塑性变形力学基础
- 格式:pptx
- 大小:883.86 KB
- 文档页数:45
塑性变形的力学基础录入: 151dreamhow 来源: 日期: 2008-2-6,10:14金属成形时,外力通过模具或其它工具作用在坯料上,使其内部产生应力,并且发生塑性变形。
由于外力的作用状况坯料的尺寸与模具的形状千差万别,从而引起材料内各点的应力与应变也各不相同。
因此必须研究变形体内各点的应力状态、应变状态以及产生塑性变形时各应力之间的关系与应力应变之间的关系。
一、点的应力与应变状态在变形物体上任意点取一个微量六面单元体,该单元体上的应力状态可取其相互垂直表面上的应力来表示,沿坐标方向可将这些应力分解为九个应力分量,其中包括三个正应力和六个剪应力,如图 1a 所示。
相互垂直平面上的剪应力互等,t xy=t yx,t yz=t zy,t zx=t xz。
因此若已知三个正应力和三个剪应力,那么该点的应力状态就可以确定了。
改变坐标方位,这六个应力分量的大小也跟着改变。
对任何一种应力状态,总是存在这样一组坐标系,使得单元体各表面上只有正应力而无剪应力,如图 1b 所示。
这三个坐标轴就称应力主轴,三个坐标轴的方向称主方向,这三个正应力就称为主应力,三个主应力的作用面称为主平面。
图1 点的应力状态a)任意坐标系b)主轴坐标系三个主方向上都有应力存在称为三向应力状态,如宽板弯曲变形。
但板料大多数成形工序,沿料厚方向的应力s t与其它两个互相垂直方向的主应力(如径向应力s r与切向应力s q)相比较,往往很小,可以忽略不计,如拉深、翻孔和胀形变形等,这种应力状态称为平面应力状态。
三个主应力中只有一个有值,称为单向应力状态,如板料的内孔边缘和外形边缘处常常是自由表面,s r、s t为零。
除主平面不存在剪应力之外,单元体其它方向上均存在剪应力,而在与主平面成45°截面上的剪应力达到极值时,称为主剪应力。
s1≥s2≥s3时,最大剪应力为t=±(s1一s3)/2,最大剪应力与材料的塑性变形关系很大。
第一章塑性变形的力学基础1、塑性加工时所受的外力金属在发生塑性变形时,作用在变形物体上的外力有两种:作用力和约束反力。
第二讲塑性变形的力学基础返回首页2、作用力通常把压力加工设备可动工具部分对变形金属所作用的力叫作用力或主动力。
用实际例子加以说明:(1)锻压时锤头对工件的压力(图1-1a中之P);(2)挤压加工时活塞对金属推挤的压力(图1-1b中之P);(3)拉拔加工时,工件所承受的拉力(图1-1c中之P)。
图1-1 基本压力加工过程的受力图和应力状态图(a)镦粗;(b)挤压;(c)拉拔;(d)轧制3、约束反力工件在主动力的作用下,其运动将受到工具阻碍而产生变形。
金属变形时,其质点的流动又会受到工件与工具接触面上摩擦力的制约,因此工件在主动力的作用下,其整体运动和质点流动受到工具的约束时就产生约束反力。
这样,在工件和工具的接触表面上的约束反力就有正压力和摩擦力。
(1)正压力沿工具和工件接触表面法线方向阻碍工件整体移动或金属流动的力,它的方向和接触面垂直,并指向工件,如图1-1中之N。
(2)摩擦力沿工具和工件接触面切线方向阻碍金属流动的力,它的方向和接触面平行,并与金属质点流动方向和流动趋势相反。
如图1-1中之T。
4、轧制压力轧件对轧辊总的正压力和摩擦力的合力值等于轧辊对轧件的总压力,我们把轧件对轧辊总压力的垂直分力叫轧制压力,也就是轧机压下螺丝承受的力。
5、内力的概念和内力产生的原因(1)内力的概念:当物体在外力作用下,并且物体的运动受到阻碍时,为了平衡外力而在物体内部产生的力叫内力(2)内力产生的原因:为了平衡外部的机械作用所产生的内力。
在生产加工(轧制)过程中,由于不均匀变形、不均匀加热或冷却(物理过程)及金属内的相变(物理-化学过程)等,都可以促使金属内部产生内力。
6、应力、应力集中(1)应力的概念:内力的强度称为应力,或者说是内力的大小以应力来度量,即以单位面积上所作用的内力大小表示之。
弹塑性力学基础理论与应用弹塑性力学是力学中一个重要的分支,涵盖了弹性力学和塑性力学的基本原理和应用。
本文将简要介绍弹塑性力学的基础理论和一些应用领域。
一、弹塑性力学的基础理论1. 弹性力学理论弹性力学研究材料在外力作用下的弹性变形及其恢复过程。
根据胡克定律,应力与应变成正比。
弹性力学理论通过应力张量与应变张量之间的关系描述了弹性材料的力学行为。
弹性模量是弹性力学的重要参数,表征了材料的刚度。
2. 塑性力学理论塑性力学研究材料在超过弹性极限后的变形行为。
当外力超过材料的弹性极限时,材料会发生塑性变形,而不是立即恢复到原来的形状。
塑性力学理论包括弹塑性本构方程的建立和塑性流动规律的描述。
3. 弹塑性力学理论弹塑性力学是弹性力学和塑性力学的综合应用。
它考虑了材料在弹性和塑性行为之间的转换。
在某些情况下,材料可以同时表现出弹性和塑性特性。
弹塑性力学理论利用不同的本构关系来描述材料在变形过程中的不同阶段。
二、弹塑性力学的应用1. 材料工程弹塑性力学在材料工程领域中具有重要的应用价值。
通过研究材料的弹性行为和塑性行为,可以确定材料的强度、韧性和耐久性,从而指导材料的选用和设计。
在材料的加工过程中,弹塑性力学理论也可以用于模拟和预测材料的变形行为。
2. 结构工程在结构设计和分析中,弹塑性力学也发挥着重要作用。
结构的承载能力和变形行为与材料的弹性和塑性特性密切相关。
通过考虑弹塑性行为,可以更准确地评估结构的安全性和稳定性。
3. 土木工程土木工程中的地基和土壤材料往往存在复杂的弹塑性特性。
弹塑性力学可用于分析土壤的沉降和变形行为,以及地基的稳定性。
在岩土工程中,弹塑性力学理论也可以用于分析岩土体的稳定性和变形行为。
4. 金属加工金属的塑性变形是金属加工过程中的核心问题。
弹塑性力学理论可以用于研究金属的屈服和流动行为,从而指导金属的模具设计和加工工艺的优化。
总结:弹塑性力学是力学中的一个重要分支,它综合了弹性力学和塑性力学的基础理论与应用。
"塑性变形力学基础与轧制原理"参考书:"塑性变形力力学基础及轧制及原理"曹鸿德等主编,机械工业出版社。
学生应掌握的主要内容:点的应力状态的张量性质:已知主方向和主应力,求斜面应力:画出主应力图示;写出主应力平面的方向余弦,主切应力平面的法应力,主切应力;什么是八面体平面,写出八面体平面法向应力及剪应力分式:写出平衡微分方程式;推导体积应力及不可压缩性条件,画出主应变图示:试述均匀变形的定义和特点,对数应变系数和条件应变系数的关系;试述塑性表面的概念;试述最大剪应力等于常值的塑性条件,写出公式:试述单位弹性形态改变势能等于常值的塑性条件,写出公式:试述两个塑性条件的差别和联系。
试述平面问题的概念,写出平面问题的方程式:如何选定滑移线的参变量和确定滑移线的方向,对简单的实际问题能给出滑移线的正方向:推导汉基积分(4一17)式及(4一18)式:试述滑移线的几何性质;证明汉基第一定理(画图):画出窄锤头冲压厚板时的滑移线场,并求解单位压力 P;试述何为几何可能位移和静力可能的屈服应力状态;求各种典型压力加工情况的上限解。
试述在平面镦粗和轧制时的单位摩擦力的分布规律;推导卡尔曼近似平衡微分方程式(6-46)及单位压力基本平衡微分方程式(4-49)并分析求解此方程式的基本方法;推导奥洛万近似的平衡微分方程式(6 -69);画图说明各种因素对单位压力的影响;导出计算咬入角及变形区长度的公式;试述中性角的概念;前滑的概念及前滑公式,如何测定前滑系数;写出轧件的工程常用变形系数;试述位移体积的概念及导出其表达式,导出以对数变形系数表示的体积不变条件;简述变形抗力的概念;简述各种因素对变形抗力的影响,了解强化强度,变形速度的概念;试述滑动摩擦的种类及概念,基本滑动摩擦机理;导出斯通公式;阐述轧机传动力矩的组成及概念;画图说明在简单轧制,带张力轧制及单辊传动时金属对轧辊作用力的方向。
工程力学对塑性变形的分析与控制研究引言:工程力学是研究物体在外力作用下的运动和变形规律的学科,塑性变形是物体在外力作用下发生形状和尺寸的不可逆变化。
本文将探讨工程力学对塑性变形的分析与控制研究,旨在深入了解塑性变形的机理以及如何通过工程手段来控制和减小塑性变形。
一、塑性变形的机理分析塑性变形是物体在外力作用下由于原子、分子之间的相对位移而发生的不可逆变形。
塑性变形的机理主要包括滑移和位错运动两个方面。
1. 滑移机制滑移是指晶体中某些晶面上的原子或离子在外力作用下沿着晶体内部的特定方向滑动,从而引起晶格的变形。
滑移机制是塑性变形最主要的机制之一,它使得晶体内部的应力集中在滑移面上,从而导致塑性变形的发生。
2. 位错运动机制位错是晶体中的一种缺陷,它是晶体中原子排列的不规则性,即晶体中某些晶面上的原子排列与其他晶面上的原子排列不匹配。
外力作用下,位错会发生运动,从而引起塑性变形。
位错运动机制在晶体中起到了重要的作用,是塑性变形的另一个重要机制。
二、工程力学在塑性变形分析中的应用工程力学是研究物体在外力作用下运动和变形规律的学科,它在塑性变形分析中起到了重要的作用。
工程力学可以通过应力分析、变形分析等方法来研究塑性变形的发生和发展规律。
1. 应力分析应力是物体内部各点对外力的反应,它是塑性变形分析的基础。
通过应力分析,可以确定物体在外力作用下的应力分布情况,从而了解塑性变形的发生位置和程度。
2. 变形分析变形是物体在外力作用下的形状和尺寸的变化,通过变形分析可以了解物体在外力作用下的变形规律,从而揭示塑性变形的机理和特点。
三、工程力学在塑性变形控制中的应用塑性变形是一种不可逆变形,对于某些工程结构来说,过大的塑性变形可能会导致结构的破坏。
因此,控制和减小塑性变形是工程力学研究的重要方向之一。
1. 材料选择材料的选择对于控制塑性变形非常重要。
一些高强度、高硬度的材料具有较高的抗塑性变形能力,可以在外力作用下保持较小的变形。
一般力学与力学基础的弹塑性分析方法弹塑性分析方法是一般力学和力学基础中重要的研究领域之一。
本文将介绍弹塑性分析方法的基本概念、应用领域以及常用的数学模型和计算方法。
一、弹塑性分析方法的基本概念弹塑性分析方法是一种综合运用弹性力学和塑性力学理论的方法,用于描述材料在外力作用下的弹性变形和塑性变形过程。
在弹塑性分析中,材料会先发生弹性变形,当应力达到一定临界值时,开始发生塑性变形。
弹塑性分析方法可以更准确地预测材料的变形和破坏行为。
二、弹塑性分析方法的应用领域弹塑性分析方法广泛应用于工程结构、土力学、岩石力学等领域。
例如,在工程结构的设计中,使用弹塑性分析方法可以预测结构在外载荷作用下的变形和破坏行为,从而确定结构的合理尺寸和材料强度要求。
在土力学和岩石力学中,弹塑性分析方法可以用于预测土体和岩石的变形和破坏特性,为工程施工和地质灾害的预测提供依据。
三、弹塑性分析的数学模型弹塑性分析方法使用了多种数学模型来描述材料的力学行为。
其中常用的模型包括线性弹性模型、单一参数塑性模型和本构模型等。
1. 线性弹性模型:线性弹性模型假设材料的应力与应变之间呈线性关系,常用于描述小应变范围内的材料行为。
2. 单一参数塑性模型:单一参数塑性模型假设材料的塑性行为由一个参数来描述,常用于描述中等应变范围内的材料行为。
3. 本构模型:本构模型是更为复杂的数学模型,可用于描述广泛的材料行为。
常见的本构模型包括弹塑性本构模型、弹塑性本构模型、弹粘塑性本构模型等。
四、弹塑性分析的计算方法弹塑性分析方法使用了多种计算方法来求解材料的变形和应力分布。
其中常用的计算方法包括有限元法、边界元法和等。
这些方法可以将实际结构离散成有限个子区域,通过求解子区域的变形和应力,得到整个结构的变形和应力分布。
这些计算方法具有高精度和较强的通用性,广泛应用于工程和科学研究领域。
综上所述,弹塑性分析方法是一般力学和力学基础中重要的研究领域,用于描述材料在外力作用下的弹性变形和塑性变形过程。