岩土塑性力学原理_广义塑性力学_郑颖人_2004
- 格式:pdf
- 大小:2.52 MB
- 文档页数:183
岩土类材料弹塑性力学模型及本构方程TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-岩土类材料的弹塑性力学模型及本构方程摘要:本文主要结合岩土类材料的特性,开展研究其在受力变形过程中的弹性及塑性变形的特点,描述简化的力学模型特征及对应的适用条件,同时在分析研究其弹塑性力学模型的基础上,探究了关于岩土类介质材料的各种本构模型,如M-C、D-P、Cam、D-C、L-D及节理材料模型等,分析对应使用条件,特点及公式,从而推广到不同的材料本构模型的研究,为弹塑性理论更好的延伸发展做一定的参考性。
关键词:岩土类材料,弹塑性力学模型,本构方程不同的固体材料,力学性质各不相同。
即便是同一种固体材料,在不同的物理环境和受力状态中,所测得的反映其力学性质的应力应变曲线也各不相同。
尽管材料力学性质复杂多变,但仍是有规律可循的,也就是说可将各种反映材料力学性质的应力应变曲线,进行分析归类并加以总结,从而提出相应的变形体力学模型。
第一章岩土类材料地质工程或采掘工程中的岩土、煤炭、土壤,结构工程中的混凝土、石料,以及工业陶瓷等,将这些材料统称为岩土材料。
岩土塑性力学与传统塑性力学的区别在于岩土类材料和金属材料具有不同的力学特性。
岩土类材料是颗粒组成的多相体,而金属材料是人工形成的晶体材料。
正是由于不同的材料特性决定了岩土类材料和金属材料的不同性质。
归纳起来,岩土材料有3点基本特性:1.摩擦特性。
2.多相特性。
3.双强度特性。
另外岩土还有其特殊的力学性质:1.岩土的压硬性,2.岩土材料的等压屈服特性与剪胀性,3.岩土材料的硬化与软化特性。
4.土体的塑性变形依赖于应力路径。
对于岩土类等固体材料往往在受力变形的过程中,产生的弹性及塑性变形具备相应的特点,物体本身的结构以及所加外力的荷载、环境和温度等因素作用,常使得固体物体在变形过程中具备如下的特点。
固体材料弹性变形具有以下特点:(1)弹性变形是可逆的。
硕士研究生课程岩土弹塑性力学第一章绪论同济大学地下建筑与工程系参考书籍《弹性力学》,吴家龙,同济大学出版社,2001《弹性力学》,徐芝伦,高等教育出版社,2006v4《弹性力学》,杨桂通,高等教育出版社,1998《弹塑性力学引论》,杨桂通,清华大学出版社2004《塑性力学》,夏志皋,同济大学出版社,1991《塑性力学基础》,王仁等,科学出版社,1982《塑性力学基础》,北川浩,高等教育出版社,1982《岩土塑性力学原理》,郑颖人等,建筑工业出版社,2002相关书籍Timoshenko S.P, Goodier J N. Theory of elasticity. 3rd ed. New York: McGraw-Hill Book Co, 1970 (徐芝伦译)Chen W.F. Limit analysis and soil plasticity. 1975, New York: Elsevier Scientific Publishing Company;J. C. Simo, T. J. Hughes. Computational Inelasticity.1998,Springer.本章目录§1.1课程任务、内容及方法§1.2弹塑性力学的基本假设§1.3弹塑性力学发展简史§1.4张量简介§1.1课程任务、内容及方法固体力学的一个分支学科弹塑性力学:研究可变形固体受到外荷载、温度变化及边界约束变动等作用时,弹塑性变形和应力状态的科学。
研究对象:对实体结构、板壳结构、杆件的进一步分析。
•弹性是变形固体的基本属性。
弹性体是变形体的一种,它的特征为:在外力作用下物体变形,当外力不超过某一限度时,除去外力后物体即恢复原状。
绝对弹性体是不存在的。
物体在外力除去后的残余变形很小时,一般就把它当作弹性体处理。
•“完全弹性”是对弹性体变形的抽象。
完全弹性是指在一定温度条件下,材料的应力和应变之间的一一对应关系,这种关系既与时间无关,也与其应力历史无关。
黄文熙讲座岩土塑性力学的新进展———广义塑性力学New development of geotechnical plastic mechanics—generalized plastic me chanics郑颖人(后勤工程学院军事土木工程系,重庆 400041)摘 要:多数岩土工程都处于弹塑性状态,因而岩土塑性在岩土工程的设计中至关重要。
本文首先简要回顾了岩土塑性的发展过程,分析了经典塑性力学用于岩土类材料存在的问题,指出其采用的3个不符合岩土材料变形机制的假设。
放弃这3条假设,从固体力学原理直接导出广义塑性位势理论,从而将经典塑性力学改造成更一般的塑性力学———广义塑性力学。
广义塑性力学采用了塑性力学中的分量理论,能反映应力路径转折的影响,克服了塑性应变增量方向与应力增量无关的错误;要求屈服面与塑性势面对应,而不要求相等,避免了采用正交流动法则引起过大剪胀等不合理现象,也不会产生当前非关联流动法则中任意假定塑性势面引起的误差。
文中给出了广义塑性力学的屈服面理论、硬化定律和应力—应变关系,并在应力增量分解的基础上,建立了考虑应力主轴旋转的广义塑性位势理论,从而可求出应力主轴旋转产生的塑性变形。
通过分析屈服面的物理意义,表明屈服条件是状态参数,它与应力状态、应力历史及材性等状态量有关;同时也是试验参数,只能由试验给出。
通过实际应用,表明广义塑性力学不仅可以作为岩土材料的建模理论,而且还可以应用于诸如极限分析等土力学的诸多领域,具有广阔的应用前景。
关键词:岩土塑性力学;广义塑性力学;塑性势;屈服面;本构模型中图分类号:TU41 文献标识码:A 文章编号:1000-4548(2003)01-0001-10作者简介:郑颖人(1933-),男,后勤工程学院教授,博士生导师,中国工程院院士,从事隧道力学、岩土塑性力学、地下工程、边坡工程与区域性土研究,发表论文250篇,专著7部,获国家、部委级科技进步奖7项。
岩土塑性力学的理论基础——广义塑性力学原理郑颖人刘元雪(解放军后勤工程学院,重庆 400041)Theoretical Bases of Geotechnical Plastic Mechanics——Principle ofGeneralized Plastic MechanicsZheng Yingren,Liu Yuanxue(Logistical Engieering University of PLA, Chongqing 400041)摘要实验表明,经典塑性力学难以反映岩土材料的变形机制,究其原因在于经典塑性力学作了传统塑性势假设、关联流动法则假设与不考虑应力主轴旋转的假设。
广义塑性力学就是放弃这些假设,由固体力学原理直接导出塑性公式,它既适用于岩土材料,也适用于金属。
关键词塑性力学塑性势屈服面应力主轴旋转Abstract Experiments show, the classic plastic mechanics is difficult to reflect the real deformation mechanism of geometerials, the reason is that the classic plastic mechanics is based on the hypothesis of the traditional potential theory, the hypothesis of the associated flow rule and the hypothesis of not considering rotation of stress principal axes. The generalized plastic mechanics gives up all these hypothesises and gets all its plastic formulas from solid mechanics directly, so it can be used for both geomaterials and metal.Key words plastic mechanics plastic potential yield surface rotation of stress principal axes1 经典塑性力学与岩土变形机制的矛盾岩土属于摩擦材料,与金属有很大不同,除有塑性剪应变外,还有塑性体应变。
岩土塑性力学读书报告本学期我们学习了弹塑性力学这一课程,在刘老师的讲解和自学的过程中学习到了不少弹塑性力学的基础知识。
我们是岩土工程专业的学生,弹塑性力学知识相当重要,是后续课程的基础,由于专业的实用性,我们阅读了郑颖人、孔亮编著的《岩土塑性力学》一书。
这本书将不少弹塑性力学的基础知识运用到岩土工程中,从弹塑性力学的角度来理解岩土这种特殊介质的力学性质,阅读之后让我受益匪浅。
以下是我阅读本书后的一些总结。
一、岩土材料的特点岩土塑性力学与传统塑性力学的区别在于岩土类材料和金属材料具有不同的力学特性。
岩土类材料是颗粒组成的多相体,而金属材料是人工形成的晶体材料。
正是由于不同的材料特性决定了岩土类材料和金属材料的不同性质。
归纳起来,岩土材料有3点基本特性:1.摩擦特性。
2.多相特性。
3.双强度特性。
另外岩土还有其特殊的力学性质:1.岩土的压硬性,2.岩土材料的等压屈服特性与剪胀性,3.岩土材料的硬化与软化特性。
4.土体的塑性变形依赖于应力路径。
二、岩土塑性力学的基本假设由于塑性变形十分复杂,因此无论传统塑性力学还是岩土塑性力学都要做一些基本假设,只不过岩土塑性力学所做的假设条件比传统塑性力学少些,这是因为影响岩土材料塑性变形的因素较多,而且这些因素不能被忽视和简化。
下列两点假设不论是传统塑性力学还是广义塑性力学都必须服从:(1)忽略温度与实践影响及率相关影响的假设。
(2)连续性假设。
岩土塑性力学与传统塑性力学不同点:(1)岩土材料的压硬性决定了岩土的剪切屈服与破坏必须考虑平均应力和岩土材料的内摩擦。
(2)传统塑性力学只考虑剪切屈服,而岩土塑性力学不仅要考虑剪切屈服,还要考虑体积屈服。
(3)根据岩土的剪胀性,不仅静水压力可能引起塑性体积变化,而且偏应力也可能引起体积变化;反之,平均应力也可能引起塑性剪切变形。
(4)传统塑性力学中屈服面是对称的,而岩土材料的拉压不等,而使屈服面不对称,如岩土的三轴拉伸和三轴压缩不对称。
资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载岩土类材料弹塑性力学模型及本构方程地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容岩土类材料的弹塑性力学模型及本构方程摘要:本文主要结合岩土类材料的特性,开展研究其在受力变形过程中的弹性及塑性变形的特点,描述简化的力学模型特征及对应的适用条件,同时在分析研究其弹塑性力学模型的基础上,探究了关于岩土类介质材料的各种本构模型,如M-C、D-P、Cam、D-C、L-D及节理材料模型等,分析对应使用条件,特点及公式,从而推广到不同的材料本构模型的研究,为弹塑性理论更好的延伸发展做一定的参考性。
关键词:岩土类材料,弹塑性力学模型,本构方程不同的固体材料,力学性质各不相同。
即便是同一种固体材料,在不同的物理环境和受力状态中,所测得的反映其力学性质的应力应变曲线也各不相同。
尽管材料力学性质复杂多变,但仍是有规律可循的,也就是说可将各种反映材料力学性质的应力应变曲线,进行分析归类并加以总结,从而提出相应的变形体力学模型。
岩土类材料地质工程或采掘工程中的岩土、煤炭、土壤,结构工程中的混凝土、石料,以及工业陶瓷等,将这些材料统称为岩土材料。
岩土塑性力学与传统塑性力学的区别在于岩土类材料和金属材料具有不同的力学特性。
岩土类材料是颗粒组成的多相体,而金属材料是人工形成的晶体材料。
正是由于不同的材料特性决定了岩土类材料和金属材料的不同性质。
归纳起来,岩土材料有3点基本特性:1.摩擦特性。
2.多相特性。
3.双强度特性。
另外岩土还有其特殊的力学性质:1.岩土的压硬性,2.岩土材料的等压屈服特性与剪胀性,3.岩土材料的硬化与软化特性。
4.土体的塑性变形依赖于应力路径。
对于岩土类等固体材料往往在受力变形的过程中,产生的弹性及塑性变形具备相应的特点,物体本身的结构以及所加外力的荷载、环境和温度等因素作用,常使得固体物体在变形过程中具备如下的特点。