经济数学基础作业问题详解
- 格式:doc
- 大小:1.12 MB
- 文档页数:17
作业(一)(一)填空题3.曲线x y =在)1,1(的切线方程是 .答案:2121+=x y4.设函数52)1(2++=+x x x f ,则____________)(='x f .答案:x 21. 函数212-+-=x x x y 的连续区间是( )答案:D ,可能是cA .),1()1,(+∞⋃-∞B .),2()2,(+∞-⋃--∞C .),1()1,2()2,(+∞⋃-⋃--∞D .),2()2,(+∞-⋃--∞或),1()1,(+∞⋃-∞ 2. 下列极限计算正确的是( )答案:B A.1lim=→xx x B.1l i m=+→xxxC.11sinlim 0=→xx x D.1si n l i m=∞→xx x3. 设y x =lg 2,则d y =( ).答案:B A .12d xx B .1d x x ln 10C .ln 10xx d D .1d xx4. 若函数f (x )在点x 0处可导,则( )是错误的.答案:BA .函数f (x )在点x 0处有定义B .A x f x x =→)(lim 0,但)(0x f A ≠C .函数f (x )在点x 0处连续D .函数f (x )在点x 0处可微 5.当0→x 时,下列变量是无穷小量的是( ). 答案:C A .x 2 B .xx sinC .)1ln(x +D .x cos(三)解答题问:(1)当b a ,为何值时,)(x f 在0=x 处有极限存在? (2)当b a ,为何值时,)(x f 在0=x 处连续.答案:(1)当1=b ,a 任意时,)(x f 在0=x 处有极限存在;1lim ()lim (sin)x x f x x b b x--→→=+=,0sin lim ()lim 1x x x f x x++→→==,有极限存在,lim ()lim ()1x x f x f x b +-→→===(2)当1==b a 时,)(x f 在0=x 处连续。
《经济数学基础 12》作业讲解 篇一:《经济数学基础 12》作业 经济数学基础 形 成 性 考 核 册 专业:工商管理 学号: 1513001400168 姓名:王浩 河北广播电视大学开放教育学院 (请按照顺序打印,并左侧装订) 作业一 (一)填空题 1.limx?0x?sinx?___________________.答案:0 x ?x2?1,x?02.设 f(x)??,在 x?0 处连续,则 k?________.答案:1 ?k,x?0? 3.曲线 y?x+1 在(1,2)的切线方程是答案:y?11x? 22 __.答案:2x 4.设函数 f(x?1)?x2?2x?5,则 f?(x)?__________ 5.设 f(x)?xsinx,则 f??()?__________.答案:?π 2π 2 (二)单项选择题 1. 当 x???时,下列变量为无穷小量的是( )答案:D x2 A.ln(1?x)B.x?1 C.e?1 xD.sinxx 2. 下列极限计算正确的是 () 答案: B A.limx?0xx?1B.lim?x?0xx?1 C.limxsinx?01sinx?1D.lim?1 x??xx 3. 设 y?lg2x,则 dy?().答案:B A.11ln101dxB.dxC.dxD.dx 2xxln10xx 4. 若函数 f (x)在点 x0 处可导,则( )是错误的.答案:B A.函数 f (x)在点 x0 处有定义 B.limf(x)?A,但 A?f(x0) x?x0 C.函数 f (x)在点 x0 处连续 D.函数 f (x)在点 x0 处可微 5.若 f()?x,f?(x)?(). 答案:B A. 1x1111??B.C. D. xxx2x2 (三)解答题 1.计算极限 1 / 22x2?3x?21x2?5x?61?? (2)lim2? (1)limx?1x?2x?6x?822x2?1 2x2?3x?51?x?11? (3)lim??(4)lim2x??x?0x23x?2x?43 sin3x3x2?4? (6)lim(5)lim?4 x?0sin5xx?25sin(x?2) 1?xsin?b,x?0?x?2.设函数 f(x)??a,x?0, ?sinxx?0?x? 问:(1)当 a,b 为何值时,f(x)在 x?0 处有极限存在? (2)当 a,b 为何值时,f(x)在 x?0 处连续. 答案:(1)当 b?1,a 任意时,f(x)在 x?0 处有极限存在; (2)当 a?b?1 时,f(x)在 x?0 处连续。
经济数学基础作业 4 解答一、填空题1、函数f (x)4x1的定义域为ln( x1)4 x0x4x4解:∵ ln( x1)0, x11, x2x 10x1x1∴函数 f (x)4x1的定义域为: (1,2)(2,4]ln( x1)2、函数y 3( x1) 2的驻点是,极值点是,它是极值点解: y6(x1), y6,令 y6( x1)0 ,得x1所以函数的驻点是 x 1 ,极值点是(1,0)因为 y60 ,所以它是极小值点p3、设某商品的需求函数为q( p)10e2,则需求弹性 E p解: E ppq ( p)pq( p)10eppp( 5e 2 )22x1x204、若线性方程组x2有非 0 解,则x10答:111165、设线性方程组 AX b ,且A0132,则 t时,方程00t 10组有唯一解答:当 t 1 0,即 t1时,方程组有唯一解二、单项选择题1、以下函数在指定区间( , ) 上单调增加的是()A、 sin xB、e xC、x2D、 3 x解: sin x 、x2不是单调函数, 3 x 是减函数,所以应选B2、设 f ( x)1,则 f ( f ( x))()A、1xB、12C、x D、x2 x x解: f ( f ( x))11x ,所以应选C f ( x)1x3、以下积分计算正确的选项是()A、1( x2x3)dx 0 1 e x e xB、1dx 012C、1x sin xdx01e x e xD、dx 112解:因为e x e x 1 e x e xdx0 ,应选D 2是奇函数,所以124、设线性方程组A m n Xb 有无量多解的充分必要条件是()A、r ( A) r ( A) mB、r (A)nC、m nD、r ( A) r ( A) n 答:应选 Dx1x2a15、设线性方程组x2x3a2,则方程组有解的充分必要条件是()x12x2x3a3A、a1a2a30B、a1a2a30C、a1a2a30D、a1a2a301 1 0 a1 1 1 0a1 1 1 0a1解: 0 1 1 a20 1 1a20 1 1a21 2 1 a30 1 1 a3a10 0 0 a3 a1a2若方程组有解,则 a3a1a20 ,即 a1a2a30 ,应选C三、解答题1、求解以下可分别变量的微分方程:(1)y e xy解:由 y e x y ,得dy e x e y,从而dye x dx ,两边积分得:dx e y e y dy e x dx ,e y e x c(2)xdy xe 2dx 3y解: 3y 2 dy xe x dx ,两边积分得:3 y 2dyxe x dx , y 3 xe x e x c2、求解以下一阶线性微分方程:(1) y2 y x 2x2, Q(x)解:这是一阶线性微分方程, P( x)x 2xyeP( x )dxQ ( x) e P (x) dxdx c)(( 2(2) dx) dx2x2 ln x22 ln xex( edx c) (e dx c)xe xe 2 ln x ( x 2 x 2 dx c) x 2 ( x c)(2) y yx sin 2x2x1, Q( x) 解:这是一阶线性微分方程, P( x)2x sin 2xx yeP( x )dxQ ( x) e P (x) dxdx c)(( 1( 1) dx()dxe ln x ( 2x sin 2xe ln x dx c)e x2xsin 2xexdx c)x( 2x sin 2x 1dx c) x( sin 2xd 2x c)x( cos2x c)x3、求解以下微分方程的初值问题:(1) y e 2 x y , y(0)解:dye 2 xydydx e y , e∵ y(0) 0 ,∴ c(2) xy y e x0 ,e 2 x dx ,两边积分得: e y 1 e 2 x c21,从而所求解为e y1 e2 x 1 22 2y(1) 0解: y1 y 1e x,这是一阶线性微分方程, P( x)1, Q(x) 1 e xxxxxP( x) dxP ( x) dx1 dxx 1dxx ee xy e( Q( x)e dx c) e( dx c)xe ln x (x ee ln x dxc)1 (x exdxc)xxx1( e x dx c)1 (e x c)xx∵ y(1)0 ,∴ ce ,从而所求解为y1 ( e x)xe4、求解以下线性方程组的一般解:x 1 2x 3x 4 0(1)x 1 x 2 3x 3 2x 4 02x 1 x 25x 3 3x 4 010 2 1 1 0 2 1 1 0 2 1 解:1 1 32 0 1 1 1 0 1 1 1 21 531110 0所以得方程组的一般解为x 1 2 x 3 x 4(其中 x 3 , x 4 为自由未知量)x 2x 3 x 42x 1 x 2 x 3 x 4 1 (2) x 12x 2 x 3 4x 42x 1 7x 2 4x 311x 4 5211 1 1 12 1 4 2 解: 12 1 4253 7 317411 55 37311 6 41 2 1 4 25 5 50 1 3 7 313 7 35 5 55 5 50 00 0 0所以得方程组的一般解为:x 11x 36x 4 4555x 23 x 3 7 x4 35 5 5x1x25x34x425、当2x1x23x3x41为何值时,线性方程组2x22x33x4有解,并求一般解3x137x15x29x310x41154211542解:21311011393 32233011393 7591002261814 108510113930000000008当80 ,8时线性方程组有解,其一般解为:x18x35x41(其中 x3, x4为自由未知量)x213x39x43x1x2x316、a, b 为何值时,方程组x1x22x3 2 有唯一解、无量多解或无解x13x2ax3b11111111解: 1122021113a b04 a 1b11111111101110111 22220 4 a 1 b 10 a 3 b 310、当 a30 ,即 a 3 时方程组有唯一解;20、当 a3 b 30 ,即 a 3 , b 3 时方程组有无量多解;30、当a30 , b30 ,即 a 3, b 3 时方程组无解。
经济数学基础第五次作业 第一编 习题31.求下列函数的单调区间: (2))1ln()(2++=x x x f ;解:该函数的定义域为),(+∞-∞,11)1(11])1[ln()(2222+='++++='++='x x x x x x x x f因为在),(+∞-∞内,0)(>'x f ,所以该函数的单调增加区间为),(+∞-∞。
(3)x x x f -=3223)(解:该函数的定义域为),(+∞-∞,33331321111)23()(xxxx x xx f -=-=-=-='-当)0,(-∞∈x 及)1,0(∈x 时,0)(>'x f , 当),1(+∞∈x 时,0)(<'x f ,该函数的单调增区间为当)1,(-∞,单调减区间为),1(+∞。
2.求下列函数的极值: (1)23)5()(-=x x x f ; 解:该函数的定义域为),(+∞-∞,)5)(3(5])5([)(223--='-='x x x x x x f令0)(='x f ,解得驻点为5,3,0===x x x ,函数的定义域被驻点分为),5(),5,3(),3,0(),0,(+∞-∞几部分,由上表可知,函数在3=x 时取得极大值,其值为=)3(f函数在5=x 时取得极大值,其值为=)5(f(3)31)1(23)(+-=x x f 解:该函数的定义域为),(+∞-∞,3231)1(32])1(23[)(-+-='+-='x x x f当1=x 时)(x f '无意义,即1=x 为函数的不可导点, 函数的定义域被它分为),1(),1,(+∞-∞两部分,由上表可知,该函数无极值。
3.求下列函数在指定区间的最大值与最小值: (2)x x x f 54)(2-=,]0,[-∞∈x解:22542)54()(xx xx x f +='-='令0)(='x f ,解得驻点为3-=x ,函数的定义域被驻点划分为)0,3(),3,(---∞两部分, 在)3,(--∞内0)(<'x f ,函数为减函数, 在)0,3(-内0)(>'x f ,函数为增函数,所以3-=x 为该函数的极小值点,由于3-=x 是函数定义域内的唯一驻点,所以3-=x 也是该函数的最小值点,函数的最小值为27)3(=-f 。
《经济数学基础》四次作业参考答案 作业一参考答案一、填空题 1、0;2、1;3、x-2y+1=0;4、2x+2;5、-π/2 二、单项选择题 DBBBB 三、解答题 1. 计算极限 (1) 解:原式=lim1→x )1+)(1-()2-)(1-(x x x x =-21(2) 解:原式=lim2→x )4-)(2-()3-)(2-(x x x x =21(3) 解:原式=lim→x 1+-11-x =-21 (4) 解:原式=lim ∞→x 22x 4+x 2+3x 5+x 3-1=31 (5) 解:原式=lim→x 5x sin5x *53x sin3x *3=53 (6) 解:原式=lim2→x )2-sin()2+)(2-(x x x =42、解:(1)∵lim-0→x f(x)=lim-0→x (xsinx1+b)=blim+0→x f(x)=lim+0→x xxsin =1 ∴要使f(x)在x=0处极限存在,必须b=1,a 可取任何实数。
(2)要使f(x)在x=0处连续,必须lim 0→x f(x)=f(0)=a∴a=b=1.3、解:(1)y '=2x+2xln2+2ln 1x (2) y '=2d)+(b)+c(ax -d)+(cx cx a =2d)+(cx bc-ad(3)y '=-23(3x-5)23-(4) y '=x21-e x -x e x(5)dy=(asinbx+bcosbx) eaxdx(6) dy=(-21xe x 1+23x)dx(7) dy=(-x21sinx +2xe 2-x )dx(8) y '=nsin 1-n xcosx+ncosnx(9) y '=2x+1+1x (1+2x+122x )=2x+11(10) y '=xx x1sin 22ln 221cot+xx x21-6164、解:(1)2xdx+2ydy-ydx-xdy+3dx=0,dy=dx y y x-23-2x -(2)cos(x+y)(1+ y ')+e xy(y+x y ')=4, y '=xyxyxe +y)+cos(ye -y)+cos(x -4x5、解:(1)y '=2x + 12x ,y ,,=222)x +1(2x -2 (2) y '=-xx 2x1+, y ,,=24x3+xx , y ,,(1)=1作业二参考答案一、填空题 1.2xln2+2;2.sinx+c;3.-21F(1-x 2)+c;4.0;5. 2x+11二、单项选择题DCCDB三、解答题1.计算下列不定积分解:(1)原式=∫(e 3)xdx=1-3ln )3(xe +c(2) 原式=∫(x 21-+2x 21+x 23)dx=2x 21+34x 23+52x 25+c(3) 原式=∫(x-2)dx=21x 2-2x+c (4) 原式=-21∫x 2-11d(1-2x)= -21ln ∣1-2x ∣+c (5) 原式=21∫(2+ x 2)21d(2+ x 2)=31(2+ x 2)23+c(6)原式=2∫sin x d x =-2cos x +c(7) 原式=-2∫xdcos21x=-2xcos 21x+2∫cos 21xdx=-2xcos 21x+4sin 21x+c (8) 原式=xln(x+1)-∫1xx +dx= xln(x+1)-x+ln(x+1)+c2.(1) 原式=11(1)x --⎰dx+21(1)x -⎰dx=(x-21x 2)∣11-+(21x 2- x) ∣21=52(2) 原式=-121xe ⎰d(x1)=-121x e =-12e e + (3) 原式=3121(1ln )(1ln )e x d x -++⎰=31212(1ln )e x +=2(4) 原式=550550'500500(550)(500)()(100.02)25L L L L x dx x dx ∆=-==-=-⎰⎰=201sin 22x x π∣-201sin 22xdx π⎰=-21 (5) 原式=211ln 2e xdx ⎰=21111ln 22e ex x xdx ∣-⎰=221124e x ε1-∣=21(1)4e + (6) 原式=4400x dx xe dx -+⎰⎰=4-4400x x xe e dx --∣+⎰=5-54e -作业三参考答案一、填空题1、3;2、-72;3、A 与B 可交换;4、1()I B A --;5,100010001⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦二、单项选择题CADAB三、解答题1.计算(1)原式=12 35-⎡⎤⎢⎥⎣⎦(2)原式=0000⎡⎤⎢⎥⎣⎦(3)原式=[]02.原式=5152 1110 3614⎡⎤⎢⎥⎢⎥⎢⎥---⎣⎦3.解:∣113121111A-⎡⎤⎡⎤∣=-⎢⎥⎢⎥--⎣⎦⎣⎦=4-2=2,12231111⎡⎤⎡⎤∣B∣=-⎢⎥⎢⎥⎣⎦⎣⎦=-1+1=0∴AB B∣∣=∣A∣∙∣∣=04.解:对矩阵A施行初等行变换A=124014090 21021021 110110110λλλλ-+⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⇒-⇒-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦当-λ+9=0,即λ=9时,第一行变为0,r(A)=2 5.解:对矩阵A施行初等行变换A=2532125321 1742017420 1742000000 21484000000--⎡⎤⎡⎤⎢⎥⎢⎥------⎢⎥⎢⎥⇒⎢⎥⎢⎥-⎢⎥⎢⎥---⎣⎦⎣⎦∴r(A)=26.(1)解:[]132100100113 301010 (010237)111001001349A I-⎡⎤⎡⎤⎢⎥⎢⎥∙=-⇒⇒⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦∴1113 237 349A-⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦(2)解:[]1363100100130 421010 (010271)211001001012A I----⎡⎤⎡⎤⎢⎥⎢⎥∙=---⇒⇒--⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦∴1130 271 012A--⎡⎤⎢⎥=--⎢⎥⎢⎥⎣⎦7. 解:∵[]12101052......35010131A I -⎡⎤⎡⎤∙=⇒⇒⎢⎥⎢⎥-⎣⎦⎣⎦∴15231A --⎡⎤=⎢⎥-⎣⎦∴X=1125210233111BA --⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦四、证明题1、 证:由题意知 1122,B A AB B A AB ==∴12121212()()B B A B A B A AB AB A B B +=+=+=+121212121212()()()()()()B B A B B A B AB B A B AB B A B B =====2、 证:(1)∵()()T T T T T T A A A A A A +=+=+ ∴TA A +是对称矩阵。
经济数学基础作业(一)答案一、填空题1、函数)1ln(4--=x xy 的定义域是 (1,2)∪(2,4〕;2、函数216)3ln(x x y -+-=的定义域是-4≤x <3;3、函数xx y --+=21)5ln(的定义域是-5<x <2; 4、函数24)2ln(1x x y -+-=的定义域是-2≤x <1; 5、函数⎩⎨⎧-+=12)(2x x x f 2005<≤<≤-x x 的定义域是-5≤x <2; 6、函数)1ln(1+=x y 的定义域是x >-1,且x ≠0; 7、1412-+-=x x y 的定义域是x ≥1,且x ≠2;8、已知34)1(2-+=+x x x f ,则=)(x f 622-+x x ;6)0(;621)1(2-=-+=f x x x f 。
9、已知54)(2-+=x x x f ,则0)1(;5)0(=-=f f ;54)(2--=-x x x f 。
10、已知52)1(2-+=+x x x f ,则6)(2-=x x f 。
11、已知2)(2+=x x f ,则32)1(;2)0(2++=+=x x x f f 。
12、已知函数1)(-=x xx f ,则x x x f 1)1(+=+。
13、已知x x x f +=+2)1(,则23)1(;)(2422+-=--=x x x f x x x f 。
14、生产某种产品的固定成本为2000元,每生产一个单位产品,成本增加4元,则生产x 个单位产品的总成本函数为x y 42000+=,此时的平均成本函数为42000+=x y 。
15、某商品的需求规律是P=25-2X (P 为商品价格,x 为需求量)供应规律是P=3X+5(P 为价格,x 为供应量),则均衡价格是 17,均衡数量是 4 。
16、已知某产品当产量为x 时的成本为48643.0)(2++=x x x f ,且平均需求规律为 x = 200 – 5P (x 为销售量,P 为价格),则利润函数为4865.036)(2--=x x x f 。
经济数学基础形成性考核册作业1参考答案(一)填空题1.0;2. 1;3. 2121+=x y ;4. x 25. 2π- (二)单项选择题1. D;2.B3. B4.B5.B (三)解答题 1.计算极限(1)=-+-→123lim 221x x x x )1)(1()1)(2(lim 1+---→x x x x x = 12lim 1+-→x x x = 21- (2)8665lim 222+-+-→x x x x x =)4)(2()3)(2(lim 2----→x x x x x = 43lim 2--→x x x = 21(3)x x x 11lim--→=)11()11)(11(lim 0+-+---→x x x x x =)11(lim+--→x x x x =21111lim0-=+--→x x (4)=+++-∞→42353lim 22x x x x x 31423531lim 22=+++-∞→xx x x x (5)=→x x x 5sin 3sin lim 05355sin 33sin lim 0⨯→xx x xx =53 (6)=--→)2sin(4lim 22x x x 42)2sin(2lim )2sin()2)(2(lim22=--+=-+-→→x x x x x x x x2.设函数⎪⎪⎩⎪⎪⎨⎧>=<+=0sin 0,0,1sin )(x x xx a x b x x x f ,问:(1)当b a ,为何值时,)(x f 在0=x 处有极限存在? (2)当b a ,为何值时,)(x f 在0=x 处连续.解:(1)b b xx x f x x =+=--→→)1sin ()(lim lim 00,1sin )(limlim 00==++→→xxx f x x 所以,当1=b ,a 任意时,)(x f 在0=x 处有极限存在; (2)a f =)0(,所以,当1==b a 时,)(x f 在0=x 处连续。
经济数学基础应用题 TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-经济数学基础应用题1.设生产某种产品q 个单位时的成本函数为:q q q C 625.0100)(2++=(万元), 求:(1)当10=q 时的总成本、平均成本和边际成本;(2)当产量q 为多少时,平均成本最小?解:(1)因为总成本、平均成本和边际成本分别为:q q q C 625.0100)(2++=,625.0100)(++=q qq C ,65.0)(+='q q C . 所以,1851061025.0100)10(2=⨯+⨯+=C , 5.1861025.010100)10(=+⨯+=C ,116105.0)10(=+⨯='C . (2)令 025.0100)(2=+-='qq C ,得20=q (20-=q 舍去). 因为20=q 是其在定义域内唯一驻点,且该问题确实存在最小值,所以当q =20时,平均成本最小.2.某厂生产一批产品,其固定成本为2000元,每生产一吨产品的成本为60元,对这种产品的市场需求规律为q=1000-10p (q 为需求量,p 为价格)。
试求:1)成本函数,收入函数;2)产量为多少吨时利润最大?解 1)成本函数C (q )=60q+2000.因为q=1000-10p ,即p=100-q 101, 所以收入函数R (q )=p ⨯q=(100-q 101)q=100q-2101q (2)因为利润函数L (q )=R (q )-C (q )=100q-2101q -(60q+2000) =40q-2101q -2000且'L (q)=(40q-2101q -2000)'= 令'L (q )=0,即=0,得q200,它是L (q )的最大值点,即当产量为200吨时利润最大。
3.设某工厂生产某产品的固定成本为50000元,每生产一个单位产品,成本增加100元,又已知需求函数q=2000-4p ,其中p 为价格,q 为产量。
习 题 一1.写出下列事件的样本空间: (1) 把一枚硬币抛掷一次; (2) 把一枚硬币连续抛掷两次;(3) 掷一枚硬币,直到首次出现正面为止;(4) 一个库房在某一个时刻的库存量(假定最大容量为M ).解 (1) Ω={正面,反面} △ {正,反}(2) Ω={(正、正),(正、反),(反、正),(反、反)} (3) Ω={(正),(反,正),(反,反,正),…} (4) Ω={x ;0 ≤x ≤ m } 2.掷一颗骰子的试验,观察其出现的点数,事件A =“偶数点”,B =“奇数点”,C =“点数小于5”,D =“小于5的偶数点”,讨论上述各事件间的关系.解 {}{}{}{}{}.4,2,4,3,2,1,5,3,1,6,4,2,6,5,4,3,2,1=====D C B A ΩA 与B 为对立事件,即B =A ;B 与D 互不相容;A ⊃D ,C ⊃D.3. 事件A i 表示某个生产单位第i 车间完成生产任务,i =1,2,3,B 表示至少有两个车间完成生产任务,C 表示最多只有两个车间完成生产任务,说明事件B 及B -C 的含义,并且用A i (i =1,2,3)表示出来.解 B 表示最多有一个车间完成生产任务,即至少有两个车间没有完成生产任务. 313221A A A A A A B ++=B -C 表示三个车间都完成生产任务321321321321+++A A A A A A A A A A A A B =321321321321321321321A A A A A A A A A A A A A A A A A A A A A C ++++++=321A A A C B =-4. 如图1-1,事件A 、B 、C 都相容,即ABC ≠Φ,把事件A +B ,A +B +C ,AC +B ,C -AB 用一些互不相容事件的和表示出来.解 B A A B A +=+C B A B A A C B A ++=++C B A B B AC +=+BC A C B A C B A AB C ++=-5.两个事件互不相容与两个事件对立的区别何在,举例说明.解 两个对立的事件一定互不相容,它们不可能同时发生,也不可能同时不发生;两个互不相容的事件不一定是对立事件,它们只是不可能同时发生,但不一定同时不发生. 在本书第6页例2中A 与D 是对立事件,C 与D 是互不相容事件. 6.三个事件A 、B 、C 的积是不可能事件,即ABC =Φ,问这三个事件是否一定互不相容?画图说明.解 不一定. A 、B 、C 三个事件互不相容是指它们中任何两个事件均互不相容,即两两互不相容.如图1-2,事件ABC =Φ,但是A 与B 相容.7. 事件A 与B 相容,记C =AB ,D =A+B ,F =A -B. 说明事件A 、C 、D 、F 的关系.解 由于AB ⊂A ⊂A+B ,A -B ⊂A ⊂A+B ,AB 与A -B 互不相容,且A =AB +(A -B). 因此有A =C +F ,C 与F 互不相容, D ⊃A ⊃F ,A ⊃C.8. 袋内装有5个白球,3个黑球,从中一次任取两个,求取到的两个球颜色不同的概率. 解 记事件A 表示“取到的两个球颜色不同”. 则有利于事件A 的样本点数目#A =1315C C .而组成试验的样本点总数为#Ω=235+C ,由古典概率公式有P (A )==Ω##A 2815281315=C C C (其中#A ,#Ω分别表示有利于A 的样本点数目与样本空间的样本点总数,余下同)9. 计算上题中取到的两个球中有黑球的概率.解 设事件B 表示“取到的两个球中有黑球”则有利于事件B 的样本点数为#25C B =.1491)(1)(2825=-==C C B P B P -10. 抛掷一枚硬币,连续3次,求既有正面又有反面出现的概率.解 设事件A 表示“三次中既有正面又有反面出现”, 则A 表示三次均为正面或三次均为反面出现. 而抛掷三次硬币共有8种不同的等可能结果,即#Ω=8,因此图1-1图1-2143821#1)(1)(=-=Ω-=-=A A P A P # 11. 10把钥匙中有3把能打开一个门锁,今任取两把,求能打开门锁的概率.解 设事件A 表示“门锁能被打开”. 则事件A 发生就是取的两把钥匙都不能打开门锁.15811)(1)(21027==Ω-=-=CC A A P A P -## 从9题-11题解中可以看到,有些时候计算所求事件的对立事件概率比较方便. 12. 一副扑克牌有52张,不放回抽样,每次一张,连续抽取4张,计算下列事件的概率:(1)四张花色各异; (2)四张中只有两种花色.解 设事件A 表示“四张花色各异”;B 表示“四张中只有两种花色”.,113113113113452##C C C C A , C Ω== ) +#2132131133131224C C C C C C B (= 105013##)(4524.C ΩA A P ===30006048+74366##)(452 )(.C ΩB B P ===13. 口袋内装有2个伍分、3个贰分,5个壹分的硬币共10枚,从中任取5枚,求总值超过壹角的概率.解 设事件A 表示“取出的5枚硬币总值超过壹角”.)+(+C =##25231533123822510C C C C C C A C Ω , = 50252126)(.ΩA A P ==##=14. 袋中有红、黄、黑色球各一个,每次任取一球,有放回地抽取三次,求下列事件的概率:A =“三次都是红球” △ “全红”,B =“全白”,C =“全黑”,D =“无红”,E =“无白”,F =“无黑”,G =“三次颜色全相同”,H =“颜色全不相同”,I =“颜色不全相同”.解 #Ω=33=27,#A =#B =#C =1, #D =#E =#F =23=8, #G =#A +#B +#C =3,#H =3!=6,#I =#Ω-#G =24271)()()(===C P B P A P 278)()()(===F P E P D P 982724)(,92276)(,91273)(======I P H P G P 15. 一间宿舍内住有6位同学,求他们中有4个人的生日在同一个月份的概率. 解 设事件A 表示“有4个人的生日在同一个月份”.#Ω=126,#A =21124611C C0073.01221780##)(6==ΩA A P =16. 事件A 与B 互不相容,计算P )(B A +. 解 由于A 与B 互不相容,有AB =Φ,P (AB )=0.1)(1)()(=-==+AB P AB P B A P17. 设事件B ⊃A ,求证P (B )≥P (A ). 证 ∵B ⊃A∴P (B -A )=P (B ) - P (A ) ∵P (B -A )≥0 ∴P (B )≥P (A )18. 已知P (A )=a ,P (B )=b ,ab ≠0 (b >0.3a ),P (A -B )=0.7a ,求P (B +A ),P (B -A ),P (B +A ).解 由于A -B 与AB 互不相容,且A =(A -B )+AB ,因此有P (AB )=P (A )-P (A -B )=0.3aP (A +B )=P (A )+P (B )-P (AB )=0.7a +b2P (B -A )=P (B )-P (AB )=b -0.3aP(B +A )=1-P (AB )=1-0.3a19. 50个产品中有46个合格品与4个废品,从中一次抽取三个,计算取到废品的概率. 解 设事件A 表示“取到废品”,则A 表示没有取到废品,有利于事件A 的样本点数目为#A =346C ,因此P (A )=1-P (A )=1-3503461C C ΩA-=## =0.225520. 已知事件B ⊃A ,P (A )=ln b ≠ 0,P (B )=ln a ,求a 的取值范围.解 因B ⊃A ,故P (B )≥P (A ),即ln a ≥ln b ,⇒a ≥b ,又因P (A )>0,P (B )≤1,可得b >1,a ≤e ,综上分析a 的取值范围是:1<b ≤a ≤e21. 设事件A 与B 的概率都大于0,比较概率P (A ),P (AB ),P (A +B ),P (A )+P (B )的大小(用不等号把它们连接起来).解 由于对任何事件A ,B ,均有AB ⊂A ⊂A +B且P (A +B )=P (A )+P (B )-P (AB ),P (AB )≥0,因此有P (AB )≤P (A )≤P (A +B )≤P (A )+P (B )22. 一个教室中有100名学生,求其中至少有一人的生日是在元旦的概率(设一年以365天计算).解 设事件A 表示“100名学生的生日都不在元旦”,则有利于A 的样本点数目为#A =,而样本空间中样本点总数为#Ω=,所求概率为1001003653641##1)(1)(-=Ω-=-=A A P A P= 0.239923. 从5副不同手套中任取4只手套,求其中至少有两只手套配成一副的概率.解 设事件A 表示“取出的四只手套至少有两只配成一副”,则A 表示“四只手套中任何两只均不能配成一副”.21080##)(4101212121245===C C C C C C ΩA A P 62.0)(1)(=-=A P A P24. 某单位有92%的职工订阅报纸,93%的人订阅杂志,在不订阅报纸的人中仍有85%的职工订阅杂志,从单位中任找一名职工求下列事件的概率: (1)该职工至少订阅一种报纸或期刊; (2)该职工不订阅杂志,但是订阅报纸.解 设事件A 表示“任找的一名职工订阅报纸”,B 表示“订阅杂志”,依题意P (A )=0.92,P (B )=0.93,P (B |A )=0.85P (A +B )=P (A )+P (A B )=P (A )+P (A )P (B |A )=0.92+0.08×0.85=0.988P (A B )=P (A +B )-P (B )=0.988-0.93=0.05825. 分析学生们的数学与外语两科考试成绩,抽查一名学生,记事件A 表示数学成绩优秀,B表示外语成绩优秀,若P (A )=P (B )=0.4,P (AB )=0.28,求P(A |B ),P (B |A ),P (A +B ).解 P (A |B )=7.04.028.0)()(==B P AB PP (B |A)=7.0)()(=A P AB PP (A +B )=P (A )+P (B )-P (AB )=0.5226. 设A 、B 是两个随机事件. 0<P (A )<1,0<P (B )<1,P (A |B )+P (A |B )=1. 求证P (AB )=P (A )P (B ).证 ∵P ( A |B )+P (A |B )=1且P ( A |B )+P (A |B )=1∴P ( A |B )=P (A |B ))(1)()()()()()(B P AB P A P B P B A P B P AB P --==P (AB )[1-P (B )]=P ( B )[P ( A )-P ( AB )]整理可得P (AB )=P ( A ) P ( B )27. 设A 与B 独立,P ( A )=0.4,P ( A +B )=0.7,求概率P (B ). 解 P ( A +B )=P (A )+P (A B )=P ( A )+P (A ) P ( B )⇒ 0.7=0.4+0.6P ( B )⇒ P ( B )=0.528. 设事件A 与B 的概率都大于0,如果A 与B 独立,问它们是否互不相容,为什么?3解 因P ( A ),P ( B )均大于0,又因A 与B 独立,因此P ( AB )=P ( A ) P ( B )>0,故A 与B 不可能互不相容.29. 某种电子元件的寿命在1000小时以上的概率为0.8,求3个这种元件使用1000小时后,最多只坏了一个的概率. 解 设事件Ai表示“使用1000小时后第i 个元件没有坏”,i =1,2,3,显然A 1,A 2,A 3相互独立,事件A 表示“三个元件中最多只坏了一个”,则A=A 1A 2A 3+1A A 2A 3+A 12A A 3+A 1A 23A ,上面等式右边是四个两两互不相容事件的和,且P (A 1)=P (A 2)=P (A 3)=0.8P ( A )=[][])()(3)(12131A P A P A P +=0.83+3×0.82×0.2 =0.89630. 加工某种零件,需经过三道工序,假定第一、二、三道工序的废品率分别为0.3,0.2,0.2,并且任何一道工序是否出现废品与其他各道工序无关,求零件的合格率. 解 设事件A 表示“任取一个零件为合格品”,依题意A 表示三道工序都合格.P (A )=(1-0.3)(1-0.2)(1-0.2)=0.44831. 某单位电话总机的占线率为0.4,其中某车间分机的占线率为0.3,假定二者独立,现在从外部打电话给该车间,求一次能打通的概率;第二次才能打通的概率以及第m 次才能打通的概率(m 为任何正整数).解 设事件A i 表示“第i 次能打通”,i =1,2,…,m ,则P (A 1)=(1-0.4)(1-0.3)=0.42 P (A 2)=0.58 × 0.42=0.2436 P (A m )=0.58m -1 × 0.4232. 一间宿舍中有4位同学的眼镜都放在书架上,去上课时,每人任取一副眼镜,求每个人都没有拿到自己眼镜的概率.解 设A i 表示“第i 人拿到自己眼镜”,i =1,2,3,4. P ( A i )=41,设事件B 表示“每个人都没有拿到自己的眼镜”. 显然B 则表示“至少有一人拿到自己的眼镜”. 且B =A 1+A 2+A 3+A 4.P (B )=P (A 1+A 2+A 3+A 4)=∑∑∑-+-=≤≤≤≤4141414321)()()()(i j i k j i k j i i i i A A A A P A A A P A A P A p <<<P (A i A j )=P (A i )P (A j |A i )=)41(1213141≤≤=⨯j i < P (A i A j A k )=P (A i )P (A j |A i )P (A k |A i A j )=41×31×21=241(1≤i <j <k ≤4) P (A 1A 2A 3A 4) =P (A 1)P (A 2|A 1)P (A 3|A 1A 2)×P (A 4|A 1A 2A 3)=2411213141=⨯⨯⨯ 85241241121414)(3424=-⨯+⨯-⨯=C C B P83)(1)(=-=B P B P33. 在1,2,…,3000这3000个数中任取一个数,设A m =“该数可以被m 整除”,m =2,3,求概率P (A 2A 3),P (A 2+A 3),P (A 2-A 3). 解 依题意P (A 2)=21,P (A 3)=31P (A 2A 3)=P (A 6)=61P (A 2+A 3)=P (A 2)+P (A 3)-P (A 2A 3)=32613121=-+ P (A 2-A 3)=P (A 2)-P (A 2A 3)=316121=-34. 甲、乙、丙三人进行投篮练习,每人一次,如果他们的命中率分别为0.8,0.7,0.6,计算下列事件的概率: (1)只有一人投中; (2)最多有一人投中; (3)最少有一人投中.解 设事件A 、B 、C 分别表示“甲投中”、“乙投中”、“丙投中”,显然A 、B 、C 相互独立.设A i 表示“三人中有i 人投中”,i =0,1,2,3,依题意,)()()() ()(0C P B P A P C B A P A P ===0.2×0.3×0.4×=0.024P ( A 3 )=P ( ABC )=P ( A ) P ( B ) P ( C )4=0.8×0.7×0.6=0.336P (A 2)=P (AB C )+P (A B C )+P (A BC )=0.8×0.7×0.4+0.8×0.3×0.6+0.2×0.7×0.6=0.452 (1) P (A 1)=1-P (A 0)-P (A 2)-P (A 3)=1-0.024-0.452-0.336=0.188(2) P (A 0+A 1)=P (A 0)+P (A 1)=0.024+0.188=0.212 (3) P (A +B +C )=P (0A )=1-P (A 0)=0.97635. 甲、乙二人轮流投篮,甲先开始,假定他们的命中率分别为0.4及0.5,问谁先投中的概率较大,为什么?解 设事件A 2n -1B 2n 分别表示“甲在第2n -1次投中”与“乙在第2n 次投中”,显然A 1,B 2,A 3,B 4,…相互独立.设事件A 表示“甲先投中”.⋯+++=)()()()(543213211A B A B A P A B A P A P A P⋯⨯⨯⨯⨯=+++0.40.5)(0.60.40.50.60.42 743.014.0=-=计算得知P (A )>0.5,P (A )<0.5,因此甲先投中的概率较大.36. 某高校新生中,北京考生占30%,京外其他各地考生占70%,已知在北京学生中,以英语为第一外语的占80%,而京外学生以英语为第一外语的占95%,今从全校新生中任选一名学生,求该生以英语为第一外语的概率.解 设事件A 表示“任选一名学生为北京考生”,B 表示“任选一名学生,以英语为第一外语”. 依题意P (A )=0.3,P (A )=0.7,P (B |A)=0.8,P (B |A )=0.95. 由全概率公式有P (B )=P (A )P (B |A )+P (A )P (B |A )=0.3×0.8+0.7×0.95=0.90537. A 地为甲种疾病多发区,该地共有南、北、中三个行政小区,其人口比为9 : 7 : 4,据统计资料,甲种疾病在该地三个小区内的发病率依次为4‰,2‰,5‰,求A 地的甲种疾病的发病率.解 设事件A 1,A 2,A 3分别表示从A 地任选一名居民其为南、北、中行政小区,易见A 1,A 2,A 3两两互不相容,其和为Ω.设事件B 表示“任选一名居民其患有甲种疾病”,依题意:P (A 1)=0.45,P (A 2)=0.35,P (A 3)=0.2,P (B |A 1)=0.004,P (B |A 2)=0.002,P (B |A 3)=0.005=∑=31)|()(i i i A B P A P= 0.45 × 0.004 + 0.35 × 0.002 + 0.2 × 0.005=0.003538. 一个机床有三分之一的时间加工零件A ,其余时间加工零件B ,加工零件A 时,停机的概率为0.3,加工零件B 时停机的概率为0.4,求这个机床停机的概率.解 设事件A 表示“机床加工零件A ”,则A 表示“机床加工零件B ”,设事件B 表示“机床停工”.)|()()|()()(A B P A P A B P A P B P +=37.0324.0313.0=⨯+⨯= 39. 有编号为Ⅰ、Ⅱ、Ⅲ的3个口袋,其中Ⅰ号袋内装有两个1号球,1个2号球与1个3号球,Ⅱ号袋内装有两个1号球和1个3号球,Ⅲ号袋内装有3个1号球与两个2号球,现在先从Ⅰ号袋内随机地抽取一个球,放入与球上号数相同的口袋中,第二次从该口袋中任取一个球,计算第二次取到几号球的概率最大,为什么?解 设事件A i 表示“第一次取到i 号球”,B i 表示第二次取到i 号球,i =1,2,3.依题意,A 1,A 2,A 3构成一个完全事件组.41)()(,21)(321===A P A P A P41)|()|(,21)|(131211===A B P A B P A B P41)|()|(,21)|(232221===A B P A B P A B P61)|(,31)|(,21)|(333231===A B P A B P A B P应用全概率公式∑==31)|()()(i i j i j A B P A P B P 可以依次计算出4811)(,4813)(,21)(321===B P B P B P . 因此第二次取到1号球的概率最大. 40. 接37题,用一种检验方法,其效果是:对甲种疾病的漏查率为5%(即一个甲种疾病患者,经此检验法未查出的概率为5%);对无甲种疾病的人用此检验法误诊为甲种疾病患者的概率为1%,在一次健康普查中,某人经此检验法查为患有甲种疾病,计算该人确实患有此病的概率.解 设事件A 表示“受检人患有甲种疾病”,B 表示“受检人被查有甲种疾病”,由37题计算可5知P (A )=0.0035,应用贝叶斯公式)|()()|()()|()()|(A B P A P A B P A P A B P A P B A P +=01.09965.095.00035.095.00035.0⨯⨯⨯=+25.0= 41. 甲、乙、丙三个机床加工一批同一种零件,其各机床加工的零件数量之比为5 : 3 : 2,各机床所加工的零件合格率,依次为94%,90%,95%,现在从加工好的整批零件中检查出一个废品,判断它不是甲机床加工的概率.解 设事件A 1,A 2,A 3分别表示“受检零件为甲机床加工”,“乙机床加工”,“丙机床加工”,B 表示“废品”,应用贝叶斯公式有∑==31111)|()()|()()|(i i i A B P A P A B P A P B A P7305020+1030+06.05.006.05.0=⨯⨯⨯⨯=....74)|(1)|(11=-=B A P B A P42. 某人外出可以乘坐飞机、火车、轮船、汽车4种交通工具,其概率分别为5%,15%,30%,50%,乘坐这几种交通工具能如期到达的概率依次为100%,70%,60%与90%,已知该旅行者误期到达,求他是乘坐火车的概率.解 设事件A 1,A 2,A 3,A 4分别表示外出人“乘坐飞机”,“乘坐火车”,“乘坐轮船”,“乘坐汽车”,B 表示“外出人如期到达”.∑==41222)|()()|()()|(i i i A B P A P A B P A P B A P1.05.04.03.03.015.0005.03.015.0⨯+⨯+⨯+⨯⨯==0.20943. 接39题,若第二次取到的是1号球,计算它恰好取自Ⅰ号袋的概率.解 39题计算知P (B 1)=21,应用贝叶斯公式21212121)()|()()|(111111=⨯==B P A B P A P B A P44. 一箱产品100件,其次品个数从0到2是等可能的,开箱检验时,从中随机地抽取10件,如果发现有次品,则认为该箱产品不合要求而拒收,若已知该箱产品已通过验收,求其中确实没有次品的概率.解 设事件A i 表示一箱中有i 件次品,i =0, 1, 2. B 表示“抽取的10件中无次品”,先计算P ( B )∑++⨯===20101001098101001099)1(31)|()()(i i i C C C C A B P A P B P37.0)(31)|(0==B P B A P45. 设一条昆虫生产n 个卵的概率为λλ-=e !n p nn n =0, 1, 2, …其中λ>0,又设一个虫卵能孵化为昆虫的概率等于p (0<p <1). 如果卵的孵化是相互独立的,问此虫的下一代有k 条虫的概率是多少?解 设事件A n =“一个虫产下几个卵”,n =0,1,2….B R =“该虫下一代有k 条虫”,k =0,1,….依题意λλ-==e !)(n p A P nn n⎩⎨⎧≤≤=-nk qp C n k A B P kn k k n n k 00)|(>其中q =1-p . 应用全概率公式有∑∑∞=∞===kn n k n n n k n k A B P A P A B P A P B P )|()()|()()(0∑∞=-λ--λ=l n k n k n q p k n k n n !)(!!e !∑∞=-λ--λλk n k n kk n q k p !)()(e !)(6由于q k n kn k n k n k n q k n q λ∞=--∞=-∑∑=-λ=-λe !)()(!)()(0,所以有 ,2,1,0e)(e e !)()(===--k kp k p B P pp q k k λλλλλ7习 题 二1. 已知随机变量X 服从0-1分布,并且P {X ≤0}=0.2,求X 的概率分布.解 X 只取0与1两个值,P {X =0}=P {X ≤0}-P {X <0}=0.2,P {X =1}=1-P {X =0}=0.8. 2. 一箱产品20件,其中有5件优质品,不放回地抽取,每次一件,共抽取两次,求取到的优质品件数X 的概率分布.解 X 可以取0, 1, 2三个值. 由古典概型公式可知{})2,1,0(2202155===-m C C C m X P mm 依次计算得X 的概率分布如下表所示:3. 上题中若采用重复抽取,其他条件不变,设抽取的两件产品中,优质品为X 件,求随机变量X 的概率分布.解 X 的取值仍是0, 1, 2.每次抽取一件取到优质品的概率是1/4,取到非优质品的概率是3/4,且各次抽取结果互不影响,应用伯努利公式有{}1694302=⎪⎭⎫⎝⎛==X P{}1664341112=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==C X P {}1614122=⎪⎭⎫⎝⎛==X P4. 第2题中若改为重复抽取,每次一件,直到取得优质品为止,求抽取次数X 的概率分布. 解 X 可以取1, 2, …可列个值. 且事件{X = n }表示抽取n 次,前n -1次均未取到优质品且第n 次取到优质品,其概率为41431⋅⎪⎭⎫⎝⎛-n . 因此X 的概率分布为 {}⋯=⎪⎭⎫⎝⎛==-,2,143411n n X P n5. 盒内有12个乒乓球,其中9个是新球,3个为旧球,采取不放回抽取,每次一个直到取得新球为止,求下列随机变量的概率分布. (1)抽取次数X ; (2)取到的旧球个数Y .解 (1)X 可以取1, 2, 3, 4各值.{}{}4491191232431=⨯====X P X P {}22091091121233=⨯⨯==X P {}2201991011121234=⨯⨯⨯==X P (2) Y 可以取0, 1, 2, 3各值 .{}{}4310====X P Y P {}{}44921====X P Y P {}{}220932====X P Y P {}{}220143====X P Y P 6. 上题盒中球的组成不变,若一次取出3个,求取到的新球数目X 的概率分布. 解 X 可以取0, 1, 2, 3各值.{}2201031233===C C X P{}2202713122319===C C C X P{}22010823121329===C C C X P{}22084331239===C C X P7. 已知P {X =n }=p n,n =1, 2, 3, …, 求p 的值.8解 根据{}∑=∞=11n n X P =, 有 ∑∞=-==111n n pp P 解上面关于p 的方程,得p =0.5.8. 已知P {X =n }=p n, n =2, 4, 6, …,求p 的值.解 1122642=-=⋯+++p p p p p解方程,得p =2±/29. 已知P {X =n }=cn , n =1, 2, …, 100, 求c 的值. 解 ∑=+⋯++==10015050)10021(1n c c cn =解得 c =1/5050 .10. 如果p n =cn _2,n =1, 2, …, 问它是否能成为一个离散型概率分布,为什么?解 ,1121∑=∑∞=∞=n n n n c p 由于级数∑∞=121n n 收敛, 若记∑∞=121n n =a ,只要取ac 1=, 则有∑∞=1n n p =1,且p n >0. 所以它可以是一个离散型概率分布.11. 随机变X 只取1, 2, 3共三个值,其取各个值的概率均大于零且不相等并又组成等差数列,求X 的概率分布.解 设P {X =2}=a ,P {X =1}=a -d , P {X =3}=a +d . 由概率函数的和为1,可知a =31, 但是a -d 与a +d 均需大于零,因此|d |<31, X 的概率分布为其中d 应满足条件:0<|d |<312. 已知{}λ-==e !m c λm X P m ,m =1, 2, …, 且λ>0, 求常数c . 解{}∑∑∞=-∞====11e!1m m m m c m X p λλ由于∑∑∞=∞==+=10e !1!m mm mm m λλλ, 所以有∑∞=---=-=-=11)e 1(e )1e (e !m m c c m c λλλλλ 解得 λ--=e 11c13. 甲、乙二人轮流投篮,甲先开始,直到有一人投中为止,假定甲、乙二人投篮的命中率分别为0.4及0.5,求: (1)二人投篮总次数Z 的概率分布; (2)甲投篮次数X 的概率分布; (3)乙投篮次数Y 的概率分布.解 设事件A i 表示在第i 次投篮中甲投中,j 表示在第j 次投篮中乙投中,i =1, 3, 5, …, j =2, 4, 6,…,且A 1, B 2, A 3, B 4,…相互独立.(1){}{}1222321112---=-=k k k A B A B A p k Z P = (0.6×0.5)1-k ·0.4= 0.4(0.3)1-k k=1, 2, …{})(2212223211k k k k B A B A B A p k Z P ---===0.5×0.6×(0.6×0.5)1-k =0.3kk=1, 2, …(2) {}{}12223211---==n n n A B A B A p n X P{}n n n n B A B AB A p 212223211---+)5.06.04.0()5.06.0(1⨯+⨯=-n,2,13.07.01=⨯=-n n (3) {}4.0)(01===A P Y P{}{}{}122121121211+--+==n n n n n A B A B A P B A B A P n Y P)4.05.05.0(6.0)5.06.0(1⨯+⨯⨯⨯=-n,2,13.042.01=⨯=-n n 14. 一条公共汽车路线的两个站之间,有四个路口处设有信号灯,假定汽车经过每个路口时遇到绿灯可顺利通过,其概率为0.6,遇到红灯或黄灯则停止前进,其概率为0.4,9求汽车开出站后,在第一次停车之前已通过的路口信号灯数目X 的概率分布(不计其他因素停车).解 X 可以取0, 1, 2, 3, 4 .P { X =0 } =0.4 P { X =1 }=0.6×0.4=0.24 P { X =2 } =0.62×0.4=0.144 P { X =3 } =0.63×0.4=0.0864 P { X =4 } =0.64=0.129615. ⎩⎨⎧∈=.,0],[,sin )(其他,b a x x x f问f (x )是否为一个概率密度函数,为什么?如果(1).π23,)3( ;π,0)2( ;2π,0======b a b a b a π解 在[0, 2π]与[0, π]上,sin x ≥0,但是,1d sin π0≠⎰x x,1d sin 2π0=⎰x x 而在⎥⎦⎤⎢⎣⎡π23,π上,sin x ≤0.因此只有(1)中的a , b 可以使f (x )是一个概率密度函数.16. ⎪⎩⎪⎨⎧≤=-.0,00e)(,22x x cx x f cx ,>其中c >0,问f (x )是否为密度函数,为什么?解 易见对任何x ∈(-∞ , +∞) , f ( x ) ≥ 0,又1d e 202=⎰-∞+x cx cxf (x )是一个密度函数 .17.⎩⎨⎧+=.0.2<<,2)(其他,a x a x x f问f ( x )是否为密度函数,若是,确定a 的值;若不是,说明理由. 解 如果f ( x )是密度函数,则f ( x )≥0,因此a ≥0,但是,当a ≥0时,444|d 2222≥+==⎰⨯++a x x a a a a 由于x x f d )(⎰+∞∞-不是1,因此f ( x )不是密度函数. 18. 设随机变量X ~f ( x )⎪⎩⎪⎨⎧∞++=.,0,,)1(π2)(2其他<<x a x x f 确定常数a 的值,如果P { a < x < b } =0.5,求b 的值.解)arctan 2π(2arctan π2d )1(π22a x x x a a-π==+⎰⎰+∞+∞ 解方程 π2⎪⎭⎫ ⎝⎛a arctan - 2π=1 得 a = 0{}b x x x f b x P b barctan π2|arctan π2d )(000==⎰=<< 解关于b 的方程:π2arctan b =0.5 得 b =1.19. 某种电子元件的寿命X 是随机变量,概率密度为⎪⎩⎪⎨⎧≥=.100,0,100100)(2<x x x x f3个这种元件串联在一个线路中,计算这3个元件使用了150小时后仍能使线路正常工作的概率.解 串联线路正常工作的充分必要条件是3个元件都能正常工作. 而三个元件的寿命是三个相互独立同分布的随机变量,因此若用事件A 表示“线路正常工作”,则3])150([)(>X P A P ={}32d 1001502150=⎰∞+x x X P => 278)(=A P 20. 设随机变量X ~f ( x ),f ( x )=A e-|x|,确定系数A ;计算P { |X | ≤1 }. 解 A x A x A x x 2d e 2d e10||=⎰=⎰=∞+-∞+∞--解得 A =21 {}⎰⎰---==≤10||11d e d e 211||x x X P x x632.0e 11≈-=-21. 设随机变量Y 服从[0, 5]上的均匀分布,求关于x 的二次方程4x 2+4xY +Y +2=0有实数根的概率.解 4x 2+4xY +Y +2=0. 有实根的充分必要条件是△=b 2-4ac =16Y 2-16(Y +2)=16Y 2-16Y -32≥0 设事件P (A )为所求概率.则{}{}{}120321616)(2-≤+≥=≥--=Y P Y P Y Y P A P=0.622. 设随机变量X ~ f ( x ),⎪⎩⎪⎨⎧-=.,01||,1)(2其他,<x xcx f确定常数c ,计算.21||⎭⎬⎫⎩⎨⎧≤X P 解 π|arcsin d 1111211c x c x x c ==-⎰=--c =π131arcsin 2d 1121||0212121 2=π=-π=⎭⎬⎫⎩⎨⎧≤⎰-xx x X P 23. 设随机变量X 的分布函数F ( x )为⎪⎩⎪⎨⎧≥=.1,1,10,0,0)(x x x A x x F <<,< 确定系数A ,计算{}25.00≤≤X P ,求概率密度f ( x ). 解连续型随机变量X 的分布函数是连续函数,F (1)=F (1-0),有A =1.⎪⎩⎪⎨⎧=.,0,10,21)(其他<<x xx f {}5.0)0()25.0(25.00=-=≤≤F F X P24. 求第20题中X 的分布函数F ( x ) . 解 {}t x X P x F t xd e 21)(||-∞-⎰=≤= 当t ≤ 0时,x t xt x F e 21d e 21)(=⎰=∞- 当t >0时,t t t x F t x t t x d e 21d e 21d e 21)(-00||⎰+⎰=⎰=-∞--∞-x x ---=-+=e 211)e 1(212125. 函数(1+x 2)-1可否为连续型随机变量的分布函数,为什么? 解 不能是分布函数,因F (-∞)= 1 ≠ 0. 26. 随机变量X ~f ( x ),并且)1(π)(2x ax f +=,确定a 的值;求分布函数F ( x );计算{}1||<X P . 解 a x a x x a ==⎰+=∞+∞-∞+∞-arctan πd )1(π12因此a =1x xt t t x F ∞-∞-=⎰+=arctan π1d )1(π1)(2x arctan π121+= {}⎰+=⎰+=-12112d )1(π12d )1(π11||x x x x X P <21arctan π210==x27. 随机变量X 的分布函数F ( x ) 为:⎪⎩⎪⎨⎧≤-=.2,02,1)(2x x xA x F ,>确定常数A 的值,计算{}40≤≤X P . 解 由F ( 2+0 )=F ( 2 ),可得4,041==-A A{}{})0()4(4X 040F F P X P -=≤=≤≤<=0.7528. 随机变量X ~f ( x ),f ( x )=,ee xx A-+确定A 的值;求分布函数F ( x ) .解 ⎰+=⎰+=∞∞-∞∞--x A x A xx x x d e 1e d e e 12A A x 2πe arctan ==∞∞-因此 A =π2,x txt t t x F ∞-∞--=+=⎰e arctan π2d )e e (π2)(x e arctan π2=29. 随机变量X ~f ( x ),⎪⎩⎪⎨⎧=.,00,π2)(2其他<<a x xx f确定a 的值并求分布函数F ( x ) .解 220222ππd π21a x x x a a ==⎰= 因此,a = π 当0<x <π时,⎰=x x t t x F 0222πd π2)(⎪⎪⎩⎪⎪⎨⎧≥≤=π1,π0,π0,0)(22x x xx x F << 30. 随机变量X 的分布函数为)0(0,e 22210,0)(22>>a x ax x a x x F ax⎪⎩⎪⎨⎧++-≤=-求X 的概率密度并计算⎭⎬⎫⎩⎨⎧a X P 10<<. 解 当x ≤ 0时,X 的概率密度f ( x ) =0;当x > 0时,f ( x ) =F′ ( x )⎪⎩⎪⎨⎧≤=-.0,e 2,0,0)(23> x x a x x f ax)0()1(1010F a F a x P a x P -=⎭⎬⎫⎩⎨⎧≤=⎭⎬⎫⎩⎨⎧<<<08.0e 2511≈-=- 31. 随机变量X 服从参数为0.7的0-1分布,求X 2,X 2-2X 的概率分布.解 X 2仍服从0-1分布,且P { X 2=0 } =P { X =0 } =0.3,P {X 2=1}=P {X=1}=0.7X 2-2X 的取值为-1与0 , P {X 2-2X =0}其他=P { X =0 } =0.3P { X 2-2X =-1 } =1-P { X =0 } =0.732. 已知P { X =10n} =P { X =10-n}=,,2,1,31=n n Y =l gX ,求Y 的概率分布.解 Y 的取值为±1, ±2 , …P { Y =n } =P { l gX =n } =P { X =10n } =31P { Y =-n } =P { l gX =-n } =P { x =10-n } =31 n =1 ,2 , …33. X 服从[a , b ]上的均匀分布,Y =ax +b (a ≠0),求证Y 也服从均匀分布.证 设Y 的概率密度为f Y ( y ) ,X 的概率密度为f X ( x ),只要a ≠ 0,y = ax + b 都是x 的单调函数. 当a > 0时,Y 的取值为[a 2+b , ab +b ],ax y h b y a y h x y1)(,)(1)(='='-== ],,[,)(1])([)()(2b ab b a y a b a y h f y h y f X Y ++∈-='=当],[2b ab b a y ++∈时,f Y ( y ) =0.类似地,若a <0,则Y 的取值为[ ab +b , a 2+b ]⎪⎩⎪⎨⎧+≤≤+--=.,0,,)(1)(2其他b a y b ab a b a y f Y因此,无论a >0还是a <0,ax +b 均服从均匀分布.34. 随机变量X 服从[0 , 2π]上的均匀分布Y =cos X , 求Y 的概率密度f Y ( y ).解 y =cos x 在[0, 2π]上单调,在(0 , 1)上,h ( y ) = x =arccos yh′ ( y ) = 211y -- , f x ( x ) = π2 , 0 ≤ x ≤ 2π. 因此⎪⎩⎪⎨⎧-=.0,10,1π2)(2其他,<<y yy f Y35. 随机变量X 服从(0 , 1)上的均匀分布,Y =e x, Z =|ln X |,分别求随机变量Y 与Z 的概率密度f Y ( y ) 及f Z ( z ) .解 y = e x在(0 , 1)内单调 , x =ln y 可导,且x′y = y1, f X ( x ) =1 0 < x < 1 , 因此有⎪⎩⎪⎨⎧.,0,e 1,1)(其他 <<y yy f Y在(0 , 1)内ln x < 0|ln x |=-ln x 单调,且x = e z -,x′z =-e z -,因此有⎩⎨⎧∞+=-.,0,0e )(其他<<,z z f z z36. 随机变量X ~f ( x ) ,⎩⎨⎧≤=-0,00,e )(x x xf x > Y =X , Z = X 2 , 分别计算随机变量Y 与Z 的概率密度f y ( y ) 与f Z ( z ) .解 当x > 0时,y =x 单调,其反函数为x = y 2 , x′y = 2y⎪⎩⎪⎨⎧≤=-.0,0,0,e 2)(2y y y y f y Y >当x > 0时z =x 2也是单调函数,其反函数为x =z , x′ z =z21⎪⎩⎪⎨⎧≤=-.0,00e 21)(z ,z zz f zz >37.随机变量X ~f ( x ),当x ≥ 0时,)1(2)(2x x f +=π, Y =arctan X ,Z =X1,分别计算随机变量Y 与Z 的概率密度f Y ( y ) 与fz ( z ) . 解 由于y = arctan x 是单调函数,其反函数x =tan y , x′ y =sec 2y 在⎪⎭⎫ ⎝⎛-2π,0内恒不为零,因此,当0 < y <π2时,π2)tan 1(π2sec )(22=+=y y y f Y 即Y 服从区间(0 , 2π)上的均匀分布.z = x 1在x >0时也是x 的单调函数,其反函数x =z 1, x′ z =21z-.因此当z >0时,)1(π2])1(1[π21)(222z zz z fz +=+-=⎪⎩⎪⎨⎧≤+=0,00,)1(π2)(2z z z z f z > 即Z =X1与X 同分布. 38. 一个质点在半径为R ,圆心在原点的圆的上半圆周上随机游动. 求该质点横坐标X 的密度函数f X ( x ) .解 如图,设质点在圆周位置为M ,弧MA 的长记为L ,显然L 是一个连续型随机变量,L 服从[0,πR ]上的均匀分布.⎪⎩⎪⎨⎧≤≤=.,0π0,π1)(其他,R l Rl f LM 点的横坐标X 也是一个随机变量,它是弧长L 的函数,且X = R cos θ = R cosRL函数x = R cos l / R 是l 的单调函数 ( 0< l < πR ) ,其反函数为l = R arccosRx 22xR R l x--='当-R < x < R 时,L′x ≠ 0,此时有2222π1π1)(x R R x R R x f X -=⋅--=当x ≤ -R 或x ≥ R 时,f X ( x ) =0 .39. 计算第2 , 3 , 5 , 6 , 11各题中的随机变量的期望. 解 根据第2题中所求出的X 概率分布,有2138223815138210=⨯+⨯+⨯=EX 亦可从X 服从超几何分布,直接计算2120521=⨯==N N nEX 在第3题中21161216611690=⨯+⨯+⨯=EX亦可从X 服从二项分布(2,41),直接用期望公式计算:21412=⨯==np EX在第5题中(1) 3.122014220934492431=⨯+⨯+⨯+⨯=EX (2) 3.022013220924491430=⨯+⨯+⨯+⨯=EY在第6题中,25.2220843220108222027122010=⨯+⨯+⨯+⨯=EX在第11题中,⎪⎭⎫⎝⎛+⨯+⨯+⎪⎭⎫ ⎝⎛-⨯=d 313312d 311EX图2-131|<d <|0 d 22+=40. P { X = n } =nc, n =1, 2, 3, 4, 5, 确定C 的值并计算EX .解 160137543251==++++=∑=c c c c c c n c n13760=C 137300551==∑⋅==C n c n EX n 41. 随机变量X 只取-1, 0, 1三个值,且相应概率的比为1 : 2 : 3,计算EX .解 设P { X =-1 } = a ,则P { X =0 } =2a , P { X =1 } =3a ( a >0 ) ,因a + 2a + 3a = 1 , 故a =1/631631620611=⨯+⨯+⨯-=EX 42. 随机变量X 服从参数为0.8的0-1分布,通过计算说明EX 2是否等于( EX )2? 解 EX =P { X =1 } =0.8,( EX )2=0.64EX 2=1×0.8=0.8>( EX )243. 随机变量X ~f ( x ) ,f ( x ) =0.5e - | x |,计算EX n,n 为正整数. 解 当n 为奇数时,)(x f x n是奇函数,且积分x x xn d e 0-∞⎰收敛,因此0d e5.0||=⎰=-∞+∞-x x EX x n n当n 为偶数时,x x x x EX x n x n n d e 5.02d e 5.00||-∞+-∞+∞-⎰=⎰=!)1(d e 0n n x x x n =+Γ=⎰=-∞+44. 随机变量X ~f ( x ) ,⎪⎩⎪⎨⎧-≤≤=.,0,21,2,10,)(其他<<x x x x x f 计算EX n(n 为正整数) . 解 x x x x x x x f x EXn n n nd )2(d d )(21101⎰-+⎰=⎰=+∞+∞-1)2(21)12(122121-+--+++=++n n n n n )2()1(222++-=+n n n45. 随机变量X ~f ( x ) ,⎩⎨⎧≤≤=.,0,10,)(x cx x f bb ,c 均大于0,问EX 可否等于1,为什么?解 11d d )(10=+=⎰=⎰∞+∞-b cx cx x x f b 而2d 101+=⎰=+b cx cx EX b 由于方程组⎪⎪⎩⎪⎪⎨⎧=+=+1211b c b c无解,因此EX 不能等于1. 46. 计算第6,40各题中X 的方差DX . 解 在第6题中,从第39题计算知EX =49, 22012152208492201084220272=⨯+⨯+=EX DX =EX 2-( EX )2≈0.46在第40题中,已计算出EX =137300, c cn n c n EX n n 15515122=∑=⨯∑=== =137900DX =EX 2-(EX )2≈1.7747. 计算第23,29各题中随机变量的期望和方差.其他其他解 在第23题中,由于f ( x ) =x21(0<x <1),因此31d 21=⎰=x xxEX51d 22102=⎰=x xx EXDX = EX 2- ( EX )2 =454 在第29题中,由于f ( x ) =2π2x( 0<x <π ) , 因此π32d π2π022=⎰=x xEX2πd π22π0232=⎰=x x EX DX =EX 2- ( EX )2=18π248. 计算第34题中随机变量Y 的期望和方差. 解 EY =π2d 1π2d )(12=⎰-=⎰∞+∞-y y y y y yf Y EY 2=21d 1π21022=⎰-y y y DY =222π28ππ421-=-49. 已知随机变量X 的分布函数F ( x ) 为:F ( x ) =⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≤+≤-++-.1,11022101,2211,022x x ,x x x x x x ,<-,<,<计算EX 与DX .解 依题意,X 的密度函数f ( x ) 为:⎪⎩⎪⎨⎧≤-≤-+=.010,101,1)(其他,<,<,x x x x x f解 EX =0d )1(d )1(0101=-⎰++⎰--x x x x x xEX 2=61d )1(d )1(102012=-⎰++⎰-x x x x x x DX =61 50. 已知随机变量X 的期望E X =μ,方差DX =σ2,随机变量Y = σμ-X , 求EY 和DY .解 EY =σ1( EX -μ ) =0 DY =2σDX=151. 随机变量Y n ~B ( n , 41) ,分别就n =1, 2, 4, 8, 列出Y n 的概率分布表,并画出概率函数图 .其中a = 1/65536 . 图略 .52. 设每次试验的成功率为0.8,重复试验4次,失败次数记为X ,求X的概率分布 . 解 X 可以取值0, 1, 2, 3, 4 .相应概率为P ( X =m ) =m m mC 2.08.0444⨯⨯-- ( m=0, 1, 2, 3, 4 ) 计算结果列于下表53. 设每次投篮的命中率为0.7,求投篮10次恰有3次命中的概率 ;至少命中3次的概率 .解 记X 为10次投篮中命中的次数,则 X ~B ( 10 , 0.7 ) .{}009.03.07.0373310≈==C X P{}{}{}{}21013=-=-=-=≥X P X P X P X P=1-0.310-10×0.7×0.39-45×0.72×0.38≈0.998454.掷四颗骰子,求“6点”出现的平均次数及“6点”出现的最可能(即概率最大)次数及相应概率.解 掷四颗骰子,记“6点”出现次数为X ,则X ~B (4,61).EX = np =32由于np + p = 65,其X 的最可能值为[ np + p ]=0{}1296625)65(04===X P 若计算{}12965001==X P ,显然{}{},3,2==x P x P{}4=x P 概率更小.55.已知随机变量X ~B (n , p ),并且EX =3,DX =2,写出X 的全部可能取值,并计算{}8≤X P .解 根据二项分布的期望与方差公式,有⎩⎨⎧==23npq np 解方程,得q =32,p =31,n =9 .X 的全部可能取值为0, 1, 2, 3, …, 9 .{}{}918=-=≤X P X P= 1-9)31(≈ 0.999956.随机变量X ~B (n ,p ),EX =0.8,EX 2=1.28,问X 取什么值的概率最大,其概率值为何? 解 由于DX = EX 2-(EX)2=0.64, EX =0.8, 即⎩⎨⎧==8.064.0np npq 解得 q = 0.8,p = 0.2,n = 4 .由于np +p =1,因此X 取0与取1的概率最大,其概率值为{}{}4096.08.0104=====X P X P57.随机变量X ~B (n , p ),Y =e aX,计算随机变量Y 的期望EY 和方差DY .解 随机变量Y 是X 的函数,由于X 是离散型随机变量,因此Y 也是离散型随机变量,根据随机变量函数的期望公式,有 }{ }{∑+==∑==∑+==∑∑====-==-==-ni n a i n i a in ni ai ni na i n i a i n ni ni in i i n ai ai q p q p C i X P EY q p q p C qp C i X P EY 022022000)e ()e ()e ()e ()e (e en ap n ap q q DY 22)e ()e (+-+=58. 从一副扑克牌(52张)中每次抽取一张,连续抽取四次,随机变量X ,Y 分别表示采用不放回抽样及有放回抽样取到的黑花色张数,分别求X ,Y 的概率分布以及期望和方差. 解 X 服从超几何分布,Y 服从二项分布B (4,21).)4,3,2,1,0(45242626===-m C C C m X P m m }{)4,3,2,1,0()21()21(44===-m C m Y P mm m }{具体计算结果列于下面两个表中.X 0 1 2 3 4 P46/833 208/833 325/833208/833 46/833Y 0 1 2 3 4 P1/164/166/164/161/161 2214171651485226522641252264211===⨯===⨯⨯⨯=--⋅⋅==⨯==npq DY np EY N n N N N N N n DX N N n EX 59. 随机变量X 服从参数为2的泊松分布,查表写出概率4,3,2,1,0,==m m X P }{并与上题中的概率分布进行比较.X0 1 2 3 4 P0.13530.27070.27070.18040.090260.从废品率是0.001的件产品中,一次随机抽取500件,求废品率不超过0.01的概率. 解 设500件中废品件数为X ,它是一个随机变量且X 服从N=,1N =100,n =500的超几何分布.由于n 相对于N 较小,因此它可以用二项分布B (500,0.001)近似.又因在二项分布B (500,0.001)中,n =500比较大,而p =0.001非常小,因此该二项分布又可用泊松分布近似,其分布参数λ=np =0.5.}∑=≈≤=≤⎩⎨⎧=-505.0999986.0e !5.05X 001.0500m m m P XP }{ 61.某种产品每件表面上的疵点数服从泊松分布,平均每件上有0.8个疵点,若规定疵点数不超过1个为一等品,价值10元;疵点数大于1不多于4为二等品,价值8元;4个以上者为废品,求: (1)产品的废品率; (2)产品价值的平均值解 设X 为一件产品表面上的疵点数目,(1)}{}>{314≤-=X P X P ∑==-==30014.01m m X P }{(2)设一件产品的产值为Y 元,它可以取值为0,8,10.)(61.98088.0101898.08 110418 10108800元}{}<{}{}{}{≈⨯+⨯=≤+≤==⨯+=⨯+=⨯=X P X P Y P Y P Y P EY62.设书籍中每页的印刷错误服从泊松分布,经统计发现在某本书上,有一个印刷错误的页数与有2个印刷错误的页数相同,求任意检验4页,每页上都没有印刷错误的概率.解 设一页书上印刷错误为X ,4页中没有印刷错误的页数为Y ,依题意,}{}{21===X P X P 即 λλλλ--=e !2e2解得λ=2,即X 服从λ=2的泊松分布.2e 0-===}{X P p显然Y ~B )e ,4(2-84e 4-===p Y P }{63.每个粮仓内老鼠数目服从泊松分布,若已知一个粮仓内,有一只老鼠的概率为有两只老鼠概率的两倍,求粮仓内无鼠的概率. 解 设X 为粮仓内老鼠数目,依题意λλλλ--⨯====e !22e2212}{}{X P X P解得λ=1.1e 0-==}{X P。
经济数学试题及答案解析一、选择题1. 下列哪个选项是边际成本函数MC的表达式?A. MC = dTC/dQB. MC = TC/QC. MC = Q * dTC/dQD. MC = dTR/dQ答案:A2. 某企业在生产过程中,总成本函数为TC(Q),若边际成本MC等于平均成本AC,则该企业处于:A. 完全竞争市场B. 完全垄断市场C. 垄断竞争市场D. 寡头市场答案:A二、简答题1. 简述什么是边际收益递减规律。
答案:边际收益递减规律指的是在生产过程中,当持续增加一种生产要素而其他要素保持不变时,该生产要素的边际产出量会逐渐减少的现象。
2. 解释什么是完全竞争市场,并列举其四个基本特征。
答案:完全竞争市场是一种理想化的市场结构,其特征包括:市场上存在大量买家和卖家,产品是同质的,市场信息完全透明,以及进入和退出市场没有障碍。
三、计算题1. 假设某企业的生产函数为Q = 2L + 3K,其中L为劳动投入,K为资本投入。
若企业希望生产10单位的产品,且劳动的边际产出为2单位,求资本的投入量。
答案:首先,根据生产函数,我们有Q = 2L + 3K。
将Q设为10,得到10 = 2L + 3K。
由于劳动的边际产出为2,即dQ/dL = 2,我们可以推断出L = 5。
将L的值代入原方程,得到10 = 2*5 + 3K,解得K = 0。
2. 某企业的成本函数为TC(Q) = 0.5Q^2 - 4Q + 100。
求该企业在生产100单位产品时的总成本和平均成本。
答案:首先,计算总成本TC(100) = 0.5*100^2 - 4*100 + 100 = 5000 - 400 + 100 = 4700。
然后,计算平均成本AC = TC(Q)/Q = 4700/100 = 47。
四、论述题1. 论述规模经济与规模不经济的概念及其对企业生产决策的影响。
答案:规模经济是指企业在扩大生产规模时,单位产品的平均成本下降的现象。
经济数学基础作业答案1:判断()3f x x x =+奇偶性1解:函数()3f x x x =+的定义域为(,),-∞+∞对于任意一个(,),x ∈-∞+∞有()333()()()()f x x x x f x x x x =+-=--=+=--所以()3f x x x =+为奇函数 2:判断函数221y x =+的单调性 2解 对任意的1212,(,),x x x x ∈-∞+∞<且,有22121222221212()()21(21)21212()f x f x x x x x x x -=+-+=+--=-(1) 当12,(,0]x x ∈-∞时,则12()()0f x f x ->,即12()()f x f x >,所以221y x =+在(,0]-∞内是单调减少的。
(2)当12,[0,)x x ∈+∞时,则12()()0f x f x -<,即12()()f x f x <,所以221y x =+在[0,)+∞内是单调增加的。
所以(,)-∞+∞内,221y x =+在[0,)+∞内不是单调函数。
3例如,sin cos ,x y x y x =+=3 解 初等函数在其定义域都是连续的。
由基本初等函数经过有限次的四则运算或复合而成的函数叫初等函数。
4下列函数是由哪些简单函数复合而成?(1)2lg(1)y x =- (2)cos 3x y = (3)arctan(1y = (4) 2cos 3y x =4解:(1)因为函数2lg(1)y x =-的最后一步运算是对数运算,因此对数的真数部分的函数为中间变量u ,即21u x =-,则2l g (1)y x =-由2lg ,1y u u x==-复合而成。
由于21u x =-为多项式,可作为一个简单函数,所以没有复合过程。
(2) cos 3x y =的最后一步运算是指数运算,把指数部分作为中间变量u ,即cos u x =,则cos 3x y =由3,cos u y u x ==复合而成。
《经济数学基础》线性代数部分疑难解析第2章 矩 阵本章重点:1.了解或理解一些基本概念 具体要求如下:(1) 了解矩阵和矩阵相等的概念;(2) 了解单位矩阵、数量矩阵、对角矩阵、三角形矩阵和对称矩阵的定义和性质.(3) 理解矩阵可逆与逆矩阵概念,知道矩阵可逆的条件; (4) 了解矩阵秩的概念;(5) 理解矩阵初等行变换的概念.2.熟练掌握矩阵的加法、数乘、乘法和转置等运算,掌握这几种运算的有关性质;3.熟练掌握用矩阵的初等行变换将矩阵化为阶梯形矩阵、行简化阶梯形矩阵,熟练掌握用矩阵的初等行变换求矩阵的秩、逆矩阵.矩阵乘法是本章的重点之一,在复习矩阵乘法时,要注意: 矩阵乘法不满足交换律,即AB BA =一般不成立(若矩阵A , B 满足AB BA =,则称A , B 为可交换的).矩阵乘法不满足消去律,即由矩阵AC BC =及矩阵C ≠0,不能推出A B =.但当C 可逆时,AC BC =⇒A B =. 矩阵A B ≠≠00,,可能有AB =0.例1 若A ,B 是两个n阶方阵,则下列说法正确是( ). A .000=或=,则=若B A AB B .2222)+(B B A A B A +⋅+=C .若秩,0)(≠A 秩,0)(≠B 则秩0)(≠ABD .若秩,)(n A = 秩,)(n B =则秩n AB =)(解 选项A : 00=或=B A 只是0=AB 的充分条件,而不是必要条件,故A 错误;选项B :222)+(B A B B A A B A +⋅+⋅+=,矩阵乘法一般不满足交换律,即A B B A ⋅≠⋅,故B 错误;选项C :由秩,0)(≠A 秩,0)(≠B 说明A ,B 两个矩阵都不是0矩阵,但它们的乘积有可能0矩阵,如⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=0011,1010B A ,则⎥⎦⎤⎢⎣⎡=0000AB .故秩0)(≠AB 不一定成立,即C 错误;选项D :两个满秩矩阵的乘积还是满秩的,故D 正确.例2 设矩阵[]021-=A ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=100112B ,则AB = .解 因为 AB =[]021- ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-100112= [4 1] 所以,应该填写:[4 1]例3 矩阵13210011000010001000-⎡⎣⎢⎢⎢⎢⎤⎦⎥⎥⎥⎥的秩是( ) A. 1 B. 2 C. 3 D. 4 解 因为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--→⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-000000010000110012310010000100001100123100010001000011001231 对应的阶梯形矩阵有3个非0行,故该矩阵的秩为3. 正确选项是:C例4 设矩阵A =⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--913210063,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=801962B 则矩阵A 与B 的乘积AB 的第3行第1列的元素的值是 .解 根据乘法法则可知,矩阵A 与B 的乘积AB 的第3行第1列的元素的值是A 的第3行元素与B 的第1列元素的乘积之和,即 3×2+(-1)×9+9×0 = -3 应该填写:-3例5 设A 是m ⨯n 矩阵,B 是s ⨯n 矩阵, 则运算有意义的是( ).A .T AB B .ABC .B A TD .T T B A解 根据乘法法则可知,两矩阵相乘,只有当左矩阵的行数等于右矩阵的列数时,它们的乘积才有意义,故矩阵T AB 有意义. 正确选项是A .例6 设方程XA -B =X ,如果A -I 可逆,则X = .解 由XA -B = X ,得XA -X = B ,X (A -I ) = B 故X = B (A -I )-1.所以,应该填写:B (A -I )-1注意:矩阵乘法中要区分“左乘”与“右乘”,若答案写成 (A -I )-1 B ,它是错误的.例7. 设矩阵 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=-1111032311A ,求矩阵A . 解 因为 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=-100010001111103231][1I A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→101340013790001231 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→101340211110001231 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----→943100211110632101→⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥100113010237001349 所以 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=943732311A例8 已知矩阵⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⋅⎥⎦⎤⎢⎣⎡367601012b b a a ,求常数a ,b . 解 因为⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡+=⎥⎦⎤⎢⎣⎡⋅⎥⎦⎤⎢⎣⎡3676010122a abb a ab b b a a 所以 6,3==ab a ,得b = 2 .例9.设矩阵A ,B 满足矩阵方程AX =B ,其中⎥⎦⎤⎢⎣⎡-=0121A ,⎥⎦⎤⎢⎣⎡=2003B , 求X . 解法一:先求矩阵A 的逆矩阵.因为[]⎥⎦⎤⎢⎣⎡-=10010121I A ⎥⎦⎤⎢⎣⎡→11200121⎥⎥⎦⎤⎢⎢⎣⎡-→2121101001 所以 ⎥⎥⎦⎤⎢⎢⎣⎡-=-2121101A且 B A X 1-=⎥⎦⎤⎢⎣⎡⋅⎥⎥⎦⎤⎢⎢⎣⎡-=2003212110⎥⎥⎦⎤⎢⎢⎣⎡-=1 2320解法二: 因为 []⎥⎦⎤⎢⎣⎡-=20010321B A ⎥⎦⎤⎢⎣⎡→23200321⎥⎥⎦⎤⎢⎢⎣⎡-→123102001 所以 ⎥⎥⎦⎤⎢⎢⎣⎡-=12320X例10 设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=451001413101B A 试计算A -1B .解 因为 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=100010001001413101][I A ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→101100013110001101→--⎡⎣⎢⎢⎢⎤⎦⎥⎥⎥100001010411001101 所以 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=-1011141001A 且 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⋅⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=-5134451101114101B A例11 设A ,B 均为n 阶对称矩阵,则AB +BA 也是对称矩阵. 证 因为 A ,B 是对称矩阵,即 B B A A ==T T ,且 T T T )()()(BA AB BA AB +=+ T T T T B A A B += AB BA += BA AB += 根据对称矩阵的性质可知,AB +BA 是对称矩阵.例12 设A 是n 阶矩阵,若3A = 0,则21)(A A I A I ++=--. 证 因为 ))((2A A I A I ++-=322A A A A A I ---++ =3A I -= I所以 21)(A A I A I ++=--第3章 线性方程组本章重点:1.了解n 元线性方程组、线性方程组的矩阵表示、系数矩阵、增广矩阵、一般解的概念.2. 理解并熟练掌握线性方程组的有解判定定理;熟练掌握用消元法求线性方程组的一般解.• 线性方程组AX = b 的解的情况归纳如下:AX = b 有唯一解的充分必要条件是秩(A ) = 秩(A ) = n ; AX = b 有无穷多解的充分必要条件是秩(A ) = 秩(A ) < n ; AX = b 无解的充分必要条件是秩(A ) ≠ 秩(A ). • 相应的齐次线性方程组AX = 0的解的情况为: AX = 0只有零解的充分必要条件是 秩(A ) = n ;AX = 0有非零解的充分必要条件是 秩(A ) < n .例1 线性方程组⎩⎨⎧=-=+0223221x x x x 的系数矩阵是( ) .A .2×3矩阵B .3×2矩阵C .3阶矩阵D .2阶矩阵 解 此线性方程组有两个方程,有三个未知量,故它的系数矩阵是2×3矩阵. 正确的选项是A .例2 线性方程组AX = B 有唯一解,那么AX = 0 ( ) . A .可能有解 B .有无穷多解 C .无解 D .有唯一解 解 线性方程组AX = B 有唯一解,说明秩,)(n A =故AX = 0只有唯一解(零解).正确的选项是D .例3 若线性方程组的增广矩阵为⎪⎪⎭⎫⎝⎛=41221λA ,则当λ=( )时线性方程组有无穷多解.A .1B .4C .2D .12解 将增广矩阵化为阶梯形矩阵, ⎪⎪⎭⎫ ⎝⎛=41221λA ⎪⎪⎭⎫ ⎝⎛λ-λ→021021此线性方程组未知量的个数是2,若它有无穷多解,则其增广矩阵的秩应小于2,即021=λ-,从而λ=12.正确的选项是D .例4 若非齐次线性方程组A m ×n X = B 有唯一解,那么有 ( ). A .秩(A ,B ) = n B .秩(A ) = r C . 秩(A ) = 秩(A ,B ) D .秩(A ) = 秩(A ,B ) = n 解 根据非齐次线性方程组解的判断定理可知选项D 是正确.例5 求解线性方程组⎪⎩⎪⎨⎧=-+--=+-+-=++-1232122023432143214321x x x x x x x x x x x x解 将增广矩阵化成阶梯形矩阵,即⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡------=00100130103800100200131100123113 1101311001231123211212101231A因为 ,秩(⎺A ) = 秩(A ) = 3,所以,方程组有解. 一般解为⎪⎩⎪⎨⎧=+=+=0318334241x x x x x (x 4是自由未知量) 例6 设线性方程组212132123123123x x x x x x x x x c-+=--+=--+=⎧⎨⎪⎩⎪试问c 为何值时,方程组有解?若方程组有解时,求一般解.解 因为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-------→⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=13501350112123111211112c c A⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---→c 0013501121 可见,当c = 0时,方程组有解.且⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-→0000515310535101A 所以,原方程组的一般解为⎪⎪⎩⎪⎪⎨⎧+=-=323153515153x x x x (x 3是自由未知量)。
宁波电大07秋《经济数学基础(综合)》作业1 参考答案第一篇 微分学一、单项选择题1. 下列等式中成立的是(D).A . e x x x =+∞→2)11(lim B .e xx x =+∞→)21(limC .e x x x =+∞→)211(lim D . e xx x =++∞→2)11(lim2. 下列各函数对中,( B )中的两个函数相等.A .2)(,)(x x g x x f == B .x x g x x f ln 5)(,ln )(5==C .x x g x x f ln )(,)(==D .2)(,24)(2-=+-=x x g x x x f 3. 下列各式中,( D )的极限值为1 .A .x x x 1sinlim 0→ B .x x x sin lim ∞→ C .x x x sin lim 2π→D . x x x 1sin lim ∞→4. 函数的定义域是5arcsin 9x 1y 2x+-=( B ).A .[]5,5-B .[)(]5,33,5U --C .()()+∞-∞-,33,UD .[]5,3-5. ()==⎪⎩⎪⎨⎧=≠=a ,0x 0xa 0 x 3x tan )(则处连续在点x x f ( B ). A .31B . 3C . 1D . 0 6. 设某产品的需求量Q 与价格P 的函数关系为则边际收益函数为,2p -3e Q =( C ).A .2p -e 23-B .23p Pe -C .2)233(p e P -- D .2)33(pe P -+7. 函数24)(2--=x x x f 在x = 2点( B ).A. 有定义B. 有极限C. 没有极限D. 既无定义又无极限 8. 若x x f 2cos )(=,则='')2(πf ( C ).A .0B .1C . 4D .-4 9. 曲线x x y -=3在点(1,0)处的切线是( A ).A . 22-=x yB . 22+-=x yC . 22+=x yD . 22--=x y10. 设某产品的需求量q 与价格p 的函数关系为bp -a q =)为常数0b (a, >,则需求量Q 对价格的弹性是( D ). A. b - B.b -a b - C. %b-a b- D.bp -a bp 11. 已知函数⎩⎨⎧>≤=0x e x x -1x f x-0)(,则f(x)在点0x =处( C ).A . 间断B . 导数不存在C . 导数()1-=0f 'D . 导数()1=0f '12. 若函数)1()1(-=-x x x f ,则=)(x f ( B ).A . )1(-x xB . x (x+1)C . )1)(1(+-x xD . 2)1(-x 13. 设函数()()=--+→hh x f h x f x f 22lim,x )(000h 0则可导在( D ). A .()0x f 41 B .()0'x f 21C .()0'x fD .()0'x 4f 14. 设函数,xlnxy =则下列结论正确的是( A ). A .在(0,e)内单调增加 B .在(0,e)内单调减少 C .在(1,+∞)内单调增加 D .在(e,+∞)内单调增加 15. 设方程=-==112x '3y, x y y xy 则的函数是确定 ( D )A. 0B. 2C. 1D. -1二、填空题1. 函数xx x f --+=21)5ln()(的定义域是)2,5(-.2. 已知某产品的成本函数为C (q ) = 80 + 2q ,则当产量q = 50时,该产品的平均成本为3.6 .3. 函数⎪⎩⎪⎨⎧+=2)1ln(xax f(x) 00=≠x x 在0=x 处连续,则常数a 的值为2a =. 4. 抛物线)0(22>=p px y ,在点M ),2(p p 的切线方程是2p x y +=. 5. 设函数)sin(ln 3x y =,则=dx dy )cos(ln 33x x.6. 已知某商品的需求函数为q = 180 – 4p ,其中p 为该商品的价格,则该商品的收入函数R (q ) = 45q – 0.25q 2.7. 设)1ln()(x x x f +-=有极值,则其极值是极小值0.8. 设)0(1)1(2>++=x x x xf ,则f (x )= x x 112++.9. 设x xy ln =,则==122x dxy d -3 . 10. =-→1x 1)-sin(x lim1x 2.三、解答题1. 求下列极限:⑴ )4421(lim 22---→x x x ⑵ 1)211(lim +∞→-x x x ⑶ 625)32)(1()13()21(lim --++-∞→x x x x x x 解:⑴ 原极限=)44)2)(2(2(lim 22--+-+→x x x x x =)2)(2(2lim 2-+-→x x x x =41)2(1lim2=+→x x ⑵ 原极限=)211(lim )211(lim xx x x x --∞→∞→=1e 21⨯-=21e -⑶ 原极限=23)32)(11()113()21(lim625-=--++-∞→xx x x x x2. 求下列函数的导数y ':⑴ y xx x--=1cos 2 ⑵ y =32ln 1x + ⑶ )cos (sin e x x y x-= 解:⑴ y '(x ) =2)1(cos )1(sin )1(2ln 2x x x x x------=2)1(sin )1(cos 2ln 2x x x x x---- ⑵ )ln 1()ln 1(312322'++='-x x y =x x x ln 2)ln 1(31322-+=x x xln )ln 1(32322-+ ⑶ )cos (sin )cos (sin )(])cos (sin e ['-+-'='-='x x e x x e x x y xx xx e x x e x x e x x x sin 2)sin (cos )cos (sin =++-=3. 设⎪⎪⎩⎪⎪⎨⎧>+=<-=0 x ,x bx)ln(10 x , a 0 x , cos 1)(2x xx f 问当a 、b 为何值时,)(x f 在0=x 处连续?解:a f =)0(. 当0<x 时,xx x x x x x x x x f cos 11sin )cos 1()cos 1)(cos 1(cos 1)(2222+⋅=++-=-= 211111cos 11lim )sin (lim )(lim 2020=+⨯=+⋅=∴---→→→x x x x f x x x而 b e b bx b bx bxb x bx x f bx x x x x ==+=+⋅=+=++++→→→→ln )1ln(lim )1ln(1lim )1ln(lim )(lim 10000 由于)(x f 在0=x 处连续的条件是极限)(lim 0x f x →存在,且极限值等于)0(f ,即)0()(lim )(lim 00f x f x f x x ==+-→→据此即得 21==b a 4. 设 y = f (x ) 由方程 x y x y=++e )cos(确定,求y '解:两边取对求导)()e (])[cos('='+'+x y x y 1e ]1)[sin(='+'++-y y y x y)sin(e )sin(1y x y x y y +-++='5. 下列各方程中y 是x 的隐函数,试求y d : ⑴ 4e)sin(=++xyy x ⑵ 1ln ln =+x y y x ⑶ 222e xy e y =-解:(1)方程两边对x 求导,得0)(e )1()cos(='+⋅+'+⋅+y x y y y x xy解出y ',得xy xy xe y x ye y x y ++++-=')cos()cos( ∴ dx xey x ye y x dy xyxy++++-=)cos()cos( (2)方程两边对x 求导,得01ln 1ln =⋅+'+'⋅⋅+xy x y y y x y 解出y ',得22ln ln x x xy y y xy y ++-=' ∴dx xx xy y y xy dy 22ln ln ++-= ⑶ 方程222e xy ey=-两边对x 求导,得0)2(222='⋅⋅+-'⋅⋅y y x y y e y解出y ',得xy e y y y 2222-=' ∴dx xy e y dy y)(222-= 6. 确定下列函数的单调区间。
⑴ 1--=x e y x⑵ x x y -=3223⑶ )1ln(x x y +-=解: ⑴ 0,01>⇒>-='x e y x,函数单增区间为),0[∞,单减区间为]0,(-∞。
⑵ 10,0131><⇒>-='-x x y ,函数单增区间为]1,0[,单减区间为),1[]0,(∞-∞U 。
⑶ 10,01-<>⇒>+='x x xxy 或,函数单增区间为),0[∞,单减区间为]0,1(-。
7. 求下列函数在指定区间的最大值与最小值。
⑴233)(x x x f -=,[-1,4] ⑵x x x f -+=1)(,[-5,1] ⑶)1ln()(2+=x x f ,[-1,2]解: ⑴ )2(3-='x x f ,0)0(=f ,4)2(-=f ,4)1(-=-f ,16)4(=f ,最大值为16)4(=f ,最小值为4)1()2(-=-=f f 。
⑵ xf --='1211,45)43(=f ,65)5(+-=-f ,1)1(=f , 最大值为45)43(=f ,最小值为65)5(+-=-f 。
⑶ 122+='x xf ,0)0(=f ,2ln )1(=-f ,5ln )2(=f , 最大值为5ln )2(=f ,最小值为0)0(=f 。
8. 设某工厂生产某产品的固定成本为50000元,每生产一个单位产品,成本增加100元。
又已知需求函数p q 42000-=,其中p 为价格,q 为产量,这种产品在市场上是畅销的,问价格为多少时利润最大?并求最大利润.解:C (p ) = 50000+100q = 50000+100(2000-4p )=250000-400pR (p ) =pq = p (2000-4p )= 2000p -4p 2利润函数L (p ) = R (p ) - C (p ) =2400p -4p 2-250000,且令)(p L '=2400 – 8p = 0得p =300,该问题确实存在最大值. 所以,当价格为p =300元时,利润最大. 最大利润 1100025000030043002400)300(2=-⨯-⨯=L (元). 9. 试证:可微偶函数的导数为奇函数.证:设f (x )为可微偶函数,即f (x ) = f (-x ),则f ' (x ) = (f (x ))'= (f (-x ))'=f ' (-x ) (-x )'= -f ' (-x )即 f ' (-x ) = -f ' (x )所以 f ' (x ) 为奇函数.10. 试证:当0>x 时,)1ln(x x +>.证:设F (x ) = x – ln(1+x )因为 xx F +-='111)( 当x >0时,)(x F '>0,即F (x )单调增加. 有F (x ) > F (0) = 0 x – ln(1+x ) > 0所以,当x >0时,x > ln(1+x )宁波电大06秋《经济数学基础(综合)》作业2参考答案第二篇 积分学一、单项选择题1. 若)(x F 为)(x f 的一个原函数,则⎰=+dx x f )23(( C ). A .C x F ++)23( B .C x F +)(31 C .C x F ++)23(31D .C x F +)( 2. 若=⎰dx x f e x)f '-2x )(,(则的一个原函数是( B ). A .-2xeB .C +-2x2e- C .2x -e 21- D .C +2x -e 21-3. 设R '(q )=100-4q ,若销售量由10单位减少到5单位,则收入R 的改变量是( B ).A .-550B .-350C .350D .以上都不对 4. 若f (x )的一个原函数为x ln ,则=)('x f ( D ). A. x ln B. x x ln C.x 1D. 21x- 5. 某产品边际成本为'C q (),固定成本为c 0,边际收入为'R q (),则利润函数L q ()=( D ). A. [()()]'-'⎰R x C x x qd 0 B. [()()]'-'-⎰C x R x x c qd 0C.[()()]'-'+⎰R x C x x c qd 00 D. [()()]'-'-⎰R x C x x c qd 06. 下列等式成立的是( D ).A.x d dx x=1B.)1(12x d dx x -=C. sinxdx=d(cosx)D. x xda adx a ln 1= 7. 设=⎰dx f )x -1f(,x )(1则为连续函数为( A ) .A .⎰10 x f(x )dx 2 B .⎰10 x f(x )dx 2- C .⎰10f(x)dx 21 D .⎰1f(x)dx 21-8. =⎰dx x ln ( C ) A .c x+1B .c x x +lnC .c x x x +-lnD .c x x x ++ln 9. 若⎰+=C x F dx x f )()(,则=--⎰dx e f ex x)()(( C ).A. C e F x +)(B. C e F x+-)( C. C e F x +--)( D.C xe F x+-)( 10. 下列定积分中, 其值为0的是( A ). A .⎰-112sin xdx x B .xdx x cos 112⎰- C .xdx e x sin 12⎰- D .dx x )1(112⎰-+11. 某产品的边际成本为)('q C , 固定成本为0c , 则总成本函数=)(q C ( C ). A. ⎰qdx x C 0)(' B. ⎰-qdx c x C 00])('[C.00)('c dx x C q+⎰ D. 00)('c dx x C q-⎰12. 当k =( D )时,抛物线2kx y =与直线1=x 及x 轴所围成的图形面积等于1.A. 1B. 2C. 3D. 3或-3 13.=⎰-dx x x 11( B )A. 4B. 0C. 32D. 32- 14. 微分方程xy y 2='的通解是=y ( A ) A. 2x Ce B. C ex +2C. C x +2D. 2x e15. 若f (x )是可积函数,则下列等式中不正确的是( D ).A. )())(('x f dx x f =⎰B.c x f dx x f +=⎰)()('C. ⎰=dx x f dx x f d )())(( D. ⎰=)()(x f x df二、填空题1. 若2x e 是)(x f 的一个原函数,则=⎰dx x f e 2-x)(c x +2.2. dx ex x 232⎰= c e x +3261.3.=+⎰-1122d )1(x x x0.4. 若c x x x x f +-+=⎰11d )(,则=)(x f 2)1(2--x .5. 若c x F x x f +=⎰)(d )(,则x f x x )d e (e --⎰=C e F x+--)(.6. 设曲线在任一点)0(>x x 处的切线斜率为xx 1-,且过(1,3)点,则该曲线的方程是2ln +-=x x y .7. 某商品的边际收入为q 210-,则收入函数R q ()=210q q -. 8. 设)(x f 为连续函数,积分⎰1)(dt t f 经代换)0(≠=a at u 换元后变为积分du aa u f a⎰⋅01)(.9.=-⎰dx x x 21c x +--21.10.⎰+∞123d 1x x=2.三、解答题1. 求下列不定积分:(1) dx x x ⎰-235; (2)dx xx ⎰-1 ; (3) dx x x⎰1sin 12. 解:(1)原式=Cx C x x d x +--=+-+⨯-=---⎰2322322212)35(91)35(121161)35()35(61(2) 原式c x x c t t dt t t t t x +-+--=++-=--=-⎰2332)1(3212322)2(11 (3) 原式=⎰+=-C xx d x 1cos 11sin 2. 求下列定积分:(1)dx xe x ⎰12; (2) dx e xx ⎰-4131; (3) ⎰-+12|1|dx x .解:(1) 原式=414142412212121222122102102102+=+-=-=-=⎰⎰e e e e e dx e xe xde x x x x(2) 原式=36413413323232)3(32----+-=-=--⎰e e e x d ex x(3) 原式⎰⎰⎰⎰------+++++-=+++-=11121112)1()1()1()1()1()1(x d x x d x dx x dx x2522104211021)1(21)1(21112122=+=-+--=+++-=--)()(x x3. 设由曲线2x y =,直线0,2,=+==y k x k x 所围成的面积最小,求k 的值. 解:)1(4)(),8126(3131x (k) S '2232k k2+=++===++⎰k k S k k x dx k k得驻点1-=k ∴当1-=k 时,其图形面积S 有最小值.4. 求曲线322+-=x x y 和曲线322++-=x x y 所围平面图形的面积. 解: 平面图形的面积[]38232)32()32(2023=⎥⎦⎤⎢⎣⎡+-=+--++=⎰x x dx x x x -x S 20225. 求下列广义积分:(1)dx x⎰+∞11(2) dx x x e ⎰+∞2)(ln 1 (3)dx x e x⎰∞+121. 解:(1)∞∞+=⎰121121x dx x,发散。