岩土弹塑性力学
- 格式:pptx
- 大小:4.98 MB
- 文档页数:22
岩土类材料弹塑性力学模型及本构方程TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-岩土类材料的弹塑性力学模型及本构方程摘要:本文主要结合岩土类材料的特性,开展研究其在受力变形过程中的弹性及塑性变形的特点,描述简化的力学模型特征及对应的适用条件,同时在分析研究其弹塑性力学模型的基础上,探究了关于岩土类介质材料的各种本构模型,如M-C、D-P、Cam、D-C、L-D及节理材料模型等,分析对应使用条件,特点及公式,从而推广到不同的材料本构模型的研究,为弹塑性理论更好的延伸发展做一定的参考性。
关键词:岩土类材料,弹塑性力学模型,本构方程不同的固体材料,力学性质各不相同。
即便是同一种固体材料,在不同的物理环境和受力状态中,所测得的反映其力学性质的应力应变曲线也各不相同。
尽管材料力学性质复杂多变,但仍是有规律可循的,也就是说可将各种反映材料力学性质的应力应变曲线,进行分析归类并加以总结,从而提出相应的变形体力学模型。
第一章岩土类材料地质工程或采掘工程中的岩土、煤炭、土壤,结构工程中的混凝土、石料,以及工业陶瓷等,将这些材料统称为岩土材料。
岩土塑性力学与传统塑性力学的区别在于岩土类材料和金属材料具有不同的力学特性。
岩土类材料是颗粒组成的多相体,而金属材料是人工形成的晶体材料。
正是由于不同的材料特性决定了岩土类材料和金属材料的不同性质。
归纳起来,岩土材料有3点基本特性:1.摩擦特性。
2.多相特性。
3.双强度特性。
另外岩土还有其特殊的力学性质:1.岩土的压硬性,2.岩土材料的等压屈服特性与剪胀性,3.岩土材料的硬化与软化特性。
4.土体的塑性变形依赖于应力路径。
对于岩土类等固体材料往往在受力变形的过程中,产生的弹性及塑性变形具备相应的特点,物体本身的结构以及所加外力的荷载、环境和温度等因素作用,常使得固体物体在变形过程中具备如下的特点。
固体材料弹性变形具有以下特点:(1)弹性变形是可逆的。
关于岩土塑性力学的几点认识多数工程岩土都处于弹塑性状态因而岩土塑性在岩土工程的设计中至关重要。
早在1773年Coulobm就提出了土体破坏条件,其后推广为Mohr-Coulobm条件。
1857年研究了半无限体的极限平衡,提出了滑移面概念。
1903年Kotter建立了滑移线方法。
Fellenius(1929)提出了极限平衡法。
以后Terzaghi Sokolovskii又将其发展形成了较完善的岩土滑移线场方法与极限平衡法。
1975年W.F.Chen在极限分析法的基础上又发展了土的极限分析法,尤其是上限法。
国内学者沈珠江也在上述领域作过不少工作。
不过上述方法都是在采用正交流动法则的基础上进行的。
1957年,Drucker等人首先指出了平均应力与体应变会导致岩土材料的体积屈服,需在莫尔-库仑锥形空间屈服面上再加上一簇帽子屈服面,此后剑桥大学Roscoe等人提出了剑桥粘土的弹塑性本构模型开创了岩土实用计算模型。
自上世纪60年代至今,岩土本构模型始终处于百家争鸣、百花齐放的阶段没有统一的理论、屈服条件与计算方法。
上世纪70年代就发现采用一个塑性势面和屈服面很难使计算结果与实际吻合;采用正交流动法既不符合岩土实际情况还会产生过大的体胀。
由此双屈服面与多重屈服面模型非正交流动法则在岩土本构模型中应运而生。
但由于没有从塑性理论上搞清问题,澄清认识,导致年来的这种混乱状态延续至今。
岩土塑性与本构模型的发展,主要是围绕着两个方面:一是对经典塑性理论的修正与静力本构模型的完善:二是针对不同岩土不同工况发展了许多新型的本构模型。
国内学者作了大量的工作,新发展的广义塑性力学既适应岩土类摩擦材料,也适应金属,可以作为岩土塑性力学的理论基础。
新型模型中动力模型、复杂路径模型等正在逐渐走向实用。
软化损伤模型、非饱和土模型、结构性土模型、细观模型也在不断地发展与完善。
1. 岩土塑性基本理论的一些进展岩土塑性计算不同于弹性力学与传统塑性力学,主要在于理论不统一,屈服条件取决于建模者经验而不是完全由试验确定,由此导致计算结果不惟一。