b,∴a+b<a﹣b,∴选项D不正确.故选:C.试题4答案:B 解析:A、∵AB=CD,AD=BC,∴四边形ABCD是平行四边形,故该选项不符合题意;B、∵AB=CD,AC=BD,∴不能说明四边形ABCD是平行四边形,故该选项符合题意;C、∵AB=CD,AB∥CD,∴四边形ABCD是平行四边形,故该选项不符合题意;D、∵AB=CD,∠BAC=∠DCA,AC=CA,∴△ABC≌△ACD,∴AD=BC,∴四边形ABCD是平行四边形,故该选项不符合题意.故选B.试题5答案:.A 解析:原来点的横坐标是1,纵坐标是﹣2,向左平移2个单位长度,再向上平移3个单位长度得到新点的横坐标是1﹣2=﹣1,纵坐标为﹣2+3=1,即为(﹣1,1).故选A.试题6答案:D 解析:∵四边形ABCD是平行四边形,∴AD∥BC,∠B=∠C=50°,∴∠DEC=∠ECB∵CE平分∠BCD交AD于点E,∴∠DCE=∠BCE,∴∠DEC=∠DCE,∴=65°.故选D.试题7答案:B 解析:连接BD,∵DE垂直平分AB,AD=6,∴BD=AD=6,∠DBA=∠A=30°,∵∠C=90°,∠A=30°,∴∠CBA=60°,∴∠CBD=30°,∴CD=BD=3,故选:B.试题8答案:D 解析:设乙组每小时加工x个零件,由题意得:﹣=.故选:D.试题9答案:D 解析:∵DE=3,AB=6,∴△ABD的面积为,∵S△ABC=15,∴△ADC的面积=15﹣9=6,∵AD平分∠BAC,DE ⊥AB于E,∴AC边上的高=DE=3,∴AC=6×2÷3=4,故选D.试题10答案:B 解析:由旋转的性质,得△ADE≌△ABC,∴AE=AC,∠D=∠B,∠EAC=∠DAB=30°,∴∠E=∠ACE=(180°﹣30°)=75°,∵AE⊥AB,∴∠EAB=90°,∴∠CAD=90°﹣30°﹣30°=30°,∴∠D=∠ACE﹣∠CAD=75°﹣30°=45°,∴∠B=45°;故选:B.试题11答案:3a(1+b)(1﹣b)解析:原式=3a(1﹣b2)=3a(1+b)(1﹣b).试题12答案:4 解析:设还能购买x支笔,由题意得,2x+2.2×3≤15,解得:x≤4.2.试题13答案:120°解析:∵∠ACB=90°,AC=3,AB=6,∴∠B=30°,∵∠ACB=90°,点D是AB边的中点,∴DC=DB,∴∠DCB=∠B=30°,∴∠BDC=180°﹣30°﹣30°=120°.试题14答案:12 解析:∵四边形ABCD是平行四边形,∴AD∥BC,∴AD和BC之间的距离相等,∵▱ABCD的面积=AD•h=24,△ADE 的面积=AD•h,∴△ADE的面积=▱ABCD的面积=12.试题15答案:1,2,3,4 解析:去分母,得3(x﹣2)≤2(7﹣x),去括号得:3x﹣6≤14﹣2x,移项,得3x+2x≤14+6,5x≤20,x≤4,即不等式的正整数解是1,2,3,4.试题16答案:7 解析:∵D,E分别是AB,AC的中点,∴DE=BC=4.5,∵DF=1,∴EF=3.5,∵AF⊥FC,∴△AFC是直角三角形,∵E是AC的中点,∴EF=AC,∴AC=7.试题17答案:解析:如图,∵∠C=90°,AC=BC=1cm,O为AC的中点,∴OB=,∵根据旋转的性质可知,点B与D重合,∴BD=2OB=cm.试题18答案:(x﹣4)2解析:根据题意,得a=﹣8,b=16,则原式=x2﹣8x+16=(x﹣4)2.试题19答案:去分母,得2x+3(x﹣3)>6,去括号,得2x+3x﹣9>6,移项得,2x+3x>6+9,合并同类项,得5x>15,把x的系数化为1,得x>3.试题20答案:去分母,得x2﹣2x+2=x2﹣x,移项合并,得﹣x=﹣2,解得x=2,经检验x=2是分式方程的解.试题21答案:解不等式①,得x≥﹣1.解不等式②,得x<3.∴原不等式组的解集是﹣1≤x<3.试题22答案:原式=•=a+3;试题23答案:原式=÷=•=,当m=+1时,原式=.试题24答案:解:∵AP平分∠BAC,∴∠CAE=∠BAE.∵DE∥AC,∴∠CAE=∠AED,∴∠AED=∠BAE,即AD=DE.∵点D是线段AB的中点,∴AD=DE=AB,∴∠AEB=90°.试题25答案:解:(1)观察上面每个正多边形中的∠α,填写下表:正多边形边数 3 4 5 6 … n∠α的度数 60° 45° 36° 30°…()°(3)不存在,理由如下:设存在正n边形使得∠α=21°,得∠α=21°=()°.解得n=8,n是正整数,n=8(不符合题意要舍去),不存在正n边形使得∠α=21°.试题26答案:解:设施工队原来每天能铺设公路xm,由题意,得+=9,解得x=300,经检验:x=300是分式方程的解,答:施工队原来每天能铺设公路300m.试题27答案:解:(1)设每瓶甲种消毒液的每瓶的价格是x元,每瓶乙种消毒液的价格是1.5x元,由题意,得﹣=5,解得x=8,经检验:x=8是原分式方程的解,且符合题意.答:每瓶甲种消毒液的每瓶的价格各是8元;(2)设能购进y瓶甲种消毒液,根据题意,得8y+1.5×8y×2≤1300,解得:y≤40,答:甲种消毒液最多能购40瓶.试题28答案:证明:(1)∵P为AB中点,∴AP=BP.∵BE⊥CP,AD⊥CP,∴∠ADP=∠BEP=90°.在△ADP和△BEP中,∴△ADP≌△BEP(AAS),∴DP=EP,∴四边形ADBE是平行四边形.(2)如图②,延长DQ交BE于F.∵AD∥BE,∴∠DAQ=∠BFQ,在△ADQ和△BFQ中,,∴△ADQ≌△BFQ(AAS),∴DQ=QF.∵BE⊥DC,∴QE是直角三角形DEF斜边上的中线,∴QE=QF=QD,即DQ=QE,∴△QDE是等腰三角形.。
青岛版八年级下册数学期末测试卷及含答案一、单选题(共15题,共计45分)1、下列计算正确的是()A.(x 2)3=x 5B. =3C.x 2+x 2=x 4D.3x•3x 2=6x 32、如图,已知矩形A′BOC的边长A′B=2,OB=1,数轴上点A表示的数为x,则x2﹣13的立方根是()A. ﹣13B.﹣﹣13C.2D.﹣23、如图,直径AB为3的半圆,绕A点逆时针旋转60°,此时点B到了点B′处,则图中阴影部分的面积是()A.3πB.C.6πD.24π4、下列说法正确的是()A.0的平方根是0B.(﹣3)2的平方根是﹣3C.1的立方根是±1 D.﹣4的平方根是±25、已知一个菱形的周长是,两条对角线的比是4:3,则这个菱形的面积是()A. B. C. D.6、如图,直径为10的⊙A经过点C(0,5)和点O(0,0),点B是y轴右侧⊙A上一点,则cos∠OBC的值为( )A. B. C. D.7、如图,在. ,分别以点B和点C为圆心,大于的长为半径作弧,两弧相交于D、E两点,作直线交于点F,交于点G,连接,,,则的长为()A.4B.5C.6D.78、如图,函数y=2x-4与x轴.y轴交于点(2,0),(0,-4),当-4<y<0时,x的取值范围是()A.x<-1B.-1<x<0C.0<x<2D.-1<x<29、如图,直角三角形ABC的内切圆分别与AB,BC相切于D点、E点,根据图中标示的长度与角度,求AD的长度为何?()A. B. C. D.10、若一个数的平方根等于它本身,则这个数是( )A. B.1 C. 或1 D. 或11、我国古代数学家赵爽“的勾股圆方图”是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形(如图所示),如果大正方形的面积是25,小正方形的面积是1,直角三角形的两直角边分别是a、b,那么(a+b)2的值为().A.49B.25C.13D.112、下列运算正确的是()A. B. C. D.13、如图,A、B、C三点在正方形网格线的交点处,若将△ABC绕着点A逆时针旋转得到△AC′B′,则tanB′的值为()A. B. C. D.14、如图,EF是△ABC的中位线,将△AEF沿中线AD方向平移到△A1E1F1的位置,使E1F1与BC边重合,已知△AEF的面积为7,则图中阴影部分的面积为()A.7B.14C.21D.2815、王小红居住的小区内有一条笔直的小路,小路的正中间有一路灯:王小红由A处匀速直行到B处(如图所示),她与路灯的距离S与行走的时间t之间的变换关系用图象刻画出来:大致图象是()A. B. C. D.二、填空题(共10题,共计30分)16、已知等腰三角形的腰长为10,一腰上的高为6,则以底边为边长的正方形的面积为________.17、计算:=________.18、一个平行四边形的一边长是3,两条对角线的长分别是4和,则此平行四边形是________形。
青岛版八年级下册数学期末测试卷
一、单选题(共15题,共计45分)
1、不等式组的解集在数轴上表示为()
A. B. C. D.
2、如图,在平面直角坐标系xOy中,平行四边形OABC的顶点O(0,0),B (3,2),点A在x轴的正半轴上.按以下步骤作图:①以点O为圆心,适当长度为半径作弧分别交边OA、OC于点M、N;②分别以点M、N为圆心,大于
MN的长为半径作弧,两弧在∠AOC内交于点P;③作射线OP,恰好过点B,
则点A的坐标为()
A.(,0)
B.(,0)
C.(,0)
D.(2,0)
3、不等式组的解集在数轴上表示正确的是()
A. B. C. D.
4、如图,已知△ABC中,AB=6,AC=8,AD⊥BC于D,M为AD上任一点,则MC2-MB2等于()
A.28
B.36
C.45
D.52
5、如图所示,中,,将绕点A按顺时针方向旋转50°,得到,则的度数是()
A.13°
B.17°
C.23°
D.33°
6、如图,为半径,点为中点,为上一点,且
,若,则的长为()
A. B. C. D.
7、下列各式中正确的是()
A. =±2
B. =-3
C. =2
D. =3
8、若式子有意义,则x的取值范围是()
A. x≤2
B. x≥1
C. x≥2
D.1≤ x≤2
9、若a、b为实数,且-b=5,则直线y=ax-b不经过的象限是()
A.第一象限
B.第二象限
C.第三象限
D.第四象限
10、在中,,两直角边,,在三角形内有一点到各边的距离相等,则这个距离是()
A.1
B.2
C.3
D.4
11、在下列实数,π﹣3.14,3.14,,0.2 ,中无理数有
()
A.1个
B.2个
C.3个
D.4个
12、如图1,在矩形MNPQ中,动点R从点N出发,沿着N→P→Q→M方向运动
至点M处停止,设点R运动的路程为x,△MNR的面积为y,如果y关于x的函
数图象如图2所示,则下列说法不正确的是()
A.当x=2时,y=5
B.矩形MNPQ的面积是20
C.当x=6时,
y=10 D.当y= 时,x=10
13、在同一坐标系中,函数y= 和y=kx+1的图象大致是()
A. B. C. D.
14、如图,八个完全相同的小长方形拼成一个正方形网格,连结小长方形的顶
点所得的四个三角形中是相似三角形的是()
A.①和②
B.②和③
C.①和③
D.①和④
15、下列计算正确的是()
A. B. C. D.
二、填空题(共10题,共计30分)
16、如图,四边形AOBC和四边形CDEF都是正方形,边OA在x轴上,边OB在y轴上,点D在边CB上,反比例函数(k>0)在第一象限的图象经过点E,若正方形AOBC和正方形CDEF的面积之差为6,则k=________.
17、正方形ABCD的边长为1,如果将线段BD绕着点B旋转后,点D落在BC延
长线上的点D
1处,那么tan∠BAD
1
=________
18、若关于x的方程=3的解为非负数,则m的取值范围是
________.
19、若实数a、b满足,则=________.
20、如图,在中,,,点D在边上,
,将沿直线翻折,使点C落在边上的点E处,若点P 是直线上的动点,则的周长的最小值是________.
21、一直角三角形斜边上的中线等于5,一直角边长是6,则另一直角边长是________.
22、计算:(-1)2019-(-2)0=________.
23、如图,正方形ABCD的边长为10,点A的坐标为(-8,0),点B在y轴上,若反比例函数的图象过点C,则反比例函数的解析式为
________ .
24、已知实数x在数轴上表示为如图所示,化简
=________.
25、如图是由边长为1m的正方形地砖铺设的地面示意图,小明沿图中所示的折线从A⇒B⇒C所走的路程为________m.
三、解答题(共5题,共计25分)
26、计算:
27、如图,在△ABC中,AD是BC边的中线,E是AD的中点,过A点作
AF∥BC交BE的延长线于点F,连结CF.试说明:四边形ADCF是平行四边形.
28、如图,,,,,
是直线上一动点,请你探索:当点离点多远时,是一个以为斜边的直角三角形?
29、如图,在平面直角坐标系中,每个小正方形的边长为1cm,△ABC各顶点都在格点上,点A,C的坐标分别为(﹣1,2)、(0,-1),结合所给的平面直角坐标系解答下列问题:
(1)AC的长等于多少?
的坐(2)画出△ABC向右平移2个单位得到的△,求A点的对应点A
1
标。
(3)将△ABC绕点C按逆时针方向旋转90°,画出旋转后的△,求A 的坐标。
点对应点A
2
30、如图,有一个圆柱,它的高等于12 cm,底面半径等于3 cm,在圆柱的底面A点有一只蚂蚁,它想吃到上底面上与A点相对的B点的食物,需要爬行的最短路程是多少?(π取3)
参考答案
一、单选题(共15题,共计45分)
2、A
3、B
4、A
5、B
6、D
7、D
8、D
9、D
10、B
11、B
12、D
13、A
14、D
15、C
二、填空题(共10题,共计30分)
16、
17、
18、
19、
20、
21、
23、
24、
25、
三、解答题(共5题,共计25分)
26、
27、
28、
30、。