岩土塑性力学简介(3)
- 格式:ppt
- 大小:1.35 MB
- 文档页数:31
岩土弹塑性力学1 塑性屈服准则在组合应力状态下,材料所服从的屈服准则一般用下式表示:()0=ij f σ (1)函数f 的特定形式是与材料有关的,其含有若干个材料常数。
根据材料塑性准则是否与静水压力有关,可以将材米分为两类:与静水压力无关材料和与静水压力相关材料,这两类材料一般分别称为无摩阻材料和摩阻材料。
通常情况下金属材料属于静水压力无关材料,而土、岩石、混凝土等地质材料属于与静水压力相关材料。
与静水压力不相关的材料是由剪切力控制着它的屈服,在工程中一般采用Tresca 准则和von Mises 屈服准则,而与静水压力相关的材料一般采用最大拉应力准则、Mohr-Coulomb 准则和Drucker-Prager 准则。
下面就开始讨论这些塑性屈服准则。
1.1 Tresca 屈服准则Tresca 准则于1864年提出,该屈服准则假定,当一点的最大剪应力达到极限值则发生屈服。
以主应力表达这一准则,则在屈服时三个主应力两两之差值绝对值的一半中的最大值达到k ,这上准则的数学表达式为:k =⎪⎭⎫ ⎝⎛---13322121,21,21max σσσσσσ (2) 如果材料常数k 由单轴试验确定,则可以得下述关系20σ=k (3)其中,0σ为单轴加载屈服应力。
为了以图形表示二维空间中的屈服曲线形状,假定一双轴应力状态,其中仅1σ和2σ为非零,在1σ轴和第一区间两轴角平分线间的应力顺序为021>>σσ,所以,由式(2)可以导出k =21σ 或 01σσ= (4) 在21σσ-坐标系中绘出服从Tresca 准则的屈服轨迹(图1)。
利用主应力与应力不变量之间的关系,可将式(2)变换为02)31s i n (2),(22=-+=k J J f πθθ ( 600≤≤θ) (5) 式中,式中θ成为相似角或Lode 角。
Tresca 准则与1I 无关,暗示不依赖于静水压力。
由于Tresca 准则与1I 无关,故可将屈服面演绎成主应力空间的规则平行六面棱柱体(图2),它就是Tresca 准则屈服图形。
岩土塑性力学分析1、前言多数岩土工程都处于弹塑性状态,因而岩土塑性在岩土工程的设计中至关重要。
早在1773年Coulomb提出了土体破坏条件,其后推广为Mohr— Coulomb 条件。
1857年Rankine研究了半无限体的极限平衡,提出了滑移面概念。
1903年Kotter建立了滑移线方法。
Felenius(1929)提出了极限平衡法。
以后Terzaghi、Sokolovski又将其发展形成了较完善的岩土滑移线场方法与极限平衡法。
1975 年,W.F.Chen在极限分析法的基础上又发展了土的极限分析法,尤其是上限法。
不过上述方法都是在采用正交流动法则的基础上进行的。
滑移线法与极限分析法只研究力的平衡,未涉及土体的变形与位移。
[1]20世纪50年代开始,人们致力于岩土本构模型的研究,力求获得岩土塑性的应力一应变关系,再结合平衡方程与连续方程,从而求解岩土塑性问题。
由此,双屈服面与多重屈服面模型l1-41、非正交流动法则在岩土本構模型中应运而生。
真正的土力学必须建立在符合土本身特性的本构模型的基础上,而本构模型的建立必须有符合岩土材料变形机制的建模理论。
岩土塑性力学是一门新兴学科,也是建立岩土本构模型的基础。
[2-4]2、土木工程材料本构方程综述土木工程材料的本构行为一直工程技术界和力学学术界关注的焦点之一,其研究热度之所以长盛不衰,一方面是由于它涉及工程的安全性,事关重大;另一方面是因其机理复杂、个性突出,极富挑战性。
[5]土体本构关系比金属材料更加复杂,在本构分析时,更加需要强化试验测试和理论研究、科学的确定材料参数、合理的构建实用的本构模型,并通过现场测试的验证使其不断完善。
土的非线性弹性本构模型有两个具有代表性:一个是国内土工界常用的Duncan-Chang模型(1970.1980),另一个是计入球张量和偏张量交叉效应的沈珠江模型(1986)。
土的弹塑性本构分析和建模既要置于弹塑性理论框架之内,又要紧密结合土体工程实际,突出其主要特性,反映其个性特征。
岩土塑性力学读书报告本学期我们学习了弹塑性力学这一课程,在刘老师的讲解和自学的过程中学习到了不少弹塑性力学的基础知识。
我们是岩土工程专业的学生,弹塑性力学知识相当重要,是后续课程的基础,由于专业的实用性,我们阅读了郑颖人、孔亮编著的《岩土塑性力学》一书。
这本书将不少弹塑性力学的基础知识运用到岩土工程中,从弹塑性力学的角度来理解岩土这种特殊介质的力学性质,阅读之后让我受益匪浅。
以下是我阅读本书后的一些总结。
一、岩土材料的特点岩土塑性力学与传统塑性力学的区别在于岩土类材料和金属材料具有不同的力学特性。
岩土类材料是颗粒组成的多相体,而金属材料是人工形成的晶体材料。
正是由于不同的材料特性决定了岩土类材料和金属材料的不同性质。
归纳起来,岩土材料有3点基本特性:1.摩擦特性。
2.多相特性。
3.双强度特性。
另外岩土还有其特殊的力学性质:1.岩土的压硬性,2.岩土材料的等压屈服特性与剪胀性,3.岩土材料的硬化与软化特性。
4.土体的塑性变形依赖于应力路径。
二、岩土塑性力学的基本假设由于塑性变形十分复杂,因此无论传统塑性力学还是岩土塑性力学都要做一些基本假设,只不过岩土塑性力学所做的假设条件比传统塑性力学少些,这是因为影响岩土材料塑性变形的因素较多,而且这些因素不能被忽视和简化。
下列两点假设不论是传统塑性力学还是广义塑性力学都必须服从:(1)忽略温度与实践影响及率相关影响的假设。
(2)连续性假设。
岩土塑性力学与传统塑性力学不同点:(1)岩土材料的压硬性决定了岩土的剪切屈服与破坏必须考虑平均应力和岩土材料的内摩擦。
(2)传统塑性力学只考虑剪切屈服,而岩土塑性力学不仅要考虑剪切屈服,还要考虑体积屈服。
(3)根据岩土的剪胀性,不仅静水压力可能引起塑性体积变化,而且偏应力也可能引起体积变化;反之,平均应力也可能引起塑性剪切变形。
(4)传统塑性力学中屈服面是对称的,而岩土材料的拉压不等,而使屈服面不对称,如岩土的三轴拉伸和三轴压缩不对称。
岩土塑性力学学习笔记
1.压硬性的理解:在一定范围内,岩土抗剪强度和刚度随压应力的
增大而增大。
这是因为岩土由颗粒材料堆积或胶结而成,属于摩擦型材料,因而它的抗剪强度与内摩擦角及压应力有关,而金属材料不具有这种特性,抗剪强度与压应力无关。
所以在岩土塑性力学里有压硬模量,即体应力影响剪切刚度,进而产生附加的剪切塑性应变。
2.剪胀性(剪缩性)的理解:与金属材料不同,岩土的体应变与剪
应力有关,即在剪应力作用下会产生塑性体应变(膨胀或收缩),所以岩土塑性力学里有剪缩模量。
剪缩性一般发生在应力-应变前期,剪胀一般发生在临近峰值强度阶段和软化阶段,个别没有软化阶段的硬化材料在硬化阶段也会产生剪胀。
正是根据岩土材料的剪胀和剪缩特征,分为三类:(1)压缩型,如松砂、正常固结土;(2)硬化剪胀型,如中密砂、弱超固结土;(3)软化剪胀型,如岩石、密砂与超固结土。
岩土塑性力学的理论基础——广义塑性力学原理郑颖人刘元雪( 解放军后勤工程学院,重庆400041)Theoretical Bases of Geotechnical Plastic Mechanic—s—Principle ofGeneralized Plastic MechanicsZheng Yingren,Liu Yuanxue(Logistical Engieering University of PLA, Chongqing 400041)摘要实验表明,经典塑性力学难以反映岩土材料的变形机制,究其原因在于经典塑性力学作了传统塑性势假设、关联流动法则假设与不考虑应力主轴旋转的假设。
广义塑性力学就是放弃这些假设,由固体力学原理直接导出塑性公式,它既适用于岩土材料,也适用于金属。
关键词塑性力学塑性势屈服面应力主轴旋转Abstract Experiments show, the classic plastic mechanics is difficult to reflect the real deformation mechanism of geometerials, the reason is that the classic plastic mechanics is based on the hypothesis of the traditional potential theory, the hypothesis of the associated flow rule and the hypothesis of not considering rotation of stress principal axes. The generalized plastic mechanics gives up all these hypothesises and gets all its plastic formulas from solid mechanics directly, so it can be used for both geomaterials and metal.Key words plastic mechanics plastic potential yield surface rotation of stress principal axes1 经典塑性力学与岩土变形机制的矛盾岩土属于摩擦材料,与金属有很大不同,除有塑性剪应变外,还有塑性体应变。
岩土塑性力学①岩土的抗剪强度和刚度随压应力的增大而增大,其抗剪强度不仅由粘结力产生,而且由内摩擦角产生。
②岩土为多相材料,在各相等压作用下,岩土能产生塑性体积变化,称岩土的等压屈服特性。
③岩土材料在剪应力作用下可产生塑性体积应变,称岩土的剪胀性。
④由于岩体中存在软弱结构面和夹层,而抗拉和抗压强度明显不同,因而具有较强的各向异性性质。
①岩土的抗剪强度和刚度随压应力的增大而增大,其抗剪强度不仅由粘结力产生,而且由内摩擦角产生。
②岩土为多相材料,在各相等压作用下,岩土能产生塑性体积变化,称岩土的等压屈服特性。
③岩土材料在剪应力作用下可产生塑性体积应变,称岩土的剪胀性。
④由于岩体中存在软弱结构面和夹层,而抗拉和抗压强度明显不同,因而具有较强的各向异性性质。
2.1 岩土类材料的特点岩土类材料是由颗粒材料堆积或胶结而成,属摩擦型材料。
摩擦材料的特点是抗剪强度中含有摩擦力项,它的抗剪强度随压应力的增大而增大,因而岩土材料的屈服条件与金属材料明显不同。
我们称此为岩土的压硬性,即随压应力的增大岩土的抗剪强度与刚度增大。
岩土为多相材料,岩土颗粒间有孔隙,因而在各向等压作用下,岩土颗粒中的水、气排出,就能产生塑性体变,出现屈服。
而金属材料在各向等压作用下是不会产生塑性体变的。
一般称此为岩土的等压屈服特性。
由于岩土是摩擦材料,岩土的体应变还与剪应力有关,即在剪应力的作用下岩土会产生塑性体变(剪胀或剪缩),一般称为岩土的剪胀性(含剪缩)。
这在力学上表现为球张量与偏张量的交叉作用,即球应力会产生剪变(负值),这也是压硬性的一种表现;反之,剪应力会产生体变。
显然,纯塑性金属材料是不具有这一特性的。
基于岩土是摩擦材料,因而必须采用摩擦型屈服条件,并考虑体变与剪胀性。
现代岩土塑性力学必须反映这些特点,显示出岩土塑性的本色。
5.结论(1)广义塑性力学消除了经典塑性力学中的传统塑性势假设、正交流动法则假设与不考虑应力主轴旋转的假设,从固体力学原理直接导出了广义塑性位势理论。