2015潍城中考二模数学试题及答案
- 格式:doc
- 大小:1.78 MB
- 文档页数:11
A BC 6题图2015年中考数学二模试题第I 卷(选择题 共45分)一、选择题(本大题共15个小题,每小题3分,共45分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.32的相反数是 A .32 B .23 C .32- D .23- 2.如图,下面几何体的俯视图是3.下列计算正确的是A .a +a =a 2B .a ²a 2=a 2C .(a 2) 3=a 5D .a 2 (a +1)=a 3+a 24.在平面直角坐标系中,点M (6,-3)关于x 轴对称的点在 A .第一象限 B .第二象限C .第三象限D .第四象限5.如图,直线PQ ∥MN ,点C 是MN 上一点,CE 交PQ 于点A ,CF 交PQ 于点B ,且∠ECF =90°,如果∠FBQ =50°,则∠ECM 的度数为A .60°B .50°C .40°D .30°6.在正方形网格中,ABC △的位置如图所示,则sin∠BAC 的值为A .35B .34C .45D .437.已知关于x 的方程2x +a -9=0的解是x =2,则a 的值为 A .-7 B .7 C .-5 D .5 8.抛掷一枚均匀的硬币,前2次都正面朝上,第3次正面朝上的概率A.大于12B.等于12C.小于15 D.无法确定9. 化简111a a a+--的结果为 A .-1 B .1 C .11a a +- D .11a a+- 10.甲、乙、丙、丁四人进行射箭测试,每人10次射箭成绩的平均数都是8.9环,方差分别是2=0.65S 甲,2=0.55S 乙,2=0.50S 丙,2=0.45S 丁,则射箭成绩最稳定的是A .甲B .乙C .丙D .丁A B CEFPQ M N5题图A CDB 12题图 AEF O13题图 B 图1图2Q C B 15题图 11.目前,我国大约有1.3亿高血压病患者,预防高血压不容忽视.“千帕kpa”和“毫米汞柱mmHg”都是表示血压的单位.请你根据表格提供的信息,判断下列各组换算正确的是A .6kpa = 50mmHgB .16kpa = 110mmHgC .20kpa = 150mmHgD .22kpa = 160mmHg 12.在□ABCD 中,AC ⊥AD ,∠B =30°,AC =2,则□ABCD A .4+ B .8 C .8+ D .1613.如图,在△ABC 中,点E 、F 分别为AB 、AC 的中点,连接CE 、BF ,相交于点O .若△OEF 的面积为1,则△ABC 的面积为A .9B .10C .11D .1214.如图,二次函数y =ax 2+bx +c 的图象与y 轴正半轴相交,其顶点坐标为(0.5,1),下列结论:①ac <0;②a +b =0;③4ac -b 2=4a ;④(a +c )-b 2<0.其中正确的个数是A .1B .2C .3D .4 15.如图1,E 为矩形ABCD 边AD 上一点,点P 从点B 沿折线BE —ED —DC 运动到点C 时停止,点Q 从点B 沿BC 运动到点C 时停止,它们运动的速度都是1cm /s.若点P 、Q 同时开始运动,设运动时间为t (s),△BPQ 的面积为y (cm 2).已知y 与t 的函数关系图象如图2,则下列结论错误的是A. AE =6cmB.sin ∠EBC =0.8C.当0<t ≤10时,y =0.4t 2D.当t =12s 时,△PBQ 是等腰三角形第Ⅱ卷(非选择题 共75分)注意事项:1.第II 卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.2.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤. 二、填空题(本大题共6个小题,每小题3分,共18分.) 16.17.因式分解:3x 2-6x +3=_____________. 18.不等式3(x +2)≥7的解集为_____________.20题图1x 19.3D 打印技术日渐普及,打印出的高精密游标卡尺误差只有±0.000 063米.0.000 063这个数用科学记数法可以表示为_____________. 20.⊙M 的圆心在一次函数122y x =+图象上,半径为1.当⊙M 与y 轴相切时,点M 的坐标为_____________.21.如图,直线2y x =、12y x =分别与双曲线1y x =、2y x=在第一象限的分支交于A 、B 、C 、D 四点,则四边形ABCD 的面积为________.三、解答题(本大题共7个小题,共57分.解答应写出文字说明、证明过程或演算步骤.) 22(1)(本小题满分3分)计算:221tan 60+︒22(2) (本小题满分4分)如图,直线121y x =-与22y kx =+相交于点A (1,a ).求k 的值.AB C D E 23题图1 B 23题图2 E24题图124题图2如图1,△ABC 为等腰三角形,AB =AC , BD 分别平分∠ABC ,CE 分别平分∠ACB ,过点A 分别作BD 、CE 的垂线段,垂足为D 、E .求证:AD =AE .23(2) (本小题满分4分)如图2, ⊙O 是△ABC 的内切圆,点D 、E 、F 为切点,点M 为优弧DEF 上任意一点,∠B =66°,∠C =37°,求∠M 的大小.24.(本小题满分8分)某校准备组织学生到“山青世界”开展素质拓展训练.活动前,针对“学生最喜欢的拓展项目”对部分学生进行了问卷调查.学生在A 手扎绳结、B 心理课程、C 登山抢险、D 军体五项、E 攀岩崖降五个项目中选出自己最喜欢的一项,根据调查情况绘制成如下两幅统计图 (尚不完整). ⑴本次接受问卷调查的学生共有 人;⑵补全条形统计图,并计算扇形统计图中C 部分所对应的圆心角度数;⑶若该校共有1200名学生参与活动,试估计大约有多少同学最喜欢“攀岩崖降”项目?27题备用图 AD F B C P 26题图2E ABC D F 26题图1E 27题图如图,小明将一根长为1.4米的竹条截为两段,并互相垂直固定,作为风筝的龙骨,制作成了一个面积为0.24米2的风筝.请你计算一下将竹条截成长度分别为多少的两段? 26.(本小题满分9分)如图,在等腰Rt△ABC 中,∠BAC =90°,AC = AB =2.在Rt△DEF 中,∠EDF =90°,cos∠DEF =35,EF =10.将△ABC 以每秒1个单位的速度沿DF 方向移动,移动开始前点A 与点D 重合.在移动过程中,AC 始终与DF 重合,当点C 、F 重合时,运动停止.连接DB ,过点C 作DB 的平行线交线段DE 于点P .设△ABC 移动时间为t (s),线段DP 的长为y .⑴t 为何值时,点P 与点E 重合?⑵当CP 与线段DE 相交时,求证:S △ADP -S △ABD =2; ⑶当PA ⊥BC 时,求线段PA 的长.27.(本小题满分9分)如图,抛物线239344y x x =--+与x 轴交于点A 、B ,与y 轴交于点C .经过A 、B 、C 三点的圆与y 轴的负半轴交于点D .(1)求A 、B 、C 三点的坐标;(2)在抛物线对称轴上是否存在一点P 使得PB +PD 的值最小?如果存在,求出P 点的坐标;若不存在,请说明理由;(3)若圆心为点Q ,在平面内有一点E ,使得以D 、E 、P 、Q 为顶点的四边形为平行四边形.求出所有符合条件的E 点坐标.A B C DG E F H P 28题图如图,现有一张边长为4的正方形纸片ABCD ,点P 为正方形AD 边上的一点(不与点A 、点D 重合)将正方形纸片折叠,使点B 落在P 处,点C 落在G 处,PG 交DC 于H ,折痕为EF ,连接BP 、BH .(1)求证:∠APB =∠BPH ;(2)当点P 在边AD 上移动时,△PDH 的周长是否发生变化?并证明你的结论; (3)设AP 为x ,四边形EFGP 的面积为S .求出S 与x 的函数关系式.试问S 是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.数学试题参考答案与评分标准二、填空题 16. 317. 3(x -1)218. x ≥1319. 6.3³10 20. (1,52)或(-1,32) 21. 1 三、解答题22.解:⑴ 分=-()+分=1……………………………………………………………………………3分⑵ 将点A(1,a )代入y 1=2x -1,得a =2³1-1=1………………………………………………………………2分 ∴A(1,1)将点A(1,1)代入y 2=kx +2,得 1= k +2∴k =-1……………………………………………………………………………4分 23. 解: ⑴∵AB =AC∴∠ABC =∠ACB …………………………………………………………………1分 ∵BD 平分∠ABC ,CE 平分∠ACB∴∠ABD =12∠ABC ,∠ACE =12∠ACB∴∠ABD =∠ACE …………………………………………………………………1分∵AD ⊥BD 、AE ⊥CE∴∠D =∠E=90°在△ADB 与△AEC 中D E ABD ACE AB AC ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ADB ≌△AEC (AAS )∴AD =AE . ………………………………………………………………………3分⑵连接OD 、OF∵E 、F 均为切点∴OD ⊥AB ,OF ⊥AC …………………………………………………………1分 ∵∠B =66°,∠C =37°∴∠A=180°-∠B-∠C=77°…………………………………………………2分∴∠O=360°-∠A-∠ADO-∠AFO=103°……………………………………3分∵弧DF=弧DF∴∠M=12∠O=51.5°.……………………………………………………………4分24. 解:⑴150……………………………………………………………………………2分⑵条形统计图略. …………………………………………………………………4分45÷150³360°=108°………………………………………………………………6分答:图中C部分所对应的圆心角度数为108°.⑶30÷150³1200=240(人)………………………………………………………8分答:大约有240名同学最喜欢“攀岩崖降”项目.25. 解:设将竹条截成长度分别为x米和(1.4-x)米的两段. ………………………………1分根据题意得12x(1.4-x)=0.48…………………………………………………………………4分解之,得x1=0.6 x2=0.8……………………………………………………6分当x1=0.6时,1-x=0.8当x2=0.8时,1-x=0.6………………………………………………………………8分答:将竹条截成长度分别为0.6米和0.8米的两段.26. 解:解:⑴在Rt△DEF中,DA=t.∵ cos∠DEF=35,EF=10∴DE=6 ………………………………………………………………1分当点P与点E重合,连接CE∵CE∥DB∴∠BDA=∠ECD∵∠BAD=∠EDC=90°∴△BDA∽△ECD∴DA ABDC DE=………………………………………………………………2分∴2 26 t t+ =∴t=1………………………………………………………………3分⑵∵CP∥DB∴∠BDA=∠PCD∵∠BAD=∠PDC=90°∴△BDA∽△PCD………………………………………………………………4分∴DA AB DC PD=∴24t DPt+=∵S△ADP=12AD³DP=12t²24tt+=t+2…………………………………………………5分AD F B CP 26题图2 E GS △ABD =12AD ³AB =t∴S △ADP -S △ABD =2;………………………………………………………………6分 ⑶延长PA 交BC 于G ∵等腰Rt△ABC ∴∠CAG =45°∴∠DAP =45°∴………………………………………………………………7分 ∴PD =AD∴24t t t+=∴t=1分 ∴分27. 解:(1) ∵当x =0时,y =3∴C (0,3) ………………………………………………………………1分∵当y =0时,2393044x x --+=解得x=-4或1∴A (-4,0),B (1,0) ……………………………………………3分 (2) 如图1,连接AD ,BC . ∵圆经过A 、B 、C 、D 四点 ∴∠ADO =∠CBO ∵∠AOD =∠COB =90°∴△AOD ∽△COB ∴OD OB OA OC = 由题意知,AO =4,BO =1,CO =3∴OD =43,∴D (0, -43) (4)设AD 的解析式为y =kx +b将A (-4,0) ,D (0, -43)代入解得k =-13, b =-43,∴y =-13,x -43 ………………………………………………………5分27题图1A BCD GEF H P M 28题图2由题意知,抛物线对称轴为x=32-∵A 、B 关于x=32-对称∴当x=32-时,y =56-,即P (32-,56-)时,PB +PD=PA +PD=PD 最短. ………………6分(3)A (-4,0),B (1,0),C (0,3),D (0, -43) ∴圆心的坐标为Q (32-,56)………………………………………………………………7分∴PQ =53若PQ 为平行四边形的边,∵PQ ∥y 轴,∴E 1(0, 13)或者E 2(0, 3-)………………8分若PQ 为平行四边形的对角线,PQ 的中点坐标为M (32-, 0),∴E 3(3-,43)……………9分28解:(1)∵PE=BE ,∴∠EBP=∠EPB .………………………………1分 又∵∠EPH=∠EBC=90°,∴∠EPH-∠EPB=∠EBC-∠EBP .即∠PBC=∠BPH .………………………………2分 又∵AD∥BC , ∴∠APB=∠PBC .∴∠APB=∠BPH .………………………………3分(2)△PHD 的周长不变,为定值 8.………………………………4分 证明:过B 作BQ ⊥PH ,垂足为Q . 由(1)知∠APB=∠BPH ,又∵∠A=∠BQP=90°,BP=BP ,∴△AB P ≌△QBP . ∴AP=QP , AB=BQ .又∵ AB=BC , ∴BC = BQ . 又∵∠C=∠BQH=90°,BH=BH ,∴△BCH ≌△BQH .……………………(5分) ∴CH=QH .∴△PHD 的周长为:PD+DH+PH =AP+PD+DH+HC =AD+CD =8. ……………………(6分) (3)过F 作FM ⊥AB ,垂足为M ,则FM BC AB ==. 又EF 为折痕, ∴EF ⊥BP . ∴90EFM MEF ABP BEF ∠+∠=∠+∠=︒, ∴EFM ABP ∠=∠. 又∵∠A=∠EMF=90°,∴△EFM ≌△BPA .∴EM AP ==x . ………………7分A B C D EF GH P Q∴在Rt△APE 中,222(4)BE x BE -+=. 解得,228x BE =+. ∴228x CF BE EM x =-=+-. 又四边形PEFG 与四边形BEFC 全等, ∴211()(4)4224x S BE CF BC x =+=+-⨯. 即:21282S x x =-+.……………8分 配方得,21(2)62S x =-+,∴当x =2时,S 有最小值6.………………9分。
初三二模数学试题参考答案一.选择题:1-5:BDCAC ,6-10:BDCDA二.填空题:11. 1,-1 ;12. 12 ;13.A. 120°;B. 2.64;14. 3324-.17.解:原式=÷=•=﹣, ……2分解方程x 2﹣4x +3=0得,(x ﹣1)(x ﹣3)=0,x 1=1,x 2=3.……3分 当x =1时,原式无意义; ……4分当x =3时,原式=﹣=﹣51.……5分18.(1)证明:∵DF ∥BE , ∴∠FDO=∠EBO ,∠DFO=∠BEO , ∵O 为AC 的中点, ∴OA=OC , 又∵AE=CF ,∴OA ﹣AE=OC ﹣CF ,即OE=OF , 在△BOE 和△DOF 中,,∴△BOE ≌△DOF (AAS );……3分(2)若OD=AC ,则四边形ABCD 是矩形,理由如下: 证明:∵△BOE ≌△DOF ,∴OB=OD ,∵OD=AC∴OA=OB=OC=OD ,即BD=AC , ∴四边形ABCD 为矩形.……6分≈0.9,sin44°=,,的图象过 y=,的图象上,=,解得y=,+22.(1)2……3分(2)树状图(或列表法)略.共有16种等可能结果,其中两张卡片都是中心对称图形的有4种 P (两张都是中心对称图形)=164=41………8分23.(1)证明:连接OB∵OB =OA ,CE =CB ,∴∠A =∠OBA ,∠CEB =∠又∵CD ⊥OA ,∴∠A +∠AED =∠A +∠CEB =90° ∴∠OBA+∠ABC =90°,∴OB ⊥BC ∴BC 是⊙O 的切线 ………3分 (2)过点C 作CG ⊥BE 于点G , ∵CE =CB ,∴EG =12BE =5 又Rt △ADE ∽Rt △CGE ,∴sin ∠ECG =sin A = 5 13∴CE =EGsin ∠ECG=13,∴CG =CE 2-EG 2=12又CD =15,CE =13,∴DE =2 由Rt △ADE ∽Rt △CGE ,得 ADCG =DEGE∴AD =DE GE·CG =245∴⊙O 的半径为2AD =485……8分24.解:(1)∵y=2x+2, ∴当x=0时,y=2, ∴B(0,2).当y=0时,x=﹣1, ∴A(﹣1,0).∵抛物线y=﹣x 2+bx+c 过点B (0,2),D (3,﹣4), ∴解得:,∴y=﹣x 2+x+2; ……4分(2)E(49,21) ……6分(3)设直线BD 的解析式为y=kx+b ,由题意,得,解得:,∴直线BD 的解析式为:y=﹣2x+2; 设P (b ,﹣b 2+b+2),H (b ,﹣2b+2).如图3,∵四边形BOHP 是平行四边形, ∴BO=PH=2.∵PH=﹣b 2+b+2+2b ﹣2=﹣b 2+3b . ∴2=﹣b 2+3b ∴b 1=1,b 2=2.当b=1时,P (1,2), 当b=2时,P (2,0)∴P 点的坐标为(1,2)或(2,0).……10分 25.解:∵AB=10cm,AC=8cm ,BC=6cm ,∴由勾股定理逆定理得△ABC 为直角三角形,∠C 为直角. (1)BP=2t ,则AP=10﹣2t . ∵PQ∥BC,∴,即,解得t=,∴当t=s 时,PQ∥BC. ……3分(2)如答图1所示,过P 点作PD⊥AC 于点D . ∴PD∥BC,∴,即,解得PD=6﹣t .S=×AQ×PD=×2t×(6﹣t )=﹣t 2+6t=﹣(t ﹣)2+,∴当t=s 时,S 取得最大值,最大值为cm 2.……6分(3)假设存在某时刻t ,使线段PQ 恰好把△ABC 的面积平分, 则有S △AQP =S △ABC ,而S △ABC =AC•BC=24,∴此时S △AQP =12.由(2)可知,S △AQP =﹣t 2+6t ,∴﹣t 2+6t=12,化简得:t 2﹣5t+10=0, ∵△=(﹣5)2﹣4×1×10=﹣15<0,此方程无解,∴不存在某时刻t ,使线段PQ 恰好把△ABC 的面积平分.……9分 (4)假设存在时刻t ,使四边形AQPQ′为菱形,则有AQ=PQ=BP=2t . 如答图2所示,过P 点作PD⊥AC 于点D ,则有PD∥BC, ∴,即,解得:PD=6﹣t ,AD=8﹣t ,∴QD=AD﹣AQ=8﹣t﹣2t=8﹣t.在Rt△PQD中,由勾股定理得:QD2+PD2=PQ2,即(8﹣t)2+(6﹣t)2=(2t)2,化简得:13t2﹣90t+125=0,解得:t1=5,t2=,∵t=5s时,AQ=10cm>AC,不符合题意,舍去,∴t=.由(2)可知,S△AQP=﹣t2+6t∴S菱形AQPQ′=2S△AQP=2×(﹣t2+6t)=2×[﹣×()2+6×]=cm2.所以存在时刻t,使四边形AQPQ′为菱形,此时菱形的面积为cm2.…12分。
2015年中考数学模拟考试卷(二)(满分:130分考试时间:120分钟)一、选择题(本大题共10小题,每小题3分,共30分)1.-15的倒数是( )A.5 B.-5 C.15D.-152.下列运算正确的是( )A.3a-2a=1 B.x8-x4=x2C.()222-=-=-2 D.-(2x2y)3=-8x6y33.下列图形中,既是轴对称图形,又是中心对称图形的是()A. B.C.D.4.如图,直线l1∥l2,则∠a为( )A.150°B.140°C.130°D.120°5.一个多边形的每个内角均为140°,则这个多边形是( )A.七边形B.八边形C.九边形D.十边形6.如图,在△ABC中,AE交BC于点D,∠C=∠E,AD=3,BD=5,DC=2,则DE的长等于( )A.152B.103C.65D.567.在“大家跳起来”的学校跳操比赛中,九年级参赛的10名学生成绩统计如图所示.对于这10名学生的参赛成绩,下列说法中错误的是( )A.众数是90分B.中位数是90分C.平均数是90分D.极差是15分8.下列图中阴影部分的面积与算式2131242-⎛⎫-++⎪⎝⎭的结果相同的是( )9.在平面直角坐标系中,已知点A(0,2),⊙A的半径是2,⊙P的半径是1,满足与⊙A及x轴都相切的⊙P有( )A.1个B.2个C.3个D.4个10.对于正数x,规定f(x)=1xx+,例如f(3)=33134=+=,f(13)=1131413=+,计算f12014⎛⎫⎪⎝⎭+f12013⎛⎫⎪⎝⎭+f12012⎛⎫⎪⎝⎭+…+f13⎛⎫⎪⎝⎭+ f12⎛⎫⎪⎝⎭+f(1)+f(2)+f(3)+…+f(2012)+f(2013)+f(2014)的结果是( )A.2013 B.2013.5 C.2014 D.2014.5二、填空题(本大题共8小题,每小题3分,共24分)11.人的眼睛可以看见的红光的波长是0.000077 cm,请把这个数用科学记数法表示,其结果是_______cm.12.函数y=23xyx+=-中自变量x的取值范围是_______.13.分解因式:a3-2a2b+ab2=_______.14.圆锥底面圆的半径为3m,其侧面展开图是半圆,则圆锥的母线长为_______m.15.如图,在△ABC中,A、B两个顶点在x轴的上方,点C的坐标是(-1,0).以点C为位似中心,在x轴的下方作△ABC的位似图形△A'B'C,并把△ABC的边长放大到原来的2倍,设点B的对应点B'的横坐标是2,则点B的横坐标是_______.16.如图,在梯形ABCD中,AD∥BC,对角线AC⊥BD,且AC=12,BD=5,则这个梯形中位线的长等于_______.17.已知M、N两点关于y轴对称,且点M在双曲线y=12x上,点N在直线y=x+3上,设点M的坐标为(a,b),则y=-abx2+(a+b)x的顶点坐标为_______.18.如图,图①为一个长方体,AD=AB=10,AE=6,M为所在棱的中点,图②为图①的表面展开图,则图②中△BCM的面积为_______.三、解答题(本大题共11小题,共76分) 19.(本题满分5分)计算:()()32cos60332π-︒--+---20.(本题满分5分)先化简()222211121a a a a a a +-÷++--+,然后a 在-1、1、2三个数中任选一个合适的数代入求值.21.(本题满分5分)求不等式组()3112323x x x ⎧+>-⎪⎨-+≥⎪⎩的整数解.22.(本题满分6分)如图,在航线l 的两侧分别有观测点A 和B ,点A 到航线l 的距离为2 km ,点B 位于点A 北偏东60°方向且与A 相距10km 处.现有一艘轮船从位于点B 南偏西76°方向的C 处,正沿该航线自西向东航行,5 min 后该轮船行至点A 的正北方向的D 处.(1)求观测点B 到航线l 的距离;(2)求该轮船航行的速度.(结果精确到0.1km/h ,参考数据:3≈1.73, sin76°≈0.97,cos76°0.24,tan76°≈4.01)23.(本题满分6分)如图,锐角三角形ABC 的两条高BE 、CD 相交于点O ,且OB =OC . (1)求证:△ABC 是等腰三角形;(2)判断点O 是否在∠BAC 的角平分线上,并说明理由.24.(本题满分6分)某学校为了提高学生学科能力,决定开设以下校本课程:A.文学院,B.小小数学家,C.小小外交家,D.未来科学家,为了解学生最喜欢哪一项校本课程,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,请回答下列问题:(1)这次被调查的学生共有_______人;(2)请你将条形统计图补充完整;(3)在平时的小小外交家的课堂学习中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加全国英语口语大赛,求恰好同时选中甲、乙两位同学的概率(用树状图或列表法解答).25.(本题满分7分)我市农业结构调整取得了巨大成功,今年水果又喜获丰收,某果园组织30辆汽车装运A、B、C三种水果共84 t到外地销售,规定每辆汽车只装运一种水果,且必须装满;又装运每种水果的汽车不少于4辆;同时,装运的B种水果的汽车辆数不超过装运的A、C两种水果的汽车辆数之和.(1)设用x辆汽车装运A种水果,用y辆汽车装运B种水果,根据下表提供的信息,求y与x之间的函数关系式并直接写出自变量x的取值范围;(2)设此次外销活动的利润为Q(百元),求Q与x之间的函数关系式,请你提出一个获得最大利润时的车辆分配方案.26.(本题满分8分)如图,已知MN是⊙O的直径,直线PQ与⊙O相切于点P,NP平分∠MNQ.(1)求证:NQ⊥PQ;(2)若⊙O的半径R=2,NP=23,求NQ的长.27.(本题满分8分)如图,在平面直角坐标系中,直线y=2x+b(b<0)与坐标轴交于A.B两点,与双曲线y=kx(x>0)交于点D,过点D作DC⊥x轴,垂足为C,连接OD.已知△AOB∽△ACD,相似比为12.(1)如果b=-2,求k的值;(2)试探究k与b的数量关系,并直接写出直线OD的解析式.28.(本题满分10分)如图,在平面直角坐标系中,矩形OABC的边OA在y轴的正半轴上,OC在x轴的正半轴上,OA =2,OC=3.过原点O作∠AOC的平分线交AB于点D,连接DC,过点D作DE⊥DC,交OA于点E.(1)求过点E、D、C的抛物线的解析式;(2)将∠EDC绕点D按顺时针方向旋转后,角的一边与y轴的正半轴交于点F,另一边与线段OC交于点G,如果DF与(1)中的抛物线交于另一点M,点M的横坐标为65,求OG的长;(3)对于(2)中的点G,在位于第一象限内的该抛物线上是否存在点Q,使得直线GQ与线段AB的交点P与点C、G构成的△PCG是等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.29.(本题满分10分)企业的工业废料处理有两种方式:一种是运送到垃圾厂进行集中处理,另一种是通过企业的自身设备进行处理,某企业去年每月的工业废料均为120 t,由于垃圾厂处于调试阶段,处理能力有限,该企业采取两种处理方式同时进行.1至6月,该企业向垃圾厂运送的工业废料y1(t)与月份x(1≤x≤6,且x取整数)之间满足的函数关系如下表:7至12月,该企业自身处理的工业废料y2(t)与月份x(7≤x≤12,且x取整数)之间满足y2=ax2+c(a ≠0),其图像如图所示.1至6月,垃圾厂处理每吨工业废料的费用z1(元)与月份x之间满足函数关系式:z1=60x,该企业自身处理每吨工业废料的费用z2(元)与月份x之间满足函数关系式:z2=45x-5x2;7至12月,垃圾厂处理每吨工业废料的费用均为120元,该企业自身处理每吨工业废料的费用均为90元.(1)请观察题中的表格和图像,用所学过的一次函数、反比例函数或二次函数的有关知识,分别直接写出y1、y2与x之间的函数关系式;(2)求该企业去年哪个月用于工业废料处理的费用W(元)最多,并求出这个最多费用;(3)今年以来,由于企业的自身设备的全面运行,该企业决定扩大产能并将所有工业废料全部自身处理,估计扩大产能后今年每月的工业废料量都将在去年每月的基础上增加m%,同时每吨工业废料处理的费用将在去年12月份的基础上增加m%.为鼓励节能降耗,减轻企业负担,国家财政对该企业处理工业废料的费用进行了50%的补助,若该企业每月的工业废料处理费用为12150元,求m的值.参考答案1—10 BDCDC BCBDB11.7.7×10-512.x>313.a(a-b)214.615.-2.516.6.517.(3,92)18.50或8019.1 2720.31aa+-原式=5.21.-2<x≤32-1,0,1.22.(1)3km (2)40.6 km/h23.(1)略(2)点O在∠BAC的角平分线上24.(1)200(人).(2)60(人).(3)1 625.(1)92≤x≤10,且x为整数.(2)Q=-14x+636,此时应这样安排:A种水果用5辆车,B种水果用14辆车,C种水果用11辆车.26.(1)略(2)NQ=3.27.(1)k=12.(2)y=4 3 x28.(1)y=-56x2+136x+1.(2)1.(3)存在三个满足条件的点Q,即Q(2,2)或Q(1,73)或Q(125,75).29.y1=120x(1≤x≤6,且x取整数).y2=x2-30(7≤x≤12,且x取整数).(2)去年5月份用于污水处理的费用最多,最多费用是16800元.(3)50.。
绝密★启用前试卷种类: A2015 年初中学业水平模拟考试数学试题第Ⅰ卷选择题(共36 分)一、选择题(此题共12 小题,共36 分 . 在每个小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每题选对得 3 分,选错、不选或选出的答案超出一个,均记 0 分.)1.察看以下图形,既是轴对称图形又是中心对称图形的有A. 1个B. 2个C.3个D. 4个2.据 2014 年 1 月 24 日某报导,某县2013 年财政收入打破18 亿元,在某省各县中排名第二 . 将 18 亿用科学记数法表示为A. 1.8 × 10B. 1.8 × 109C. 1.8× 108D. 1.8 × 10103.估计8 -1的值在A.0 到1之间B.1 到 2之间C.2 到 3之间D.3至4之间4.以下运算正确的选项是A. B.235C .a2a3a5222( m)=m D. ( x+y) =x+y5.函数 y=中自变量 x 的取值范围是A.x≥﹣ 3B.x≥3C.x≥0且 x≠1 D.x≥﹣ 3 且 x≠16.已知⊙ O 1 和⊙ O 2 的半径分别是方程 x 2﹣ 4x+3=0 的两根,且两圆的圆心距等于4,则⊙ O 1与⊙ O 2 的地点关系是A .外切B .外离C .订交D .内切7.如图,是某几何体的三视图及有关数据,则该几何体的侧面积是A . 10πB . 15πC . 20π D. 30π8.暑期马上到临,小明和小亮每人要从甲、乙、丙三个社区中随机选用一个社区参加综合实践活动,那么小明和小亮选到同一社区参加实践活动的概率为A .B .C .D .9.如图,边长为 1 的小正方形组成的网格中,半径为1 的⊙ O的圆心 O 在格点上,则∠ AED 的正切值等于A .B .C .2D .10.若抛物线 y=x 2﹣2x+c 与 y 轴的交点为( 0,﹣ 3),则以下说法不正确的选项是A .抛物线张口向上B .抛物线的对称轴是 x=1C .当 x=1 时, y 的最大值为﹣ 4D .抛物线与 x 轴的交点为(﹣ 1, 0) ,( 3, 0)11. 7 张如图 1 的长为 a ,宽为 b ( a > b )的小长方形纸片,按图 2 的方式不重叠地放在矩形 ABCD 内,未被覆盖的部分(两个矩形)用暗影表示.设左上角与右下角的阴影部分的面积的差为 S ,当 BC 的长度变化时,依据相同的搁置方式, S 一直保持不变,则 a , b 知足 A .a=bB . a =3bC . a=2bD . a=4b12. 如图,△ ABC 中,∠ C = 90 °, M 是 AB 的中点,动点 P从点 A 出发,沿 AC 方向匀速运动到终点 C ,动点 Q 从点C 出发,沿 CB 方向匀速运动到终点 B. 已知 P , Q 两点同时出发,并同时抵达终点,连结MP , MQ , PQ. 在整个运第 12题图动过程中,△ MPQ 的面积大小变化状况是A.向来增大B.向来减小C.先减小后增大D.先增大后减小第Ⅱ 卷非选择题(共84 分)二、填空题(本大题共 6 小题,共 18 分 .只需求填写最后结果,每题填对得3分.)13.假如与( 2x﹣ 4)2互为相反数,那么 2x﹣ y=.14.已知是二元一次方程组的解,则 m+3n 的立方根为.15.如图, A ( 4, 0), B( 3, 3),以 AO, AB 为边作平行四边形OABC ,则经过 C 点的反比率函数的解析式为.16.如图是二次函数和一次函数 y2=kx+t 的图象,当 y1≥y2时, x 的取值范围是.17.如图,点 E、 F 分别是正方形纸片ABCD 的边 BC 、 CD上一点,将正方形纸片ABCD 分别沿 AE 、 AF 折叠,使得点 B 、 D 恰巧都落在点G 处,且 EG=2, FG=3 ,则正方形纸片 ABCD 的边长为.18.在某区建设中,需要修一段全长2400m 的道路,为了尽量减少施工对县城交通所造成的影响,实质工作效率比原计划提升了20%,结果提早8 天达成任务,求原计划每日修路的长度 . 若设原计划每日修路x m,则依据题意可得方程.三、解答题(本大题共 6小题,共 66分 . 解答应写出文字说明、证明过程或演算步骤)19.(此题满分10 分)某市 2012 年公民经济和社会发展统计公报显示,2012 年该市新动工的住宅有商品房、廉租房、经济合用房和公共租借房四种种类.老王对这四种新动工的住宅套数和比率进行了统计,并将统计结果绘制成下边两幅统计图,请你联合图中所给信息解答以下问题:( 1)求经济合用房的套数,并补全图1;( 2)若是申请购置经济合用房的对象中共有950 人切合购置条件,老王是此中之一.由于购置人数超出房屋套数,购置者一定经过电脑摇号产生.假如对 2012 年新动工的经济合用房进行电脑摇号,那么老王被摇中的概率是多少?( 3)假如计划2014 年新动工廉租房建设的套数要达到720 套,那么2013~ 2014 这两年新动工廉租房的套数的年均匀增加率是多少?20.(此题满分10 分)如图,在 Rt△ ABC 中,∠ C=90 °,以 AC 为一边向外作等边三角形 ACD ,点 E 为AB 的中点,连结DE .(1)证明 DE∥ CB;(2)探究:当 AC 与 AB 知足如何的数目关系时,四边形 DCBE 是平行四边形?21.(此题满分 10 分)[ 背景资料 ]一棉花栽种区的农民研制出采摘棉花的单人便携式采棉机,采摘效率高,能耗低,绿色环保,经测试,一个人操作该采棉机的采摘效率为35 公斤 /时,大概是一个人手工采摘的 3.5 倍,购置一台采棉机需900 元,雇人采摘棉花,按每采摘 1 公斤棉花a元的标准支付雇工工钱,雇工每日工作8 小时.[ 问题解决 ]( 1)一个雇工手工采摘棉花,一天能采摘多少公斤?( 2)一个雇工手工采摘棉花 7.5 天获取的所有工钱正好购置一台采棉机,求 a 的值;( 3)在( 2)的前提下,栽种棉花的专业户张家和王家均雇人采摘棉花,王家雇用的人 数是张家的 2 倍,张家雇人手工采摘,王家所雇的人中有2的人自带采棉机采摘,1的人314400 3手工采摘,两家采摘完成,采摘的天数恰巧相同,张家付给雇工工钱总数为 元,王家此次采摘棉花的总重量是多少?22. (此题满分 12 分)某校校园商场老板到批发中心选购甲、乙两种品牌的文具盒,乙品牌的进货单价是甲品牌进货单价的 2 倍,考虑各样要素,估计购进乙品牌文具盒的数目 y (个)与甲品牌文 具盒的数目x (个) 之间的函数关系如下图.当购进的甲、乙品牌的文具盒中,甲有120个时,购进甲、乙品牌文具盒共需7200 元.( 1)依据图象,求 y 与 x 之间的函数关系式;( 2)求甲、乙两种品牌的文具盒进货单价; ( 3)若该商场每销售 1 个甲种品牌的文具盒可赢利 4 元,每销售 1 个乙种品牌的文具盒可赢利 9 元,依据学生需求, 超市老板决定,准备用不超出6300 元购进甲、乙两种品牌的文具盒,且这两种品牌的文具盒所有售出后赢利不低于1795 元,问该商场有几种进货方案?哪一种方案能使赢利最大?最大赢利为多少元?23.(此题满分 12分)如图,⊙ O 的半径为 1,直线 CD 经过圆心 O ,交⊙ O 于 C 、 D 两点,直径 AB ⊥ CD ,点 M 是直线 CD 上异于点 C 、O 、 D 的一个动点, AM 所在的直线交⊙ O 于点 N ,点 P 是直线 CD 上另一点,且 PM=PN .( 1)当点 M 在⊙ O 内部,如图一,试判断 PN 与⊙ O 的关系,并写出证明过程;( 2)当点 M 在⊙ O 外面,如图二,其余条件不变时,(1)的结论能否还建立?请说明原因;( 3)当点 M 在⊙ O 外面,如图三,∠AMO=15 °,求图中暗影部分的面积.24.(此题满分12 分)如图,四边形OABC 为直角梯形, A ( 4,0),B( 3,4),C( 0,4).点 M 从 O 出发以每秒 2 个单位长度的速度向 A 运动;点 N 从 B 同时出发,以每秒 1 个单位长度的速度向C 运动.此中一个动点抵达终点时,另一个动点也随之停止运动.过点N 作 NP 垂直 x 轴于点 P,连结 AC 交 NP 于 Q,连结 MQ.( 1)点(填M或N)能抵达终点;( 2)求△ AQM 的面积 S 与运动时间 t 的函数关系式,并写出自变量 t 的取值范围,当 t 为什么值时, S 的值最大;( 3)能否存在点M ,使得△AQM 为直角三角形?若存在,求出点M 的坐标;若不存在,说明原因.2015 年初三模拟考试数学试题参照答案及评分标准一、 C BBCD ABBDC BC二、 13.114.215. y=16.1≤ x≤ 2 17.6 18.2400 -2400= 8x(120%) x三、 19.解:( 1) 1500÷24%=6250.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 1 分6250×7.6%=475因此合用房的套数有475套;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分如所示:⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分( 2)老王被中的概率:;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7 分( 3) 2013~ 2014 两年新动工廉租房的套数的年均匀增率x,因 2012 年廉租房共有6250 ×8%=500 (套)⋯⋯⋯⋯ 8 分2因此依意,得 500( 1+x) =720⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯9分解个方程得, x1=0.2, x2= 2.2(不合意,舍去)答:两年新动工廉租房的套数的年均匀增率20%.⋯⋯⋯⋯ 10分20. ( 1)明: CE.∵点 ERt△ACB 的斜 AB 的中点,∴ CE==AE .⋯⋯⋯⋯⋯ 1 分∵△ ACD 是等三角形,∴AD=CD .⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分在△ ADE 与△CDE 中,,∴△ ADE ≌△ CDE ( SSS),∴∠ ADE= ∠ CDE=30 °.⋯⋯⋯⋯⋯ 4 分 ∵∠ DCB=150 °,∴∠ EDC+ ∠ DCB=180 °.∴ DE ∥CB . ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯5 分( 2)解:∵∠ DCB=150 °,若四 形 DCBE 是平行四 形,DC ∥BE ,∠ DCB+ ∠B=180 °.∴∠ B=30 °. ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7 分在 Rt △ ACB 中, sinB=AC, sin30°=AC1,AC=AB=2AC .⋯⋯ 9 分AB AB 2,即∴当 AB=2AC ,四 形 DCBE 是平行四 形.⋯⋯⋯⋯⋯ 10 分21. 解:( 1)∵一个人操作 采棉机的采摘效率35 公斤 / ,大 是一个人手工采摘的3.5 倍,∴一个人手工采摘棉花的效率 : 35÷ 3.5=10 (公斤 / ),∵雇工每日工作 8 小 ,∴一个雇工手工一天能采摘棉花:10× 8=80(公斤) .⋯⋯⋯⋯⋯⋯ 3 分( 2)由 意,得80× 7.5a=900 ,解得 a= 3.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分2( 3) 家雇用 x 人采摘棉花, 王家雇用 2x人采摘棉花, 此中王家所雇的人中有的人自 彩棉机采摘,的人手工采摘.∵ 家雇用的 x 人所有手工采摘棉花, 且采摘完 后, 家付 雇工工14400元,∴采摘的天数 :=,⋯⋯⋯⋯⋯⋯⋯⋯⋯ 8 分∴王家 次采摘棉花的 重量是: ( 35×8× +80× ) ×=51200(公斤).⋯⋯⋯⋯⋯⋯⋯⋯⋯ 10 分22. 解:( 1) y 与 x 之 的函数关系式y=kx+b ,由函数 象,得,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1 分解得:,∴ y 与 x 之 的函数关系式y= x+300 ;⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分( 2)∵ y= x+300 ;∴当 x=120 , y=180 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 4 分甲品牌 价是 a 元, 乙品牌的 价是2a 元,由 意,得120a+180×2a=7200,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯6 分解得: a=15,∴乙品牌的 价是30 元.答:甲、乙两种品牌的文具盒价分15 元, 30 元 .⋯⋯⋯⋯⋯⋯7 分( 3)甲品牌m 个,乙品牌的(m+300 )个,由意,得,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯9 分解得: 180≤m≤181,∵m 整数,∴ m=180 ,181.∴共有两种方案:方案 1:甲品牌180 个,乙品牌的120 个;方案 2:甲品牌181 个,乙品牌的119 个;⋯⋯⋯⋯⋯⋯ 10 分两种品牌的文具盒所有售出后得的利W 元,由意,得W=4m+9 ( m+300 ) = 5m+2700 .∵ k= 5< 0,∴ W 随 m 的增大而减小,∴ m=180 , W 最大 =1800 元.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯12分23. ( 1)PN 与⊙ O 相切.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 1 分明:接 ON,∠ ONA= ∠ OAN ,∵ PM=PN ,∴∠ PNM= ∠ PMN .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯2分∵∠ AMO= ∠ PMN ,∴∠ PNM= ∠ AMO .∴∠ PNO= ∠ PNM+ ∠ ONA= ∠AMO+ ∠ ONA=90 °.即 PN 与⊙O 相切.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4分( 2)建立.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分明:接ON,∠ ONA= ∠ OAN ,∵PM=PN ,∴∠ PNM= ∠ PMN .在 Rt△ AOM 中,∴∠ OMA+ ∠OAM=90 °,∴∠ PNM+ ∠ONA=90 °.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7 分∴∠ PNO=180 ° 90°=90 °.即 PN 与⊙O 相切.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8 分( 3)解:接 ON ,由( 2)可知∠ ONP=90 °.∵∠ AMO=15 °, PM=PN ,∴∠ PNM=15 °,∠ OPN=30 °,⋯⋯⋯⋯⋯⋯⋯9分∵∠ PON=60 °,∠ AON=30 °.作 NE ⊥ OD,垂足点 E, NE=ON ?sin60°=1 × = .⋯⋯⋯⋯⋯⋯10分S 暗影 =S△AOC+S 扇形AON S△CON=OC?OA+CO?NE=×1×1+ π ×1×=+π .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯12 分24. 解:(1)点 M.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 1 分(2) t 秒, NB=t,OM=2t, CN=3 t , AM=4 2t ,∵OC=OA=4, ∠ AOC=90°,∴∠ OAC=45° .∵CB∥OA, ∴∠ BCA=∠ MAQ=45°,∵NP⊥OA, ∴∠ CNQ=90°.∴ QN=CN=3 t ,∴ PQ=1+t,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 2 分∴ S△AMQ= AM?PQ= ( 4 2t )( 1+t )= t2+t+2 .⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 3 分∴ S= t 2 +t+2= t 2+t++2=( t)2+,⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 5 分∵ 0≤ t < 2,∴当, S 的最大.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 6 分( 3)存在.⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7分t 秒, NB=t, OM=2t, CN=3 t ,AM=4 2t∴∠ BCA=∠ MAQ=45°⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯8分①若∠ AQM=90°, PQ是等腰 Rt△ MQA底 MA上的高,∴ PQ是底 MA的中 .∴ PQ=AP= MA.∴ 1+t=( 4 2t ) , ∴t=∴点 M的坐( 1, 0)⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯10分②若∠ QMA=90°,此 QM与 QP重合 . ∴ QM=QP=MA∴ 1+t=4 2t,∴ t=1.∴点 M的坐( 2, 0).⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯12 分。
山东省潍坊市2015年中考数学模拟试卷同学们,学期已经过半,相信你又学到了好多新的知识。
下面的题目都是大家平时接触过的,只要做题时你能放松自己,平心静气,相信你会越做越有信心。
一、选择题:(本大题共12个小题,在每个小题的四个选项中只有一个是正确的,请把正确的选出来,并将其字母标号填写在答题栏内.)题号 1 2 3 4 5 6 7 8 9 10 11 12 答案1A.﹣3B .3C .D .2.我国第一艘航空母舰辽宁航空舰的电力系统可提供14 000 000瓦的电力.14 000 000这个数用科学记数法表示为 A. 61410⨯B. 71.410⨯C. 81.410⨯.D. 80.1410⨯.3.如图.已知直线a ,b 被直线c 所截,且a∥b,∠1=42°,那么∠2的度数为( )A.42°B.48°C. 52°D.132°4.函数11+=x y 中,自变量x 的取值范围是( ) A. x >-1 B. x <-1 C. x ≠-1 D. x ≠0 5.不等式24x <-的解集在数轴上表示为A. B. C. D.6.下列各式计算正确的是( )A .3x-2x=1B .a 2+a 2=a 4C .a 5÷a 5=aD . a 3•a 2=a 57、如图,△ABC 内接于⊙O ,∠ABC =71º,∠CAB =53°,点D 在AC 弧上,则∠ADB 的大小为A. 46°B. 53°C. 56°D. 71°8.二次函教225y x x =+-有( )A .最大值5-B .最小值5-C .最大值6-D .最小值6-9.若关于x 的一元二次方程0235)1(22=+-++-m m x x m 的常数项为0,则m 的值等于( )A .1B .2C .1或2D .010.如图所示几何体的俯枧图是( )A.B.C. D.11.在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为( )A .51B .31 C .85 D .8312.如图,二次函数的图象经过(-2,-1),(1,1)两点,则下列关于此二次函数的说法正确的是( )A .y 的最大值小于0B .当x=0时,y 的值大于1C .当x=-1时,y 的值大于1D .当x=-3时,y 的值小于0 二、填空题:13.4 的算术平方根是 .14.分解因式:x x 93- = . 15.已知反比例函数y =m -1x的图象的一支位于第一象限,则常数m 的取值范围是 . 16.请写出一个以x 1=2,x 2=3为根的二元一次方程: . 17.如图,以△ABC 的顶点A 为圆心,以BC 长为半径作弧;再以顶点C 为圆心,以AB 长为半径作弧,两弧交于点D ;连结AD 、CD .若∠B =65°,则∠ADC 的大小为 度. 18.将4个数a b c d ,,,排成2行、2列,两边各加一条竖直线记成a b cd,定义a bcdad bc =-,上述记号就叫做2阶行列式.若1 181 1x x x x +-=-+,则x = .三、解答题19.(1)(5分)计算011)245--(2)(5分)解方程:22322=--+x x x20. 某校体育组为了了解学生喜欢的体育项目,从全校同学中随机抽取了若干名同学进行调查,每位同学从兵乓球、篮球、羽毛球、排球、跳绳中选择一项最喜欢的项目,并将调查的结果绘制成如下的两幅统计图.根据以上统计图,解答下列问题:(1)这次被调查的共有多少名同学?并补全条形统计图.(2)若全校有1200名同学,估计全校最喜欢篮球和排球的共有多少名同学?21. 已知:如图,在正方形ABCD 中,点E 、F 分别在BC 和CD 上,AE = AF .(1)求证:BE = DF ;(2)连接AC 交EF 于点O ,延长OC 至点M ,使OM = OA ,连接EM 、FM .判断四边形AEMF是什么特殊四边形?并证明你的结论.22.某水果批发商场经销一种水果,如果每千克盈利5元,每天可售出200千克,经市场调查发现,在进价不变的情况下,若每千克涨价1元,销售量将减少10千克.(1)现该商场要保证每天盈利1500元,同时又要顾客得到实惠,那么每千克应涨价多少A DB E F OC 第21题图。
2015年中考数学二模名校考试数学试题(卷)时间120分钟满分120分2015、2、28一、选择题(1-6小题,每小题2分7-16小题每小题3分,共42分)1.下列各数中,最小的数是()A.﹣2 B.﹣0.1 C.0D.|﹣1| 2.计算(﹣9)2﹣2×(﹣9)×1+12的值为()A.﹣98 B.﹣72 C.64 D.1003.下列式子正确的是()A.﹣(x﹣3)=﹣x﹣3 B. 5a﹣a=5C. 2﹣1=﹣2 D. 2<<34.如图,将一个正六边形分割成六个全等的等边三角形,其中有两个已涂灰,如果再随意涂灰一个空白三角形,则所有涂灰部分恰好成为一个轴对称图形的概率是()A.B.C.D.14题图 5题图 7题图5.如图,直线a、b及木条c在同一平面上,将木条c绕点O旋转到与直线a平行时,其最小旋转角为()A.100°B.90°C.80°D.70°6.下列一元二次方程中,无解的是()A. x2+4x+2=0 B.x2+4x+3=0 C.x2﹣4x+4=0 D.x2﹣4x+5=07.如图,Rt△ABC中,∠C=90°,∠B=45°,AD是∠CAB的平分线,DE⊥AB于E,AB=a,CD=m,则AC的长为()A. 2m B.a﹣m C.a D.a+m8.如图,在正方形网格中,△ABC的三个顶点及点D、E、F、G、H都在格点上,现以D、E、F、G、H中的三点为顶点画三角形,则下列与△ABC面积相等但不全等的三角形是()A.△EHD B.△EGF C.△EFH D.△HDF9.计算(﹣)÷的结果为()A.B.C.D.10.如图,平行四边形ABCD的顶点B,D都在反比例函数y=(x>0)的图象上,点D的坐标为(2,6),AB平行于x轴,点A的坐标为(0,3),将这个平行四边形向左平移2个单位、再向下平移3个单位后点C的坐标为()A.(1,3)B.(4,3)C.(1,4)D.(2,4)8题图 10题图11.张昆早晨去学校共用时15分钟.他跑了一段,走了一段,他跑步的平均速度是250m/分钟,步行的平均速度是80m/分钟;他家离学校的距离是2900m,如果他跑步的时间为x分钟,则列出的方程是()A. 250x+80(﹣x)=2900 B.80x+250(15﹣x)=2900C. 80x+250(﹣x)=2900 D.250x+80(15﹣x)=290012.已知⊙O及⊙O外一点P,过点P作出⊙O的一条切线(只有圆规和三角板这两种工具).以下是甲、乙两同学的作业:甲:①连接OP,作OP的垂直平分线l,交OP于点A;②以点A为圆心、OA为半径画弧、交⊙O于点M;③作直线PM,则直线PM即为所求(如图1).乙:①让直角三角板的一条直角边始终经过点P;②调整直角三角板的位置,让它的另一条直角边过圆心O,直角顶点落在⊙O上,记这时直角顶点的位置为点M;③作直线PM ,则直线PM 即为所求(如图2). 对于两人的作业,下列说法正确的是( ) A .甲对,乙不对 B . 甲不对,乙对 C . 两人都对 D . 两人都不对13.如图,直线l 经过点P (1,2),与坐标轴交于A (a ,0),B (0,b )两点(其中a <b ,如果a+b=6,那么tan∠ABO 的值为( )A .B . 1C .D . 213题图 14题图 16题图 14.如图,在⊙O 中,AB 为直径,点C 为圆上一点,将劣弧沿弦AC 翻折交AB 于点D ,连接CD .如果∠BAC=20°,则∠BDC=( )A . 80°B . 70°C . 60°D . 50° 15.对于实数m ,n ,定义一种运算“※”:m※n=m 2﹣mn ﹣3.下列说法错误的是( ) A . 0※1=﹣3 B . 方程x※2=0的根为x 1=﹣1,x 2=3 C .不等式组无解D . 函数y=x※(﹣2)的顶点坐标是(1,﹣4)16.如图1,S 是矩形ABCD 的AD 边上的一点,点E 以每秒kcm 的速度沿折线BS ﹣SD ﹣DC 匀速运动,同时点F 从点C 出发,以每秒1cm 的速度沿边CB 匀速运动,并且点F 运动到点B 时点E 也运动到点C .动点E ,F 同时停止运动.设点E ,F 出发t 秒时,△EBF的面积为ycm 2.已知y 与t 的函数图象如图2所示.其中曲线OM ,NP 为两段抛物线,MN 为线段.则下列说法:①点E 运动到点S 时,用了2.5秒,运动到点D 时共用了4秒; ②矩形ABCD 的两邻边长为BC=6cm ,CD=4cm ; ③sin∠ABS=;④点E 的运动速度为每秒2cm .其中正确的是( )A .①②③B .①③④C .①②④D . ②③④二、填空题(每小题3分,共12分.)17.在△ABC中,若|sinA﹣|+(1﹣tanB)2=0,则∠C的度数为_________ °.18.如图,已知点A、B、C在⊙O上,CD⊥OB于D,AB=2OD,若∠C=40°,则∠B=_________ °.18题图 19题图 20题图19.如图,一条4m宽的道路将矩形花坛分为一个直角三角形和一个直角梯形,根据图中数据,可知这条道路的占地面积为_________ m2.20.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)…根据这个规律,第60个点的横坐标为_________ .三、解答题(共66分)21.(9分)已知关于x,y的二元一次方程x﹣y=3a和x+3y=4﹣a.(1)如果是方程x﹣y=3a的一个解,求a的值;(2)当a=1时,求两方程的公共解;(3)若是已知方程的公共解,当x0≤1时,求y的取值范围.22.(10分)某中学对校园卫生进行清理,某班有13名同学参加这次卫生大扫除,按要求他们需要完成总面积为80m2的三项清扫工作,三项工作的面积比例如图1,每人每分钟完成各项的工作量如图2.(1)从统计图中可知:擦玻璃、擦课桌椅、扫地拖地的面积分别是_________ m2,_________ m2,_________ m2;(2)如果x人每分钟擦玻璃面积ym2,那么y关于x的函数关系式是_________ ;(3)完成扫地拖地的任务后,把13人分成两组,一组去擦玻璃,一组去擦课桌椅,怎样分配才能同时完成任务?23.(10分)河北省赵县A、B两村盛产雪花梨,A村有雪花梨200吨,B村有雪花梨300吨,现将这些雪花梨运到C、D两个冷藏仓库,已知C仓库可储存240吨,D仓库可储存260吨,从A村运往C、D两处的费用分别为40元/吨和45元/吨;从B村运往C、D两处的费用分别为25元/吨和32元/吨,设从A村运往C仓库的雪花梨为x吨,A、B两村往两仓库运雪花梨的运输费用分别为yA 元,yB元.C D 总计A x吨_________ 300吨B _________ _________ 400吨总计240吨260吨500吨(1)请填写下表,并求出yA ,yB与x之间的函数关系式:(2)当x为何值时,A村的运输费用比B村少?(3)请问怎样调运,才能使两村的运费之和最小?求出最小值.24.(11分)(1)如图1,已知△ABC,以AB、AC为边向△ABC外作等边△ABD和等边△ACE,连接BE,CD,请你完成图形,并证明:BE=CD;(尺规作图,不写作法,保留作图痕迹);(2)如图2,已知△ABC,以AB、AC为边向外作正方形ABFD和正方形ACGE,连接BE,CD,BE与CD有什么数量关系?简单说明理由;(3)运用(1)、(2)解答中所积累的经验和知识,完成下题:如图3,要测量池塘两岸相对的两点B,E的距离,已经测得∠ABC=45°,∠CAE=90°,AB=BC=100米,AC=AE,求BE的长.25.(12分)已知,抛物线y=ax2+x+c的顶点为M(﹣1,﹣2),它与x轴交于点B,C(点B在点C左侧).(1)求点B、点C的坐标;(2)将这个抛物线的图象沿x轴翻折,得到一个新抛物线,这个新抛物线与直线l:y=﹣4x+6交于点N.①求证:点N是这个新抛物线与直线l的唯一交点;②将新抛物线位于x轴上方的部分记为G,将图象G以每秒1个单位的速度向右平移,同时也将直线l以每秒1个单位的速度向上平移,记运动时间为t,请直接写出图象G 与直线l有公共点时运动时间t的范围.26.(3分)1)如图1、图2,点P是⊙O外一点,作直线OP,交⊙O于点M、N,则有结论:①点M是点P到⊙O的最近点;②点N是点P到⊙O的最远点.请你从①和②中选择一个进行证明.(注:图1和图2中的虚线为辅助线,可以直接利用)(2)如图,已知,点A、B分别是直角∠XOY的两边上的动点,并且线段AB=4,如果点T是线段AB的中点,则线段TO的长等于_________ ,所以,当点A和B在直角∠XOY 的两边上运动时,点O一定在以点_________ 为圆心,以线段_________ 为直径的圆上.(3)如图,△ABC的等边三角形,AB=4,直角∠XOY的两边OX,OY分别经过点A和点B (点O与点A、点B都不重合),连接OC,求OC的最大值与最小值.(4)如图,在直角坐标系xOy中,点A、B分别是x轴与y轴上的动点,并且线段AB 等于4为一定值.以AB为边作正方形ABCD,连接OC,则OC的最大值与最小值的乘积等于_________ .参考答案三、解答题(本大题共6个小题,共66分.解答应写出文字说明、证明过程或演算步骤)21.解:(1)将代入方程x﹣y=3a得:5+1=3a,∴a=2.(2)当a=1时,两方程为:由①得:x=3+y,代入②得:3+y+3y=3,∴y=0,∴x=3.所以方程组的公共解为:.(3)因为是已知方程的公共解,∴解得:,∵x≤1,∴2a+1≤1,∴a≤0,所以1﹣a≥1,≥1.∴y22.解:(1)擦玻璃的面积:80×20%=16(m2);擦课桌椅的面积:80×25%=20(m2);扫地拖地的面积:80×55%=44(m2);故答案为:16,22,44;(2)由题意可得,每人每分钟擦玻璃的面积为=,得y=x;故答案为:y=x;(3)设擦玻璃的人数为x人,则擦课桌的人数为(13﹣x)人,根据题意得:16÷x=20÷[0.5×(13﹣x)],即=,解得x=8,经检验x=8是原方程的解,则擦课桌椅的有:13﹣8=5(人),答:擦玻璃的8人,擦课桌椅的有5人.23.解:(1)填表如图所示,y=40x+45(200﹣x)=﹣5x+9000,Ay=25(240﹣x)+32(60+x)=7x+7920;B(2)∵A村的运输费用比B村少,∴﹣5x+9000<7x+7920,解得x>90,∵A村有雪花梨200吨,故200≥x>90吨时,A村的运输费用比B村少;(3)A、B两村的运输费用之和为:﹣5x+9000+7x+7920=2x+16920,∵2>0,∴运输费用随x的增大而增大,∵,∴x≤200,∴当x=0时,运输费用最小,为16920元.24.解:(1)完成图形,如图所示:证明:∵△ABD和△ACE都是等边三角形,∴AD=AB,AC=AE,∠BAD=∠CAE=60°,∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB,∵在△CAD和△EAB中,,∴△CAD≌△EAB(SAS),∴BE=CD;(2)BE=CD,理由同(1),∵四边形ABFD和ACGE均为正方形,∴AD=AB,AC=AE,∠BAD=∠CAE=90°,∴∠CAD=∠EAB,∵在△CAD和△EAB中,,∴△CAD≌△EAB(SAS),∴BE=CD;(3)由(1)、(2)的解题经验可知,过A作等腰直角三角形ABD,∠BAD=90°,则AD=AB=100米,∠ABD=45°,∴BD=100米,连接CD,则由(2)可得BE=CD,∵∠ABC=45°,∴∠DBC=90°,在Rt△DBC中,BC=100米,BD=100米,根据勾股定理得:CD==100米,则BE=CD=100米.25.解:(1)∵抛物线y=ax2+x+c的顶点为M(﹣1,﹣2),∴该抛物线的解析式为y=a(x+1)2﹣2.即:y=ax2+2ax+a﹣2.∴2a=1.解得 a=.故该抛物线的解析式是:y=x2+x﹣.当y=0时,x2+x﹣=0.解之得 x1=﹣3,x2=1.∴B(﹣3,0),C(1,0);(2)①证明:将抛物线y=x2+x﹣沿x轴翻折后的图象,即新图象,仍过点B、C,其顶点M′与点M关于x轴对称,则M′(﹣1,2).设新抛物线的解析式为:y=a′(x+1)2+2.∵y=a′(x+1)2+2过点C(1,0),∴a′(1+1)2+2=0,解得,a′=﹣.∴翻折后得到的新抛物线的解析式为:y=﹣x2﹣x+.当﹣4x+6=x2+x﹣时,有:x2﹣6x+9=0,解得,x1=x2=3,此时,y=﹣6.∴新抛物线y=﹣x2﹣x+与直线l有唯一的交点N(3,﹣6);②≤t≤6.附解答过程:∵点N是新抛物线y=﹣x2﹣x+与直线l有唯一的交点,∴直线l与新抛物线y=﹣x2﹣x+在x轴上方部分(即G)无交点,∴当直线l经过点C时产生第一个公共点,经过点B时是最后一个公共点,运动t秒时,点B的坐标为(﹣3+t,0),点C的坐标为(1+t,0),直线与x轴交点为(,0).∵当=﹣3+t时,t=6∴图象G与直线l有公共点时,≤t≤6.26.解:(1)①如图1,根据两点之间线段最短可得:PO≤PR+OR.∴PM+MO≤PR+OR.∵MO=RO,∴PM≤PR.∴点M是点P到⊙O的最近点.②如图2,根据两点之间线段最短可得:PS≤PO+OS.∵OS=ON,∴PS≤PO+ON,即PS≤PN.∴点N是点P到⊙O的最远点.(2)如图3,∵∠XOY=90°,点T是线段AB的中点,∴TO=AB=2.∴点O在以点T为圆心,以线段AB为直径的圆上.故答案为:2、T、AB.(3)取AB的中点T,连接TO、CT、OC,如图4.∵∠AOB=90°,点T是线段AB的中点,∴TO=AB=2.∵△ABC的等边三角形,点T是线段AB的中点,∴CT⊥AB,AT=BT=2.∴CT===2.根据两点之间线段最短可得:OC≤OT+CT,即OC≤2+2;CT≤OC+OT,即OC≥CT﹣OT,也即OC≥2﹣2.∴OC的最大值为2+2,OC的最小值为2﹣2.(4)取AB的中点T,连接TO、CO、CT,如图5.∵∠AOB=90°,点T是线段AB的中点,∴TO=AB=2.∵四边形ABCD是正方形,∴BC=AB=4,∠ABC=90°.∵点T是线段AB的中点,∴BT=AB=2.∴CT===2.根据两点之间线段最短可得:OC≤OT+CT,即OC≤2+2;CT≤OC+OT,即OC≥CT﹣OT,也即OC≥2﹣2.∴OC的最大值为2+2,OC的最小值为2﹣2.∵(2+2)(2﹣2)=20﹣4=16.∴OC的最大值与最小值的乘积等于16.故答案为:16.。
2015年山东省潍坊市中考数学试卷一、选择题(本大题共12小题,在每个小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对的3分,选错、不选或选出的答案超出一个均记0分.)1.(3分)(2015•潍坊)在|﹣2|,20,2﹣1,这四个数中,最大的数是()A.|﹣2| B.20C.2﹣1D.2.(3分)(2015•潍坊)如图所示几何体的左视图是()A.B.C.D.3.(3分)(2015•潍坊)2015年5月17日是第25个全国助残日,今年全国助残日的主题是“关注孤独症儿童,走向美好未来”.第二次全国残疾人抽样调查结果显示,我国0~6岁精神残疾儿童约为11.1万人.11.1万用科学记数法表示为()A.x k 1.11×104B.11.1×104C.1.11×105D.1.11×1064.(3分)(2015•潍坊)如图汽车标志中不是中心对称图形的是()A.B.C.D.5.(3分)(2015•潍坊)下列运算正确的是()A.+=B.3x2y﹣x2y=3D.(a2b)3=a6b3C.=a+b6.(3分)(2015•潍坊)不等式组的所有整数解的和是()A.2B.3C.5D.67.(3分)(2015•潍坊)如图,AB是⊙O的弦,AO的延长线交过点B的⊙O的切线于点C,如果∠ABO=20°,则∠C的度数是()A.70°B.50°C.45°D.20°8.(3分)(2015•潍坊)若式子+(k﹣1)0有意义,则一次函数y=(k﹣1)x+1﹣k的图象可能是()A.B.C.D.9.(3分)(2015•潍坊)如图,在△ABC中,AD平分∠BAC,按如下步骤作图:第一步,分别以点A、D 为圆心,以大于AD的长为半径在AD两侧作弧,交于两点M、N;第二步,连接MN分别交AB、AC于点E、F;第三步,连接DE、DF.若BD=6,AF=4,CD=3,则BE的长是()A.2B.4C.6D.810.(3分)(2015•潍坊)将一盛有不足半杯水的圆柱形玻璃水杯拧紧杯盖后放倒,水平放置在桌面上,水杯的底面如图所示,已知水杯内径(图中小圆的直径)是8cm,水的最大深度是2cm,则杯底有水部分的面积是()A.(π﹣4)cm2B.(π﹣8)cm2C.(π﹣4)cm2D.(π﹣2)cm211.(3分)(2015•潍坊)如图,有一块边长为6cm的正三角形纸板,在它的三个角处分别截去一个彼此全等的筝形,再沿图中的虚线折起,做成一个无盖的直三棱柱纸盒,则该纸盒侧面积的最大值是()A.cm2B.cm2C.cm2D.cm212.(3分)(2015•潍坊)已知二次函数y=ax2+bx+c+2的图象如图所示,顶点为(﹣1,0),下列结论:①abc <0;②b2﹣4ac=0;③a>2;④4a﹣2b+c>0.其中正确结论的个数是()A.1B.2C.3D.4二、填空题(本大题共6小题,每小题3分,共18分,只要求填写最后结果.)13.(3分)(2015•潍坊)“植树节”时,九年级一班6个小组的植树棵数分别是:5,7,3,x,6,4.已知这组数据的众数是5,则该组数据的平均数是.14.(3分)(2015•潍坊)如图,等腰梯形ABCD中,AD∥BC,BC=50,AB=20,∠B=60°,则AD=.15.(3分)(2015•潍坊)因式分解:ax2﹣7ax+6a=.16.(3分)(2015•潍坊)观光塔是潍坊市区的标志性建筑,为测量其高度,如图,一人先在附近一楼房的底端A点处观测观光塔顶端C处的仰角是60°,然后爬到该楼房顶端B点处观测观光塔底部D处的俯角是30°.已知楼房高AB约是45m,根据以上观测数据可求观光塔的高CD是m.17.(3分)(2015•潍坊)如图,正△ABC的边长为2,以BC边上的高AB1为边作正△AB1C1,△ABC与△AB1C1公共部分的面积记为S1;再以正△AB1C1边B1C1上的高AB2为边作正△AB2C2,△AB1C1与△AB2C2公共部分的面积记为S2;…,以此类推,则S n=.(用含n的式子表示)18.(3分)(2015•潍坊)正比例函数y1=mx(m>0)的图象与反比例函数y2=(k≠0)的图象交于点A(n,4)和点B,AM⊥y轴,垂足为M.若△AMB的面积为8,则满足y1>y2的实数x的取值范围是.三、解答题(本大题共6小题,共66分.解答要写出必要的文字说明、证明过程或演算步骤.)19.(9分)(2015•潍坊)为提高饮水质量,越来越多的居民选购家用净水器.一商场抓住商机,从厂家购进了A、B两种型号家用净水器共160台,A型号家用净水器进价是150元/台,B型号家用净水器进价是350元/台,购进两种型号的家用净水器共用去36000元.(1)求A、B两种型号家用净水器各购进了多少台;(2)为使每台B型号家用净水器的毛利润是A型号的2倍,且保证售完这160台家用净水器的毛利润不低于11000元,求每台A型号家用净水器的售价至少是多少元.(注:毛利润=售价﹣进价)20.(10分)(2015•潍坊)某校了解九年级学生近两个月“推荐书目”的阅读情况,随机抽取了该年级的部分学生,调查了他们每人“推荐书目”的阅读本数.设每名学生的阅读本数为n,并按以下规定分为四档:当n<3时,为“偏少”;当3≤n<5时,为“一般”;当5≤n<8时,为“良好”;当n≥8时,为“优秀”.将调查结果统计后绘制成不完整的统计图表:阅读本数n(本)1 2 3 4 5 6 7 8 9人数(名) 1 2 6 7 12 x 7 y 1请根据以上信息回答下列问题:(1)分别求出统计表中的x、y的值;(2)估计该校九年级400名学生中为“优秀”档次的人数;(3)从被调查的“优秀”档次的学生中随机抽取2名学生介绍读书体会,请用列表或画树状图的方法求抽取的2名学生中有1名阅读本数为9的概率.21.(10分)(2015•潍坊)如图,在△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,交AB于点E,过点D作DF⊥AB,垂足为F,连接DE.(1)求证:直线DF与⊙O相切;(2)若AE=7,BC=6,求AC的长.22.(11分)(2015•潍坊)“低碳生活,绿色出行”的理念正逐渐被人们所接受,越来越多的人选择骑自行车上下班.王叔叔某天骑自行车上班从家出发到单位过程中行进速度v(米/分钟)随时间t(分钟)变化的函数图象大致如图所示,图象由三条线段OA、AB和BC组成.设线段OC上有一动点T(t,0),直线l左侧部分的面积即为t分钟内王叔叔行进的路程s(米).(1)①当t=2分钟时,速度v=200米/分钟,路程s=200米;②当t=15分钟时,速度v=300米/分钟,路程s=4050米.(2)当0≤t≤3和3<t≤15时,分别求出路程s(米)关于时间t(分钟)的函数解析式;(3)求王叔叔该天上班从家出发行进了750米时所用的时间t.23.(12分)(2015•潍坊)如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.(1)求证:DE⊥AG;(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图2.①在旋转过程中,当∠OAG′是直角时,求α的度数;②若正方形ABCD的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.24.(14分)(2015•潍坊)如图,在平面直角坐标系中,抛物线y=mx2﹣8mx+4m+2(m>2)与y轴的交点为A,与x轴的交点分别为B(x1,0),C(x2,0),且x2﹣x1=4,直线AD∥x轴,在x轴上有一动点E(t,0)过点E作平行于y轴的直线l与抛物线、直线AD的交点分别为P、Q.(1)求抛物线的解析式;(2)当0<t≤8时,求△APC面积的最大值;(3)当t>2时,是否存在点P,使以A、P、Q为顶点的三角形与△AOB相似?若存在,求出此时t的值;若不存在,请说明理由.2015年山东省潍坊市中考数学试卷一、选择题(本大题共12小题,在每个小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对的3分,选错、不选或选出的答案超出一个均记0分.)1.考点:实数大小比较;零指数幂;负整数指数幂.分析:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,首先求出|﹣2|,20,2﹣1的值是多少,然后根据实数比较大小的方法判断即可.解答:解:|﹣2|=2,20=1,2﹣1=0.5,∵,∴,∴在|﹣2|,20,2﹣1,这四个数中,最大的数是|﹣2|.故选:A.点评:(1)此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.(2)此题还考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a﹣p=(a≠0,p为正整数);②计算负整数指数幂时,一定要根据负整数指数幂的意义计算;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.(3)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a≠0);②00≠1.2.考点:简单组合体的三视图.分析:找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在左视图中.解答:解:从左面看可得矩形中间有一条横着的虚线.故选C.点评:本题考查了三视图的知识,左视图是从物体的左面看得到的视图.3.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将11.1万用科学记数法表示为1.11×105.故选C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.考点:中心对称图形.分析:根据中心对称图形的概念求解.解答:解:A、是中心对称图形.故错误;B、不是中心对称图形.故正确;C、是中心对称图形.故错误;D、是中心对称图形.故错误.故选B.点评:本题考查了中心对称图形的概念:中心对称图形是要寻找对称中心,旋转180度后与原图重合.5.考点:幂的乘方与积的乘方;合并同类项;约分;二次根式的加减法.分析:A:根据二次根式的加减法的运算方法判断即可.B:根据合并同类项的方法判断即可.C:根据约分的方法判断即可.D:根据积的乘方的运算方法判断即可.解答:解:∵,∴选项A不正确;∵3x2y﹣x2y=2x2y,∴选项B不正确;∵,∴选项C不正确;∵(a2b)3=a6b3,∴选项D正确.故选:D.点评:(1)此题主要考查了幂的乘方和积的乘方,要熟练掌握,解答此题的关键是要明确:①(a m)n=a mn(m,n是正整数);②(ab)n=a n b n(n是正整数).(2)此题还考查了二次根式的加减法,要熟练掌握,解答此题的关键是要明确二次根式的加减法的步骤:①如果有括号,根据去括号法则去掉括号.②把不是最简二次根式的二次根式进行化简.③合并被开方数相同的二次根式.(3)此题还考查了合并同类项,以及约分的方法的应用,要熟练掌握.6.考点:一元一次不等式组的整数解.分析:先求出不等式组的解集,再求出不等式组的整数解,最后求出答案即可.解答:解:∵解不等式①得;x>﹣,解不等式②得;x≤3,∴不等式组的解集为﹣<x≤3,∴不等式组的整数解为0,1,2,3,0+1+2+3=6,故选D.点评:本题考查了解一元一次不等式组,求不等式组的整数解的应用,解此题的关键是求出不等式组的解集,难度适中.7.考点:切线的性质.分析:由BC是⊙O的切线,OB是⊙O的半径,得到∠OBC=90°,根据等腰三角形的性质得到∠A=∠ABO=20°,由外角的性质得到∠BOC=40°,即可求得∠C=50°.解答:解:∵BC是⊙O的切线,OB是⊙O的半径,∴∠OBC=90°,∵OA=OB,∴∠A=∠ABO=20°,∴∠BOC=40°,∴∠C=50°.故选B.点评:本题考查了本题考查了切线的性质,等腰三角形的性质,掌握定理是解题的关键.8.考点:一次函数图象与系数的关系;零指数幂;二次根式有意义的条件.分析:首先根据二次根式中的被开方数是非负数,以及a0=1(a≠0),判断出k的取值范围,然后判断出k﹣1、1﹣k的正负,再根据一次函数的图象与系数的关系,判断出一次函数y=(k﹣1)x+1﹣k的图象可能是哪个即可.解答:解:∵式子+(k﹣1)0有意义,∴解得k>1,∴k﹣1>0,1﹣k<0,∴一次函数y=(k﹣1)x+1﹣k的图象可能是:.故选:A.点评:(1)此题主要考查了一次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:当b>0时,(0,b)在y轴的正半轴上,直线与y轴交于正半轴;当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.(2)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a≠0);②00≠1.(3)此题还考查了二次根式有意义的条件,要熟练掌握,解答此题的关键是要明确:二次根式中的被开方数是非负数.9.平行线分线段成比例;菱形的判定与性质;作图—基本作图.考点:分析:根据已知得出MN是线段AD的垂直平分线,推出AE=DE,AF=DF,求出DE∥AC,DF∥AE,得出四边形AEDF是菱形,根据菱形的性质得出AE=DE=DF=AF,根据平行线分线段成比例定理得出=,代入求出即可.解答:解:∵根据作法可知:MN是线段AD的垂直平分线,∴AE=DE,AF=DF,∴∠EAD=∠EDA,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠EDA=∠CAD,∴DE∥AC,同理DF∥AE,∴四边形AEDF是菱形,∴AE=DE=DF=AF,∵AF=4,∴AE=DE=DF=AF=4,∵DE∥AC,∴=,∵BD=6,AE=4,CD=3,∴=,∴BE=8,故选D.点评:本题考查了平行线分线段成比例定理,菱形的性质和判定,线段垂直平分线性质,等腰三角形的性质的应用,能根据定理四边形AEDF是菱形是解此题的关键,注意:一组平行线截两条直线,所截得的对应线段成比例.10.考点:垂径定理的应用;扇形面积的计算.分析:作OD⊥AB于C,交小⊙O于D,则CD=2,由垂径定理可知AC=CB,利用正弦函数求得∠OAC=30°,进而求得∠AOC=120°,利用勾股定理即可求出AB的值,从而利用S扇形﹣S△AOB求得杯底有水部分的面积.解答:解:作OD⊥AB于C,交小⊙O于D,则CD=2,AC=BC,∵OA=OD=4,CD=2,∴OC=2,在RT△AOC中,sin∠OAC==,∴∠OAC=30°,∴∠AOC=120°,AC==2,∴AB=4,∴杯底有水部分的面积=S扇形﹣S△AOB=﹣××2=(π﹣4)cm2故选A.点评:本题考查的是垂径定理的应用及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.11.考点:二次函数的应用;展开图折叠成几何体;等边三角形的性质.分析:如图,由等边三角形的性质可以得出∠A=∠B=∠C=60°,由三个筝形全等就可以得出AD=BE=BF=CG=CH=AK,根据折叠后是一个三棱柱就可以得出DO=PE=PF=QG=QH=OK,四边形ODEP、四边形PFGQ、四边形QHKO为矩形,且全等.连结AO证明△AOD≌△AOK就可以得出∠OAD=∠OAK=30°,设OD=x,则AO=2x,由勾股定理就可以求出AD=x,由矩形的面积公式就可以表示纸盒的侧面积,由二次函数的性质就可以求出结论.解答:解:∵△ABC为等边三角形,∴∠A=∠B=∠C=60°,AB=BC=AC.∵筝形ADOK≌筝形BEPF≌筝形AGQH,∴AD=BE=BF=CG=CH=AK.∵折叠后是一个三棱柱,∴DO=PE=PF=QG=QH=OK,四边形ODEP、四边形PFGQ、四边形QHKO都为矩形.∴∠ADO=∠AKO=90°.连结AO,在Rt△AOD和Rt△AOK中,,∴Rt△AOD≌Rt△AOK(HL).∴∠OAD=∠OAK=30°.设OD=x,则AO=2x,由勾股定理就可以求出AD=x,∴DE=6﹣2x,∴纸盒侧面积=3x(6﹣2x)=﹣6x2+18x,=﹣6(x﹣)2+,∴当x=时,纸盒侧面积最大为.故选C.点评:本题考查了等边三角形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,矩形的面积公式的运用,二次函数的性质的运用,解答时表示出纸盒的侧面积是关键.12.考点:二次函数图象与系数的关系.分析:①首先根据抛物线开口向上,可得a>0;然后根据对称轴在y轴左边,可得b>0;最后根据抛物线与y轴的交点在x轴的上方,可得c>0,据此判断出abc>0即可.②根据二次函数y=ax2+bx+c+2的图象与x轴只有一个交点,可得△=0,即b2﹣4ac=0.③首先根据对称轴x=﹣=﹣1,可得b=2a,然后根据b2﹣4ac=0,确定出a的取值范围即可.④根据对称轴是x=﹣1,而且x=0时,y>2,可得x=﹣2时,y>2,据此判断即可.解答:解:∵抛物线开口向上,∴a>0,∵对称轴在y轴左边,∴b>0,∵抛物线与y轴的交点在x轴的上方,∴c+2>2,∴c>0,∴abc>0,∴结论①不正确;∵二次函数y=ax2+bx+c+2的图象与x轴只有一个交点,∴△=0,即b2﹣4ac=0,∴结论②正确;∵对称轴x=﹣=﹣1,∴b=2a,∵b2﹣4ac=0,∴4a2﹣4ac=0,∴a=c,∵c>0,∴a>0,∴结论③不正确;∵对称轴是x=﹣1,而且x=0时,y>2,∴x=﹣2时,y>2,∴4a﹣2b+c+2>2,∴4a﹣2b+c>0.∴结论④正确.综上,可得正确结论的个数是2个:②④.故选:B.点评:此题主要考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:①二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;②一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点.抛物线与y轴交于(0,c).二、填空题(本大题共6小题,每小题3分,共18分,只要求填写最后结果.)13.。
2015年潍坊市中考模拟数学试题数 学 试 题 2015.4注意事项:1.考试时间120分钟,满分120分.2.答卷前,考生务必将自己的姓名、座号、准考证号、班级、科目填写在答题纸上. 3.答案用0.5mm 黑色中性笔书写. 4.所有试题答案均写在答题纸上.一、选择题(本大题共12小题,共36分. 在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,每小题选对得3分. 错选、不选或多选均记零分.) 1.下列四个数中,是负数的是( ).A .|-2|B .(-2)2C .-2D .2)2(- 2.下列计算正确的是( ).A .532x x x =+ B .632x x x =⋅ C .532)(x x = D .235x x x =÷ 3.已知24,328.a b a b +=⎧⎨+=⎩则a b +等于( ).A .3B .83C .2D .14.某企业今年3月份产值为a 万元,4月份比3月份减少了10%,5月份比4月份增加了15%,则5月份的产值是( ).A .(a -10%)(a +15%)万元B .a (1-10%)(1+15%)万元C .(a -10%+15%)万元D .a (1-10%+15%)万元5.小华所在的九年级一班共有50名学生,一次体检测量了全班学生的身高,由此求得该班学生的平均身高是1.65米,而小华的身高是1.66米,下列说法错误..的是( ). A .1.65米是该班学生身高的平均水平B .班上比小华高的学生人数不会超过25人C .这组身高数据的中位数不一定是1.65米D .这组身高数据的众数不一定是1.65米6.下列四个几何体中,主视图与左视图相同的几何体有( ).A .4个B .3个C .2个D .1个7.在平面直角坐标系xOy 中,已知点A (0,2),⊙A 的半径是2,⊙P 的半径是1,满足与⊙A 及x 轴都相切的⊙P 有( )个.A .2B .3C .4D .5 8.如图,在△ABC 中,AB =AC ,∠A =36º,AB 的垂直平分线DE 交AC 于D ,交AB 于E .下列命题是假命题的是( ).A .BD 平分∠ABCB .△BCD 的周长等于AB +BC C .AD =BD =BC D .点D 是线段AC 的中点9.已知一次函数y=kx+b 的图象经过点(m ,-1)和(1 ,m ),其中m<-1 ,则k 、b 应满足的条件是( ) . A .k>0且b>0 B .k<0且b<0 C .k>0且b<0 D .k<0且b>010. 如图,正方形ABCD 的边长为a,动点P 从点A 出发,沿折线A→B 一D→ C→A的路径运动,回到点A 时运动停止.设点P 运动的路程长为x,AP 长为y,则y 关于x 的函数图象大致是( ) .11.如图,抛物线()3221-+=x a y 与()132122+-=x y 交于点A (1,3),过点A 作x 轴的平行线,分别交两条抛物线于点B 、C ,则以下结论:①无论x 取何值,2y 总是正数;②a=1; ③当x=0时,421=-y y ;④2AB=3AC 其中正确的是( ).A .①②B .②③C .③④D .①④12.如图,以M (-5,0)为圆心、4为半径的圆与x 轴交于A 、B 两点,P 是⊙M 上异于A 、B 的一动点,直线PA 、PB 分别交y 轴于C 、D ,以CD 为直径的⊙N 与与x 轴交于E 、F 两点,则EF 的长( ).A .等于 B. 等于C .等于6D .随P 点位置的变化而变化二、填空题(本大题共6小题,共18分. 只要求填写最后结果,每小题填对得3分.)13.分解因式:=--x x x 1242314.如图,正方形ABCD 中,E 是BC 边上一点,以E 为圆心、EC 为半径的半圆与以A 为圆心、AB 为半径的圆弧外切,则sin EAB ∠的值为 .15.如图,在平行四边形ABCD 中,E 为CD 上一点,DE :EC=2:3,连接AE 、BE 、BD ,且AE 、BD交于点F ,则ABF EBF DEF S S S ∆∆∆::等于 .16. 如图,图中的每个小方格都是边长为1的小正方形,每个小正方形的顶点称为格点. 若△ABC 与△111A B C 是位似图形,且顶点都在格点上,则位似中心的坐标是________.17.如图所示的程序中,输出的结果是 . 18.已知, A 、B 、C 、D 、E 是反比例函数16y x=(x>0)图象上五个整数点(横、纵坐标均为整数),分别由这五个点向横轴或纵轴作垂线段,以每个点较短的垂线段为边长作正方形;以每个正方形中一对相对的顶点为圆心以边长为半径作四分之一圆周的两条弧,组成如图所示的五个橄榄形(阴影部分),则这五个橄榄形的面积总和是 (用含π的代数式表示).三、解答题(本大题共6小题,共66分.解答应写出文字说明、证明过程或演算步骤)19.(本题满分10分)寒假假期,某学校准备组织部分学生到A、B、C三地参观学习.学校购买前往各地的车票种类和数量绘制成统计图,如图.根据统计图回答下列问题:(1)前往A地的车票有张,前往C地的车票占全部车票的%;(2)若学校决定采用随机抽取的方式把车票分配给100名学生,在看不到车票的条件下,每人抽取一张(每张车票的形状、大小、质地完全相同且充分洗匀),那么学生王小兵抽到去B地车票的概率为;(3)若剩下最后一张车票时,学生张三、李四都想要,决定采用摸球的方法来确定,具体规则是:在一个不透明的袋子里装有四个分别标有数字1,2,3,4的小球,它们的形状、大小等完全相同,每人随机从袋子里摸出一个球,记下数字后放回袋子中,充分摇匀后再由第二个人摸出一球.若张三摸得的球上的数字比李四摸得的球上的数字大,车票给张三,否则给李四.”试用“列表法或画树形图”的方法分析,这个规则对双方是否公平?20.(本题满分10分)如图,点A、B、C分别是⊙O上的点,CD是⊙O的直径,P是CD延长线上的一点,AP=AC.(1)若∠ABC=60°.求证:AP是⊙O的切线;(2)若点B是弧CD的中点,AB交CD于点E,CD=4,求BE•AB的值.21.(本题满分10分)某楼盘一楼是车库(暂不出售),二楼至二十三楼均为商品房(对外销售).商品房售价方案如下:第八层售价为3000元/米2,从第八层起每上升一层,每平方米的售价增加40元;反之,楼层每下降一层,每平方米的售价减少20元.已知商品房每套面积均为120平方米.开发商为购买者制定了两种购房方案:方案一:购买者先交纳首付金额(商品房总价的30%),再办理分期付款(即贷款).方案二:购买者若一次付清所有房款,则享受8%的优惠,并免收五年物业管理费(已知每月物业管理费为a元)(1)请写出每平方米售价y (元/米2)与楼层x (2≤x≤23,x 是正整数)之间的函数解析式. (2)小张已筹到120000元,若用方案一购房,他可以购买哪些楼层的商品房呢?(3)有人建议老王使用方案二购买第十六层,但他认为此方案还不如不免收物业管理费而直接享受9%的优惠划算.你认为老王的说法一定正确吗?请用具体数据阐明你的看法.22.(本题满分12分)将△ABC 绕点A 按逆时针方向旋转θ度,并使各边长变为原来的n 倍,得△AB′ C′ ,如图①所示,∠BAB′=θ,AB B C AC n AB BC AC''''===,我们将这种变换记为[θ,n] .(1)如图①,对△ABC 作变换得到△AB′ C′ ,则'AB C S ''∆:ABC S ∆ =_______ ;直线BC 与直线B′C′所夹的锐角为_______度;(2)如图②,△ABC 中,∠BAC=30° ,∠ACB=90° ,对△ABC 作变换[θ,n]得到△AB′ C′ ,使 点B 、C 、C '在同一直线上,且四边形ABB′C′为矩形,求θ和n 的值; (3)如图③ ,△ABC 中,AB=AC,∠BAC=36° ,BC=1,对△ABC 作变换[θ,n]得到△AB′C′ , 使点B 、C 、B′在同一直线上,且四边形ABB′C′为平行四边形,求θ和n 的值.23.(本题满分12分)企业的污水处理有两种方式,一种是输送到污水厂进行集中处理,另一种是通过企业的自身设备进行处理.某企业去年每月的污水量均为12000吨,由于污水厂处于调试阶段,污水处理能力有限,该企业投资自建设备处理污水,两种处理方式同时进行.1至6月,该企业向污水厂输送的污水量1y (吨)与月份x (61≤≤x ,且x 取整数)之间满足的函数关系如下表.7至12月,该企业自身处理的污水量2y (吨)与月份x (127≤≤x ,且x 取整数)之间满足函数关系式为)0(22≠+=a c ax y ,其图象如图所示.1至6月,污水厂处理每吨污水的费用:1z (元)与月份x 之间满足函数关系式:x z 211=,该企业自身处理每吨污水的费用:2z (元)与月份x 之间满足函数关系式:2212143x x z -=.7至12月,污水厂处理每吨污水的费用均为2元,该企业自身处理每吨污水的费用均为1.5元.(1)请观察题中的表格和图象,用所学过的一次函数、反比例函数或二次函数的有关知识,分别直接写出21,y y 与x 之间的函数关系式;(2)请你求出该企业去年哪个月用于污水处理的费用W (元)最多,并求出这个最多费用; (3)今年以来,由于自建污水处理设备的全面运行,该企业决定扩大产能并将所有污水全部自身处理,估计扩大产能后今年每月的污水量都将在去年每月的基础上增加a%,同时每吨污水处理的费用将在去年12月份企业自身处理费用的基础上增加(a 一30)%,为鼓励节能降耗,减轻企业负担,财政对企业处理污水的费用进行50%的补助.若该企业实际支出每月的污水处理费用为18000元,请计算出a 的整数值.(参考数据:4.288095.204192.15231≈≈≈,,) 24.(本题满分12分)抛物线214y x x m =++的顶点在直线3y x =+上,过点F (2,2)-的直线与抛物线交于M 、N 两点(点M 在点N 的左边),MA ⊥x 轴于点A ,NB ⊥x 轴于点B . (1)先通过配方求抛物线的顶点坐标(坐标可用含m 的代数式表示),再求m 的值;(2)设点N 的横坐标为a ,试用含a 的代数式表示点N 的纵坐标,并说明NF =NB ;(3)若射线NM 交x 轴于点P ,且P A ×PB =1009,求点M 的坐标.2015年潍坊市中考模拟数学试题数学试题参考答案及评分标准一、选择题(本大题共12小题,共36分.每小题选对得3分. 错选、不选或多选均记0分.)二、填空题(本大题共6小题,共18分. 只要求填写最后结果,每小题填对得3分.) 13.()()26+-x x x ; 14.53; 15.4:10:25;16.(9,0); 17.16; 18.13π-26 三、解答题(本大题共6小题,共66分.解答应写出文字说明、证明过程或演算步骤) 19.(本题满分10分)解:(1)30,20; -----------------------------------------------------------------------------------2分(2)21;--------------------------------------------------------------------------------------------4分 (3)画树形图如下:------------------------------------6分共有16种可能的结果,且每种的可能性相同,其中张三获得车票的结果有6种,(2,1),(3,1),(3,2),(4,1)(4,2),(4,3) ------------------8分 ∴张三获得车票的概率为P =83166= ,则李四获得车票的概率为85831=- ∴这个规则对双方不公平. -------------------------------------------------------------10分20.(本题满分10分) (1)证明:连接AD ,OA∵∠ADC=∠ABC ,∠ABC=60°, ∴∠ADC=60°, ∵CD 是直径,∴∠DAC=90°,∴∠ACO=180°-90°-60°=30°,------------------------2分 ∵AP=AC ,OA=OC ,∴∠OAC=∠ACD=30°,∠P=∠ACD=30°,∴∠OAP=180°-30°-30°-30°=90°,即OA ⊥AP , ---- ---------------------------4分 ∵OA 为半径,∴AP 是⊙O 切线. ------------------------------------------------5分 (2)解:连接BD∵CD 是直径, ∴∠DBC=90°,∵CD=4,B 为弧CD 中点, ∴BD=BC=4sin45°=22, --------------------------6分 ∵∠BDC=∠BCD=45°, ∴∠DAB=∠DCB=45°,即∠BDE=∠DAB , ---------7分 ∵∠DBE=∠DBA ,∴△DBE ∽△ABD , --------------------------------------------------8分 ∴BD :BE =AB: BD ,----------------------------------------------------------------------------9分∴BE •AB=BD •BD=(22)2=8.--------------------------------------------------------------10分21.(本题满分10分)解:(1)①当2≤x ≤8时,每平方米的售价应为:3000-(8-x )×20=20x +2840 (元/平方米) ②当9≤x ≤23时,每平方米的售价应为: 3000+(x -8)·40=40x +2680(元/平方米)∴{8)x (22840,20x 23)x (92680,40x ≤≤+≤≤+=y , x 为正整数 -------------------------------------3分(2)由(1)知:①当2≤x≤8时,小张首付款为(20x +2840)·120·30%=36(20x +2840)≤36(20·8+2840)=108000元<120000元 ∴2~8层可任选②当9≤x≤23时,小张首付款为(40x +2680)·120·30%=36(40x +2680)元36(40x +2680)≤120000,解得:x ≤3116349= ∵x 为正整数,∴9≤x ≤16综上得:小张用方案一可以购买二至十六层的任何一层.-------------------------6分 (3)若按方案二购买第十六层,则老王要实交房款为:y 1=(40·16+2680) ·120·92%-60a (元)----------------------------------------7分 若按老王的想法则要交房款为:y 2=(40·16+2680) ·120·91%(元)∵y 1-y 2=3984-60a -------------------------------------------------------------------8分 ∴当y 1>y 2即y 1-y 2>0时,解得0<a <66.4,此时老王想法正确;当y 1≤y 2即y 1-y 2≤0时,解得a ≥66.4,此时老王想法不正确.----------10分22.(本题满分12分)解:(1) 3 ; 60°. -----------------------------------------------------------------------------------2分 (2)∵四边形ABB′C′是矩形,∴∠BAC′=90°.∴θ=∠CAC′=∠BAC′-∠BAC =90°-30°=60°.---------------------------------4分在R t △ABB ′中,∠ABB′=90°, ∠BAB′=60°,∴n =AB AB'=2. --------------------6分 (3)∵四边形ABB′C′是平行四边形, ∴AC′∥BB′,又∵∠BAC =36° ∴θ=∠CAC′=∠ACB =72° ------------------------------8分 ∴∠C′AB′=∠ABB′=∠BAC =36°, 又∵∠B =∠B,∴△ABC ∽△B ′BA, --------------------------------------------------------------------9分 ∴AB 2=CB·B′B =C B ·(BC+CB′), ---------------------------------------------------10分 ∵CB′=AC =AB =B′C′, BC =1, ∴AB 2=1·(1+AB)∴AB =12±∵AB >0, ∴n =B C BC ''=12+. -------------------------------------------------12分23.(本题满分12分) 解:(1)y 1=x12000, (1≤x≤6,x 为整数) -------------------------------------------------------2分 y 2=x 2+10000, (7≤x≤12,x 为整数) -------------------------------------------------4分(2)当1≤x≤6,x 为整数时:w=y 1z 1+(12000-y 1)z 2=-1000x 2+10000x -3000=-1000(x-5)2+22000, ∵-1000<0∴当x=5时w 有最大值,最大值是22000 --------------------------------------6分 当7≤x≤12,x 为整数时: W=2(12000-y 2)+1.5y 2=-221x +19000, ∵-21<0 ∴当x=7时,w 有最大值,最大值是18975.5 -----------------8分 ∵22000>18975.5 ∴当x=5时w 有最大值,最大值是22000即去年5月费用最多,最多为22000元. -----------------------------------------9分 (3)由题意得:12000(1+a %)×1.5×〔1+(a -30)%〕×(1-50﹪)=18000,------11分解得:a≈57 -----------------------------------------------------------------------------12分24.(本题满分12分) 解:(1))1()2(41)44(4141222-++=++=++=m x m x x m x x y -----------------1分 ∴顶点坐标为(-2 , 1m -) -------------------------------------------------------------2分 ∵顶点在直线3y x =+上,∴-2+3=1m -,得m =2 --------------------------3分(2)∵点N 在抛物线上,∴点N 的纵坐标为2412++a a -----------------------------------------------------4分 即点N (a ,2412++a a ) 过点F 作FC ⊥NB 于点C ,在Rt △FCN 中,FC =a +2,NC =NB -CB =214a a +, ∴2NF =22NC FC +=2221()(2)4a a a +++=2221()(4)44a a a a ++++ ----------------------------------------------5分而2NB =221(2)4a a ++=2221()(4)44a a a a ++++∴2NF =2NB ,NF =NB -------------------------------------------------------------7分(3)解法一:连结AF 、BF由NF=NB ,得∠NFB=∠NBF ,由(2)的结论知,MF=MA ,∴∠MAF=∠MFA,∵MA ⊥x 轴,NB ⊥x 轴,∴MA ∥NB,∴∠AMF+∠BNF=180° ∵△MAF 和△NFB 的内角总和为360°, ∴2∠MAF+2∠NBF=180°,∠MAF+∠NBF=90° ∵∠MAB+∠NBA=180°, ∴∠FBA+∠FAB=90° 又∵∠FAB+∠MAF=90° ∴∠FBA=∠MAF=∠MFA 又∵∠FPA=∠BPF , ∴△PFA ∽△PBF ,∴9100,2=⨯==PB PA PF PF PB PA PF ----------------------------------------------8分过点F 作FG ⊥x 轴于点G ,在Rt △PFG 中,PG =83,∴PO =PG +GO =143,∴P (-143,0) --------------------------------------------------9分 设直线PF :y kx b =+,把点F (-2 , 2)、点P (-143, 0)代入y kx b =+ 解得k =34,b =72, ∴直线PF :3742y x =+ ----------------------------------------------------------------10分解方程21372442x x x ++=+,得x =-3或x =2(不合题意,舍去)当x =-3时,y =54,∴M (-3 ,54)---------------------------------------------------12分解法二:设直线MN 的解析式为:()0y kx b k =+≠∵点F (-2,2)在直线MN 上,∴22k b -+= 解得:22b k =+∴直线MN 的解析式为:()()220y kx k k =++≠----------------------------------------------8分 令0y =解得:22P k kx +=- 令()212224x kx k x ++=++ 整理得:()211204k x k x+--= ∴该方程得解,A B x x 是A,B 两点得横坐标。
第二学期第二次模拟题九 年 级 数 学说明:全卷共 4 页,考试时间为 100 分钟,满分 120 分.一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1.-2的倒数为( ▲ ) A .21-B .21C .2D .12.已知空气的单位体积质量为1.24×10-3克/厘米3,将1.24×10-3用小数表示为( ▲ )A .0. 000124B .0.0124C .一0.00124D .0.00124 3.如图是一个几何体的三视图,则这个几何体的形状是( ▲ ).A .圆柱B .圆锥C .圆台D .长方体4.下列四种图形都是轴对称图形,其中对称轴条数最多的图形是( ▲ )A .等边三角形B .矩形C .菱形D .正方形5.直线2y x =-不经过( ▲ )A .第一象限B .第二象限C .第三象限D .第四象限 6.下列计算正确的是( ▲ )A .532a a a =+ B .1234)(a a =C .632a a a =⋅D .326a a a =÷7.不等式421->+x x 的解集是( ▲ ) A .5<x B .5>x C .1<xD .1>x8.如图,已知AB ∥CD ,E 是AB 上一点,DE 平分∠BEC交CD 于D ,∠BEC=100°,则∠D 的度数是( ▲ ) A .100° B .80° C .60° D .50°9.如图,DC 是⊙O 直径,弦AB ⊥CD 于F ,连接BC ,DB ,则下列结论错误的是( ▲ )第8题图A . AD⌒ =BD ⌒ B .AF=BF C .OF=CF D .∠DBC=90° 10.若x y ,为实数,且30x +=,则2014⎪⎭⎫ ⎝⎛x y 的值为( ▲ )A .1B . 1-C . 2D . 2-二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.若一个多边形外角和与内角和相等,则这个多边形是 ▲ . 12.分式方程312=+x x的解是 ▲ . 13.如图,DE 是△ABC 的中位线,若BC 的长是10cm ,则DE 的长是 ▲ .14.一组数据1,3,2,5,2,a 的众数是a ,这组数据的中位数是 ▲ .15.若关于x 的一元二次方程022=-+k x x 没有实数根,则k 的取值范围是 ▲.16.已知矩形ABCD 中,AB=1,在BC 上取一点E ,沿AE 将△ABE 向上折叠,使B 点落在AD 上的F 点. 若四边形EFDC 与矩形ABCD 相似,则AD = ▲ .三、解答题(一)(本大题3小题,每小题6分,共18分)17.计算:011134-⎛⎫⎛⎫︒+ ⎪ ⎪⎝⎭⎝⎭18.先化简,再求值:)1)(1()2(2a a a +-++,其中43-=a19.如图,在Rt △ABC 中,∠C =90°.(1)根据要求用尺规作图:过点C 作斜边AB 边上的高CD ,垂足为D(不写作法,只保留作图痕迹); (2)证明:△CAD ∽△BCD第16题图第9题图E ABCD 第13题图四、解答题(二)(本大题3小题,每小题7分,共21分)20.如图,AC 是操场上直立的一个旗杆,从旗杆上的B 点到地面C 涂着红色的油漆,用测角仪测得地面上的D 点到B 点的仰角是∠BDC=45°,到A 点的仰角是∠ADC=60°(测角仪的高度忽略不计)如果BC=3米,求旗杆的高度?21.在一个暗箱中装有红、黄、白三种颜色的乒乓球(除颜色外其余均相同).其中白球、黄球各1个,若从中任意摸出一个球是白球的概率是31. (1)求暗箱中红球的个数.(2)先从暗箱中任意摸出一个球记下颜色后放回,再从暗箱中任意摸出一个球,求两次摸到的球颜色不同的概率(用树形图或列表法求解).22.某种仪器由1种A 部件和1个B 部件配套构成.每个工人每天可以加工A 部件1000个或者加工B 部件600个,现有工人16名,应怎样安排人力,才能使每天生产的A 部件和B 部件配套?五、解答题(三)(本大题3小题,每小题9分,共27分) 23.如图, 抛物线c bx x y ++=221与x 轴交于A (-4,0) 和B(1,0)两点,与y 轴交于C 点.(1)求此抛物线的解析式;(2)若P 为抛物线上A 、C 两点间的一个动点,过P 作y 轴的平行线,交AC 于Q 点,当P 点运动到什么位置时,线段PQ 的长最大,并求此时P 点的坐标.24.如图,△ABC 内接于⊙O ,弦AD ⊥AB 交BC 于点E ,过点B 作⊙O 的切线交DA 的延长线于点F ,且∠ABF =∠ABC . (1)求证:AB =AC ;(2)若AD =4, cos ∠ABF =54,求DE 的长.25.如图,在平面直角坐标系xoy 中,抛物线c bx ax y ++=2交y 轴于点C (0,4), 对称轴2=x 与x 轴交于点D ,顶点M 的纵坐标为6. (1)求该抛物线的解析式;(2)设点P (x ,y )是第一象限内该抛物线上的一个动点,△PCD 的面积为S ,求S 关于x 的函数关系式,并写出自变量x 的取值范围;(3)在(2)的条件下,若经过点P 的直线PE 与y 轴交于点E ,是否存在以O 、P 、E 为顶点的三角形与△OPD 全等?若存在,请求出直线PE 的解析式;若不存在,请说明理由.九年级数学第二次模拟题参考答案和评分标准一、ADBDC BADCA二、11、四边形 12、3-=x 13、5 cm 14、2 15、1-<k 16 三、解答题(一)(本大题3小题,每小题6分,共18分) 17.解:原式=11242+⨯+ ······················· 4分 =6 ·························· 6分18.解:原式=22144a a a -+++ ···················· 3分=54+a ························· 4分当43-=a 时,原式=54+a =5)43(4+-⨯=2 ············ 6分 19.(1)正确尺规作图. ························ 3分(2)证明:∵Rt △ABC 中,CD 是斜边AB 边上的高,∴∠ADC =∠BDC =90°, ················· 4分 ∴∠ACD +∠A =∠ACD +∠BCD =90°,∴∠A =∠BCD , ····················· 5分 ∴△CAD ∽△BCD , ····················· 6分 四、解答题(二)(本大题3小题,每小题7分,共21分)20.解:在Rt △BDC 中, ∵∠BDC=45°, ∴DC=BC=3米, ························· 3分 在Rt △ADC 中, ∵∠ADC=60°,∴AC=DCtan60° ························· 5分=3× (米). ························ 6分 答:旗杆的高度为3米 ························ 7分 21.解:(1)设红球有x 个,根据题意得,31111=++x ······················ 2分解得1=x ····················· 3分(2)根据题意画出树状图如下:一共有9种情况, ························· 5分 两次摸到的球颜色不同的有6种情况, ·················· 6分 所以,P (两次摸到的球颜色不同)3296==··············· 7分 22.解:设安排x 人生产A 部件,安排y 人生产B 部件,由题意,得 ······· 1分⎩⎨⎧==+y x y x 600100016··························· 4分 解得:⎩⎨⎧==106y x ···························· 6分答:设安排6人生产A 部件,安排10人生产B 部件,才能使每天生产的A 部件和B部件配套. ···························· 7分五、解答题(三)(本大题3小题,每小题9分,共27分) 23. 解:(1)由二次函数c bx x y ++=221与x 轴交于(4,0)A -、(1,0)B 两点可得:⎪⎩⎪⎨⎧=++⨯=+--⨯012104)4(2122c b c b ················· 2分解得: ⎪⎩⎪⎨⎧-==223c b 故所求二次函数的解析式为223212-+=x x y . ·· 3分 (2) 由抛物线与y 轴的交点为C ,则C 点的坐标为(0,-2). ····· 4分若设直线AC 的解析式为b kx y +=,则有⎩⎨⎧+-=+=-b k b 4002 解得:⎪⎩⎪⎨⎧-=-=221b k故直线AC 的解析式为221--=x y . ·············· 5分若设P 点的坐标为213,222a a a ⎛⎫+- ⎪⎝⎭, ············· 6分又Q 点是过点P 所作y 轴的平行线与直线AC 的交点, 则Q 点的坐标为(1,2)2a a --.则有: )22321()221(2-+---=a a a PQ =a a 2212-- ····················· 7分=2)2(212++-a ················· 8分当2-=a 时,线段PQ 的长取最大值,此时P 点的坐标为(-2,-3) ·· 9分24.(1)证明:连接BD , ························· 1分 由AD ⊥AB 可知BD 必过点O ···················· 2分∵BF 相切于⊙O ,∴∠ABD 十∠ABF =90º∵AD ⊥AB ,∴∠ABD +∠ADB =90º,∴∠ABF =∠ADB ········· 3分 ∵∠ABC =∠ABF ,∴∠ABC =∠ADB ················· 4分 又∠ACB =∠ADB ,∴∠ABC =∠ACB ,∴AB =AC ············ 5分 (2)在Rt △ABD 中,∠BAD =90ºcos ∠ADB =BD AD ,∴BD =ADB AD ∠cos =ABFAD∠cos =544=5 ···· 6分∴AB =3 ·························· 7分 在Rt △ABE 中,∠BAE=90º Cos ∠ABE =BE AB ,∴BE =ABE AB∠cos =543=415∴AE =223)415(-=49················· 8分∴DE =AD -AE =4-49=47·················· 9分25.解:(1)由题意得:顶点M 坐标为(2,6). ············ 1分设抛物线解析式为:6)2(2+-=x a y ∵点C (0,4)在抛物线上,∴644+=a 解得21-=a ···················· 2分 ∴抛物线的解析式为:6)2(212+--=x y =42212++-x x ····· 3分(2)如答图1,过点P 作PE ⊥x 轴于点E∵ P (x ,y ),且点P 在第一象限, ∴PE=y ,OE=x ,∴DE=OE﹣OD=2-x ·························· 4分 S=S 梯形PEOC ﹣S △COD ﹣S △PDE=y x x y ⋅--⨯⨯-⋅+)2(214221)4(21 42-+=x y将42212++-=x x y 代入上式得:S=x x 4212+- ············ 5分 在抛物线解析式42212++-=x x y 中,令0=y ,即422102++-=x x ,解得322±=x设抛物线与x 轴交于点A 、B ,则B (322+,0), ∴3220+<<x∴S 关于x 的函数关系式为:S=x x 4212+-(3220+<<x ). ····· 6分 (3)存在.若以O 、P 、E 为顶点的三角形与△OPD 全等,可能有以下情形: (I )OD=OP .由图象可知,OP 最小值为4,即OP≠OD,故此种情形不存在. ······· 7分 (II )OD=OE .若点E 在y 轴正半轴上,如答图2所示: 此时△OPD ≌△OPE , ∴∠OPD=∠OPE ,即点P 在第一象限的角平分线上, ∴直线PE 的解析式为:221+=x y 若点E 在y 轴负半轴上,易知此种情形下,两个三角形不可能全等, 故不存在. ······························ 8分(III )OD=PE . ∵OD=2, ∴第一象限内对称轴右侧的点到y 轴的距离均大于2,则点P 只能位于对称轴左侧或与顶点M 重合. 若点P 位于第一象限内抛物线对称轴的左侧,易知△OPE 为钝角三角形, 而△OPD 为锐角三角形,则不可能全等; 若点P 与点M 重合,如答图3所示,此时△OPD ≌OPE ,四边形PDOE 为矩形, ∴直线PE 的解析式为:6=y综上所述,存在以O 、P 、E 为顶点的三角形与△OPD 全等, 直线PE 的解析式为221+=x y 或6=y . ················ 9分。
C Al 1 l 2122015年中考模拟测试数学试题(二)数学试题共6页,包括六道大题,共26道小题。
全卷满分120分。
考试时间为120分钟。
考试结束后,将本试题和答题卡一并收回。
注意事项:1.答题前,考生务必将自己的姓名、准考证号填写在答题卡上,并将条形码准确粘贴在条形码区域内. 2.答题时,考生务必按照考试要求在答题卡上的指定区域内作答,在草稿纸、试题卷上答题无效.一、选择题(每小题2分,共12分)1.下列运算中,正确的是( )A .=B .842a a a -÷=-C .236(3)27a a =D .2242()a b a b -=-2.如图,在△ABC 中,AB =2,AC =1,以AB 为直径的圆与AC 相切,与边BC 交于点D ,则AD 的长为 ( )A .552 B .554 C .352D .354第2题图 第3题图 第6题图 3.如图,直线1l ∥2l ,且分别与△ABC 的两边AB 、AC 相交, 若∠A = 50°,∠1=35°,∠2的度数为( )A . 95 °B . 65°C . 85 °D . 35°4.不等式组⎩⎨⎧≤->0222x x 的解集在数轴上表示为 ( )5.一次函数52y x =-的图象经过点(1,)A m ,如果点B 与点A 关于y 轴对称,则点B 所在的象限是 ( )A .第一象限 B.第二象限 C .第三象限 D .第四象限6.如图,反比例函数6y x=-在第二象限的图象上有两点A 、B ,它们的横坐标分别为1,3--,直线AB 与x 轴交于点C ,则△AOC 的面积为 ( )A .8B .10C .12D .24二、填空题(每小题3分,共24分)7= .8.2014年3月14日,“玉兔号”月球车成功在距地球约384400km 远的月球上自主唤醒,把 384400用科学记数法表示为________________km .9.在平面直角坐标系中,点A 是抛物线2(4)y a x k =-+与y 轴的交点,点B 是这条抛物线上的另一点,且AB ∥x 轴,则以AB 为边的等边三角形ABC 的周长为 .第10题图第9题图 10.如图,在正方形ABCD 中,AD=1,将△ABD 绕点B 顺时针旋转45°得到△A ′BD ′,此时A ′D ′与CD交于点E ,则DE 的长度为 .11.如图,四边形ABCD 为⊙O 的内接四边形,E 是BC 延长线上的一点,已知∠BOD=l00o,则∠DCE 的度数为_____o第11题图 第12题图 第14题图12.如图,⊙P 与x 轴切于点O ,点P (0,1)在y 轴上,点A 在⊙P 上,并且在第一 象限,∠APO =120 o .⊙P 沿x 轴正方向滚动,当点A 第一次落在x 轴上时为点'A ,12C . 12D .10 2A . 12B .则点'A 的坐标为 (结果保留π).13.===请你找出其中规律,并将第n(n ≥1)个等式写出来 .14. 如图,由7个形状、大小完全相同的正六边形组成网格,正六边形的顶点称为格点。
A .B .C .D . 2015年中考二模名校联考考试数学试题(卷)时间120分钟 满分130分2015/3/2一、选择题(每小题3分,共30分)1、2-的绝对值是()A .2-B .2C .12D .4 2、下列运算正确的是 ( )A . 325()a a =B .325a a a +=C .32()a a a a -÷=D . 331a a ÷= 3、下列图形中,既是轴对称图形,又是中心对称图形的是( )4、将4个红球、3个白球、2个黑球放入一个不透明的袋子里,从中摸出8个球,恰好红球、白球、黑球都摸到,这件事情 ( )A .可能发生B .不可能发生C .很可能发生D .必然发生 5、已知两圆内切,它们的半径分别为3和6,则这两圆的圆心距d 的取值满足( )A .9d >B . 9d =C . 39d <<D .3d =6、已知锐角A 满足关系式:(2sin 1)(3sin 1)0,A A +-=,则sinA =( )A .12-或13B .12- C .13 D .30°7、已知圆锥的底面半径为2cm ,母线长为5cm ,则圆锥的侧面积是 ( ) A .220cm B .220cm π C .210cm π D .25cm π8、如图,△ABC 内接于⊙O ,OD ⊥BC ,垂足为点D ,∠A =50°则∠OCD 的度数是( )A .40°B .45°C .50°D .60°2014321A .20132014 B .201322014⨯ C .20142015 D .201422015⨯ 10、如图,在△ABC 中,∠C =90°,AC =BC =4,D 是AB 的中点,点E 、F 分别在AC 、BC 边上运动(点E 不与点A 、C 重合),且保持AE =CF ,连接DE 、DF 、EF .在此运动变化的过程中,有下列结论:①△DFE 是等腰直角三角形;②四边形CEDF 不可能为正方形;③四边形CEDF 的面积随点E 位置的改变而发生变化;④点C 、E 、D 、F 四点在同一个圆上,且该圆的面积最小为4π.⑤DE DF CE CF +的值是定值为8,其中正确结论的个数是( )A.1B.2C.3D.4二、填空题(每小题3分,共24分)11、分解因式:228x -= .12、函数y =x 的取值范围是 . 13、“五一”黄金周,某商场收入创历史新高,达126000元,用科学记数法表示为 元.14、抛物线223y x x =--的顶点坐标为( , ).15、若实数a 满足a 2-2a -1=0,则2a 2-4a +5=________.16、已知△ABC 内接于⊙O ,若∠BOC=100°,则∠BAC=________°.17、如图,正方形ABCD 的面积为4,点F ,G 分别是AB ,DC 的中点,将点A 折到FG 上的点P 处,折痕为BE ,点E 在AD 上, 则AE 长为 .FB A第17题 第18题三、解答题(共76分)19.(本题511220143tan303-⎛⎫+--+︒⎪⎝⎭.20.(本题5分)先化简,再求值:2225241244a a aa a a⎛⎫-+-+÷⎪+++⎝⎭,其中a=221.(本题5分)解方程:解方程:x2-6x+9=(5-2x)2.22.(本题5分)解不等式组62021xx x->⎧⎨>+⎩并把解集在数轴上表示出来............23、(本题8分)“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗.我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整).请根据以上信息回答:(1)本次参加抽样调查的居民有多少人?(2)将两幅不完整的图补充完整;(3)若居民区有8000人,请估计爱吃D粽的人数;(4)若有外型完全相同的A、B、C、D粽各一个,煮熟后,小王吃了两个.用列表或画树状图的方法,求他第二个吃到的恰好是C粽的概率.24、(本题8分)如图,在正方形ABCD 中,对角线AC 、BD 相交于点O ,E 、F 分别在OD 、OC 上,且DE =CF ,连接DF 、AE ,AE 的延长线交DF 于点M . (1)求证:①AE=DF ②AM ⊥DF ;(2)若M 为DF 中点,连接EF ,直接写出EFDC = .25、(本题6分)在某段限速公路BC 上(公路视为直线),交通管理部门规定汽车的最高行驶速度不能超过60千米/时 (即350米/秒),并在离该公路100米处设置了一个监测点A .在如图所示的直角坐标系中,点A 位于y 轴上,测速路段BC 在x 轴上,点B 在A 的北偏西60°方向上,点C 在A 的北偏东45°方向上,另外一条高等级公路在y 轴上,AO 为其中的一段. (1)求点B 和点C 的坐标(保留根号);(2)汽车从点B 匀速行驶到点C 所用的时间是15秒,计算说明该汽车在这段限速路上是否超速?(参考数据:7.13 )HB A第24题第25题26、(本题8分)某企业是一家专门生产季节性产品的企业,经过调研预测,它一年中某月获得的利润y (万元)和月份n 之间满足函数关系式:21424y n n =-+-.(1)若一年中某月的利润为21万元,求n 的值; (2)哪一个月能够获得最大利润,最大利润是多少?(3)当产品无利润时,企业会自动停产,企业停产是哪几个月份? 27、(本题8分)如图,已知:C 是以AB 为直径的半圆O 上一点,CF ⊥AB 于点F ,直线AC 与过B 点的切线相交于点D ,E 为BD 中点,连接AE 交CF 于点H ,连接CE.(1)求证:点H 是CF 中点; (2)求证:CE 是⊙O 的切线; (3)若⊙O 的半径为2,BE=3,求CF 的长.E A D第27题28、(本题10分)如图,已知线段AB 长为6,点A 在x 轴负半轴,B 在y 轴正半轴,绕A 点顺时针旋转60°,B 点恰好落在x 轴上D 点处,点C 在第一象限内且四边形ABCD 是平行四边形. (1)求点C 、点D 的坐标(2)若半径为1的⊙P 从点A 出发,沿A —B —D —C 以每秒4个单位长的速度匀速移动,同时⊙P 的半径以每秒0.5个单位长的速度增加,运动到点C 时运动停止,当运动时间为t 秒时,①t 为何值时,⊙P 与y 轴相切?②在运动过程中,是否存在一个时刻,⊙P 与四边形ABCD 四边都相切,若存在,说出理由;若不存在,问题中⊙P 的半径以每秒0.5个单位长速度增加改为多少时就存在;(3)若线段AB 绕点O 旋转一周,线段AB 扫过的面积是多少?6422465101520ODBAyx6422465510ODCBAyx第28题29、(本题10分)如图,在平面直角坐标系中,开口向下的抛物线(2)(4)y a x x=-+与直线34y x b=+交于A、B两点,点A在x轴正半轴上,点B的横坐标为-6.(1)填空:A点坐标(,0 ),b=,a=;(2)点P是直线AB上方..的抛物线上一动点(不与点A、B重合),过点P作x 轴的垂线,垂足为C,交直线AB于点D,作PE⊥AB于点E.①当△PDE的周长与△ADC的周长相等时,求点C的坐标并求出此时△PDE的周长;②设点Q为y轴上一点,G为坐标系内一点,作矩形PAQG.随着点P的运动,矩形的大小、位置也随之改变.当矩形的邻边之比为1︰4时,直接写出对应的点P的坐标.第29题苏州市景范中学2013-2014学年第二学期数学二模答案一、选择题(每题3分) BDCDD CCADB 二、填空题(每题3分)11、2(2)(2)x x +-;12、x ≥5;13、51.2610⨯;14、(1,4)-如错一个扣1分;15、7;16、50或130°如少一个扣1分;1718、(10)π+如少括号扣1分三、19、6;每个化简正确1分,结果1分. 20、2a -,4分,原式1分 21、1282,3x x ==22、13x <<,每个不等式1分,结论2分,图1分 23、(1)600人 ,1分;(2)120,20﹪,30﹪,每个1分;(3)3200人,2分;(4)图或表1分,14P =,1分.24、(1)证明3分一题,(21,2分25、(1)B (-,C (100,0),1分一个(218≈,2分 , 50183>,1分, ∴超速,1分 26、(1)5或9,两个答案1分一个,共2分(2)n=7时,y 最大=25,1分一个,共2分 (3)令y=0,解出n=2或12; 1分由图像,得停产是1,2,12月. 1分 27、(1)3分 (2)3分 (3)2413,2分28、(1)C ,(3,0)D ,1分一个,共2分(2)①45t =或83,2分一个,共4分;②不存在,1分 1分 考场号______________ 座位号____________ 班级__________ 姓名____________ 成绩____________ ————————————————————————装订线————————————————————————————(3)814π. 2分29、(1)33(2,0),,82A a b=-=-,1分一个,共3分(2)①8(,0)3C-,2分,周长为14,2分②111(1),(1),(1)222----,1分一个,共3分。
2015年中考模拟(二) 数学试卷考生须知:本试卷分试题卷和答题卷两部分.满分120分,考试时间100分钟.答题时,不能使用计算器,在答题卷指定位置内写明校名,姓名和班级,填涂考生号.所有答案都做在答题卡标定的位置上,请务必注意试题序号和答题序号相对应.参考公式:抛物线2(0)y ax bx c a =++≠的顶点坐标(-a b 2,ab ac 442-) 圆锥的侧面积公式:S =πr l (其中S 是侧面积,r 是底面半径,l 是母线长)一.仔细选一选 (本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母在答题卡中相应的方框内涂黑.注意可以用多种不同的方法来选取正确答案.1.下列各几何体中,主视图是圆的是( )2.如图,已知Rt △ABC 边长分别为1,2,3,则下列三角函数表示正确的是( )A .sinA =23B .cosA =36C .tanA =2D .tanA =223.已知圆的面积为7π,估计该圆的半径r 所在范围正确的是( )A .1<r <2B .2<r <3C .3<r <4D .4<r <54.若反比例函数图象经过二次函数742+-=x x y 的顶点,则这个反比例函数的解析式为( )A .x y 6=B .xy 6-= C .x y 14= D .x y 2-= 5.如图,已知直线a ∥b ,同时与∠POQ 的两边相交,则下列结论中错误的是( )A .∠3+∠4=180°B .∠2+∠5>180°C .∠1+∠6<180°D .∠2+∠7=180°6.在一次演讲比赛中,某班派出的5名同学参加年级竞赛的成绩如下表(单位:分),其中隐去了3号同学的成绩,但得知5名同学的平均成绩是21分,那么5名同学成绩的方差是( )A .2.4B .6C .6.8D .7.57.若不等式组⎪⎩⎪⎨⎧-+≤+<+132211x x a x 的解是x <a -1,则实数a 的取值范围是( ) A .a ≤-6 B .a ≤-5 C .a ≤-4 D .a <-48.如图是某市11月1日至10日的空气质量指数折线图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择11月1日至11月7日中的某一天到达该市旅游,到达的当天作为第一天连续停留4天.则此人在该市停留期间恰好有两天空气质量优良的概率是( )A .72B .73C .52D .94 9.已知关于x 的一元二次方程02)(2=-+++c a bx x c a ,其中a 、b 、c 分别为△ABC 三边的长. 下列关于这个方程的解和△ABC 形状判断的结论错误的是( )A .如果x =-1是方程的根,则△ABC 是等腰三角形;B .如果方程有两个相等的实数根,则△ABC 是直角三角形;C .如果△ABC 是等边三角形,方程的解是x =0或 x =-1;D .如果方程无实数解,则△ABC 是锐角三角形.10.已知□ABCD 中,AD =2AB ,F 是BC 的中点,作AE ⊥CD ,垂足E 在线段CD 上,连结EF 、AF ,下列结论:①2∠BAF =∠BAD ;②EF=AF ;③S △ABF ≤S △AEF ;④∠BFE =3∠CEF.中一定成立的是( )A .①②④B .①③C .②③④D .①②③④二.认真填一填 (本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.(1)用科学记数法表示0.000 048为 ;(2)计算+-2)3(3)2(-= .12.(1)已知53=b a ,则=+bb a ; (2)若两个相似三角形面积之比为1︰2,则它们的周长之比为 .13.已知五月某一天,7个区(市)的日平均气温(单位℃)是20.1, 19.5, 20.2, 19.8,20.1,21.3,18.9 ,则这7个区(市)气温的众数是 ;中位数是 .14.如图,是一个半圆和抛物线的一部分围成的“芒果”,已知点A 、B 、C 、D 分别是“芒果”与坐标轴的交点,AB 是半圆的直径,抛物线的解析式为23232-=x y ,则图中CD 的长为 . 15.若函数k x k x k y ++++=)1()2(2的图象与x 轴只有一个交点,那么k的值为 .16.如图,PQ 为⊙O 的直径,点B 在线段PQ 的延长线上,OQ =QB =1,动点A 在⊙O 的上半圆运动(含P 、Q 两点),连结AB ,设∠AOB =α.有以下结论:①当线段AB 所在的直线与⊙O 相切时,AB =3;②当线段AB 与⊙O 只有一个公共点A 点时,α的范围是0°≤α≤60°;③当△OAB 是等腰三角形时,tan α=215; ④当线段AB 与⊙O 有两个公共点A 、M 时,若AO ⊥PM ,则AB =6.其中正确结论的编号是 .三.全面答一答 (本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.(本小题6分)如图是某企业近五年的产值年增长率折线统计图和年产值条形统计图(不完整).(1)员工甲看了统计图说2013年的产值比2012年少,请你判断他的说法是否正确(不必说理);(2)补全条形统计图(条形图和数字都要补上);(3)求这5年平均年产值是多少万元.18.(本小题8分)填空和计算:(1)给出下列代数式:21,xx 212+,21+x ,5-x ,122-x ,22+-x x ,其中有 个是分式; 请你从上述代数式中取出一个分式为 ,对于所取的分式:①当x 时分式有意义;②当x =2时,分式的值为 .(2)已知223-=x ,223+=y ,求代数式226y xy x ++的值.19.(本小题8分)(1)尺规作图:以线段a 为斜边,b 为直角边作直角三角形(不写画法,保留痕迹);(2)将所作直角三角形绕一条直角边所在直线旋转一周,设a =5,b =3,求所得几何体的表面积.20.(本小题10分)如图,已知点A (1,4),点B (6,32)是一次函数b kx y +=图象与反比例函数)0(>=m xm y 图象的交点,AC ⊥y 轴于点C ,BD ⊥x 轴于点D .(1)根据图象直接回答:在第一象限内,当x 取何值时,一次函数的值小于反比例函数的值?(2)求一次函数解析式及m 的值;(3)设P 是线段AB 上的一点,连接PC ,PD ,若△PCA 和△PDB面积相等,求点P 坐标.21.(本小题10分)如图,在四边形ABCD 中,AB ⊥BC ,AD ⊥CD ,AB =AD =6,∠BAD =60°:(1)证明:BC =CD ;并求BC 的长;(2)设点E 、F 分别是AB 、AD 边上的中点,连结EF 、EC 、FC ,求△CEF 三边的长和cos ∠ECF 的值.22.(本小题12分)如图,面积为8cm 2的正方形OABC 的边OA ,OC 在坐标轴上,点P 从点O 出发,以每秒1个单位长度的速度沿x 轴向点C 运动;同时点Q 从C 点出发以相同的速度沿x 轴的正方向运动,规定P 点到达点C 时,点Q 也停止运动,过点Q 作平行于y 轴的直线l .连结AP ,过P 作AP 的垂线交l 于点D ,连结AD ,AD 交BC 于点E.设点P 运动的时间为t 秒.(1)计算和推理得出以下结论(直接填空):①点B 的坐标为 ;②在点P 的运动过程中,总与△AOP 全等的三角形是 ; ③用含t 的代数式表示点D 的坐标为 ;④∠PAD = 度;(2)当△APD 面积为5 cm 2时,求t 的值;(3)当AP =AE 时,求t 的值(可省略证明过程,写出必要的数量关系列式求解).23.(本小题12分)如图,直线42+=x y 与x 轴、y 轴相交于B 、C 两点,抛物线c ax ax y +-=32过点B 、C ,且与x 轴另一个交点为A ,过点C 作x 轴的平行线l ,交抛物线于点G .(1)求抛物线的解析式以及点A 、点G 的坐标;(2)设直线m x =交x 轴于点E (m >0),且同时交直线AC 于点M ,交l 于点F ,交抛物线于点P ,请用含m 的代数式表示FM 的长、PF 的长;(3)当以P 、C 、F 为顶点的三角形与△MEA 相似时,求出m 的值.2015中考二模数学答案一.选择题(每小题3分) CCBAD CCBDD二.填空题 (每小题4分) 11.(1)4.8×10-5 ;(2)1 ; 12.(1)58;(2)1︰2; 13.20.1;20.1 ;14.25; 15.3323±-或-2; 16.①②④17.(6分) (1)不正确--------------------------------------------1分(2)补全条形统计图、数字500、 900---------3分(3)784(万元)------------------------------------2分18.(8分)(1) 3 ;取出一个分式为(xx 212+,122-x ,22+-x x 之一),①分别(对应)x ≠0;x ≠±1;x ≠-2时分式有意义;②当x =2时,分式的值为(对应)45;32;0 (共4分,每空1分)(2)原式=xy y x 4)(2++=(+-223223+)2+4(⨯-223223+)=3+4 ×41=4-------4分,直接代值硬算不扣分;如果算错了,但能化为 xy y x 4)(2++或xy y x 8)(2+-得1分19.(8分)(1)尺规作图(略)---------------------------------------------------4分(2) 分类,分别绕不同的直角边:① 24π;②36π ---------4分(各2分)20.(10分)(1)一次函数的值小于反比例函数的值时x 取范围是0<x <1或6<x <7--------------------2分(2)待定系数法得到:31432+-=x y --------------------------2分, m =4 ----------------------2分 (3)设P (x ,31432+-x ), S △PCA =)314324(121-+⨯⨯x ----1分,S △PDB =)6(3221x -⨯⨯-----1分 解得P (37,27)-------------------------------------------------------------------------------------2分 21.(10分)(1) 连结AC ,在△ABC 和△ADC 中,∠B =∠D =90°,AB =AD ,AC =AC ,∴△ABC ≌△ADC (HL )-------------2分 ;∴BC =CD , -----------------1分∵△ABC ≌△ADC ,∴∠CAB =30°,AB =6,∴BC =32 -----------2分(2) ∵∠BAD =60°,AE =AF =3,∴EF =3,--------------------------------1分EC =FC ==+22)32(321 ---------------------------------------------------2分作EG ⊥CF ,设CG =x ,则 212-x 2=EG 2=32-2)21(x - 解得x =142111------------1分∴cos ∠ECF =142111/21=1411------------------------------------------------------------------------1分22.(12分)(1)①点B (22 ,22), 写(8,8)不扣分; ②与△AOP 全等的三角形是△PDQ ;③点D (22+t , t );④∠PAD =45度;-------------------------4分(每空1分)(2)∵PD =22QD PQ +=28t +,S △APD =21PD 2 =5, -----------2分∴8+t 2=10,∴t =2-------------------------------------------------2分(3)解法1:过D 作DG ⊥y 轴,则由三角形相似得GD AB EG BE = EG =t 222---------------1分;t 22222t =-t-----------1分; 解得t =4―22----------2分 解法2:当AP =AE 时,△AOP ≌△ABE (HL );连结PE ,作AG ⊥PE ,可得5个三角形全等,PC =EC =22―t ,∴PE =2OP ,∴PE =2PC =2(22―t )=4―2t -----------1分又PE =2OP =2 t--------------------------------------------1分∴4―2t =2 t ,解得t =4―22-----------------------2分(解题过程不必分析证明,只要数量关系正确即可。
2015年中考数学二模试题(考试时间100分钟,满分150分)考生注意:1.本试卷含三个大题,共25题.2.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,请选择正确选项的代号并填涂在答题纸的相应位置上】1.下列运算中,正确的是 ……………………………………………………………………( )(A)1293=±3(C)030-=()(D)2139-=2.轨道交通给人们的出行提供了便捷的服务,据悉,上海轨道交通19号线即将开建,一期规划为自川桥路站至长兴岛,设6站,全长约为20600米.二期、远期将延伸到崇明岛、横沙岛,届时崇明县三岛将全通地铁.将20600用科学记数法表示应为 ………………………( )(A)52.0610⨯(B)320.610⨯(C)42.0610⨯(D)50.20610⨯3.从下列不等式中选择一个与12x +≥组成不等式组,如果要使该不等式组的解集为1x ≥,那么可以选择的不等式可以是 ………………………………………………………………( ) (A)1x >-(B)2x >(C)1x <-(D)2x <4.已知点11(,)A x y 和点22(,)B x y 是直线23y x =+上的两个点,如果12x x <,那么1y 与2y 的大小关系正确的是 …………………………………………………………………( )(A)12y y >(B)12y y <(C)12y y =(D)无法判断5.窗花是我国的传统艺术,下列四个窗花图案中,不是..轴对称图形的是…………………( )(A) (B) (C) (D) 6.已知在四边形ABCD 中,AC 与BD 相交于点O ,那么下列条件中能判定这个四边形是正方形的是 …………………………………………………………………( ) (A)AC BD =, AB CD ∥, AB CD = (B)AD BC ∥, A C ∠=∠(C)AO BO CO DO ===, AC BD ⊥(D)AO CO =, BO DO =, AB BC =二、填空题(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置上】 7.因式分解:34x x -= ▲ . 8.2,那么x = ▲ .9.如果分式242x x -+的值为0,那么x 的值为 ▲ .10.已知关于x 的一元二次方程2610x x m -+-=有两个相等的实数根,那么m 的值为▲ . 11.已知在方程222232x x x x++=+中,如果设22y x x =+,那么原方程可化为关于y 的整式方程是 ▲ .12.布袋中有2个红球和3个黑球,它们除颜色外其他都相同,那么从布袋中取出1个球恰好是红球的概率为 ▲ .13.某学校在开展“节约每一滴水”的活动中,从初三年级的360名同学中随机选出20名同学汇报了各自家庭一个月的节水情况,将有关数据整理如下表:用所学的统计知识估计这360名同学的家庭一个月节约用水的总量大约是 ▲ 吨.14.如图,在ABC ∆中,AD 是边BC 上的中线,设向量AB a =,AD b =,如果用向量,a b表示向量BC ,那么BC = ▲ .15.如图,已知ABC ∆和ADE∆均为等边三角形,点D 在BC 边上,DE 与AC 相交于点F ,如果9AB =,3BD =,那么CF 的长度为 ▲ .16. 如图,已知在O 中,弦CD 垂直于直径AB ,垂足为点E ,如果30BAD ∠=︒,2OE =,那么CD = ▲ .17.如果一个二次函数的二次项系数为1,那么这个函数可以表示为2y x px q =++,我们将(第14题图)ABCD(第15题图)A BCEFD(第16题图)B[],p q 称为这个函数的特征数.例如二次函数242y x x =-+的特征数是[]4,2-.请根据以上的信息探究下面的问题:如果一个二次函数的特征数是[]2,3,将这个函数的图像先向左平移2个单位,再向下平移3个单位,那么此时得到的图像所对应的函数的特征数为 ▲ .18.如图,在ABC ∆中,CA CB =,90C ∠=︒,点D 是BC的中点,将ABC ∆沿着直线EF 折叠,使点A 与点D 重合, 折痕交AB 于点E ,交AC 于点F ,那么sin BED ∠的值 为 ▲ .三、解答题(本大题共7题,满分78分) 19.(本题满分10分) 先化简,再求值:2122121x x x x x x +-÷+--+,其中6tan302x =︒-.20.(本题满分10分)解方程组:222230x y x xy y -=⎧⎨--=⎩21.(本题满分10分,第(1)小题5分、第(2)小题5分) 在Rt ABC ∆中,90BAC ∠=︒,点E 是BC 的中点, AD BC ⊥,垂足为点D .已知9AC =,3cos 5C =. (1)求线段AE 的长;(2)求sin DAE ∠的值.22.(本题满分10分,第(1)小题4分,第(2)小题6分)周末,小明骑电动自行车从家里出发到野外郊游.从家出发0.5小时后到达甲地,游玩一段时间后按原速前往乙地.小明离家1小时20分钟后,妈妈驾车沿相同路线前往乙地.如图是他们离家的路程y (km)与小明离家时间x (h)的函数图像.已知妈妈驾车的速度是小明骑电动自行车速度的3倍.(1)小明骑电动自行车的速度为 千米/小时,在甲地游玩的时间为 小时; (2)小明从家出发多少小时的时候被妈妈追上?A C FED(第18题图)(第21题图) CAB E D此时离家多远?23.(本题满分12分,每小题各6分)如图,ABC ∆中,2BC AB =,点D 、E 分别是BC 、AC 的中点,过点A 作AF BC ∥交线段DE 的延长线于点F ,取AF 的中点G ,联结DG ,GD 与AE 交于点H . (1)求证:四边形ABDF 是菱形; (2)求证:2DH HE HC =⋅.24.(本题满分12分,每小题各6分) 如图,已知抛物线2y ax bx c =++经过点(0,4)A -,点(2,0)B -,点(4,0)C .(1)求这个抛物线的解析式,并写出顶点坐标;(2)已知点M 在y 轴上,OMB OAB ACB ∠+∠=∠,求点M 的坐标.(第24题图)A BDHG FEC(第23题图)25.(本题满分14分,第(1)小题5分,第(2)小题5分,第(3)小题4分) 如图,在Rt ABC ∆中,90ACB ∠=︒,8AC =,4tan 3B =,点P 是线段AB 上的一个动点,以点P 为圆心,PA 为半径的P 与射线AC 的另一个交点为点D ,射线PD 交射线BC 于点E ,点Q 是线段BE 的中点.(1)当点E 在BC 的延长线上时,设PA x =,CE y =,求y 关于x 的函数关系式,并写出定义域;(2)以点Q 为圆心,QB 为半径的Q 和P 相切时,求P 的半径;(3)射线PQ 与P 相交于点M ,联结PC 、MC ,当PMC ∆是等腰三角形时,求AP 的长.(第25题图)(备用图1)BA CB九年级数学参考答案及评分说明一、选择题(本大题共6题,每题4分,满分24分) 1.D ; 2.C ;3.A ; 4.B ; 5.D ; 6.C .二、填空题:(本大题共12题,每题4分,满分48分)7.(2)(2)x x x +- 8.1 9.2 10. 10 11. 2320y y -+= 12.2513. 540 14.22b a - 15.216. 17.[]68, 18. 35三、解答题:(本大题共7题,满分78分) 19.(本题满分10分) 先化简,再求值:2122121x x x x x x +-÷+--+,其中6302x tan =-. 解:原式=21(1)212x x x x x --+-+……………………………………………………2分 122x x x x -=-++ ………………………………………………………2分 12x =+………………………………………………………………2分∵6302x tan =-6223=⨯-=………………………………………2分 ∴原式6=………………………………………………………………2分 20. (本题满分10分) 解方程组:222230x y x xy y -=⎧⎨--=⎩...............(1) (2)解:由(2)可得:(3)()0x y x y -+=∴30x y -=,0x y += ………………………………2分∴原方程组可化为:230x y x y -=⎧⎨-=⎩,2x y x y -=⎧⎨+=⎩ …………………………4分解得原方程组的解为1131x y =⎧⎨=⎩,2211x y =⎧⎨=-⎩ ………………………………4分21.(本题满分10分,第(1)小题5分、第(2)小题5分)(1)解:909oBAC AC ∠==∵, 93cos 5AC C AB BC ===∴ …………………………………………1分 15BC =∴ ………………………………………………………………2分 90oBAC ∠=∵,点E 是BC 的中点 11522AE BC ==∴ ……………………………………………………2分 (2)解:AD BC ⊥∵ 90oADC ADB ∠=∠=∴3cos 95CD CD C AC ===∴ 275CD =∴ …………………………………………………2分∵点E 是BC 的中点,BC=15 ∴CE=152 ∴DE=2110………………………………………1分 ∵90oADB ∠= ∴sin DAE ∠=2127101525DE AE =⨯= ……………………………2分 22. (本题满分10分,第(1)小题4分,第(2)小题6分)(1) 20;0.5 ……………………………………………………………各2分 (2)解:设小明出发x 小时的时候被妈妈追上.420(1)10203()3x x -+=⨯- ……………………………………3分解得:74x =……………………………………………………1分 ∴320(1)102010254x -+=⨯+= ……………………………1分答:当小明出发74小时的时候被妈妈追上,此时他们离家25千米.…1分23.(本题满分12分,每小题各6分)(1)证明:∵点D 、E 分别是BC 、AC 的中点∴DE//AB ,BC=2BD …………………………………………………1分 ∵AF//BC∴四边形ABDF 是平行四边形 ……………………………………………2分 ∵BC=2AB∴AB=BD …………………………………………………………………1分 ∴四边形ABDF 是菱形. …………………………………………………2分(2)证明:∵四边形ABDF 是菱形 ∴AF=DF∵点G 是AF 的中点 ∴FG=12AF ∵点E 是AC 的中点 ∴AE=CE ∵AF//BC ∴1EF AEDE CE== ∴EF=12DF , ∴FG=EF ……………………………………………………………1分 在△AFE 和△DFG 中AF DF F F EF GF =⎧⎪∠=∠⎨⎪=⎩∴△AFE ≌△DFG (S.A.S )∴∠FAE=∠FDG ………………………………………………………1分 ∵AF//BC ∴∠FA E=∠C∴∠FDG=∠C ………………………………………………………1分 又∵∠EHD=∠DHC (公共角)∴△HED ∽△HDC ……………………………………………………2分 ∴HE HDHD HC= ∴2DH HE HC = ………………………………………………………1分 24.(本题满分12分,每小题各6分)(1)解:∵抛物线2y ax bx c =++经过点(0,4)A -,点(2,0)B -,点(4,0)C∴44201640c a b c a b c =-⎧⎪-+=⎨⎪++=⎩……………………………………………………1分解得方程组的解为1214a b c ⎧=⎪⎪=-⎨⎪=-⎪⎩………………………………………………2分∴这个抛物线的解析式为:2142y x x =-- ………………………………1分 顶点为9(1,)2- ……………………………………………………………2分(2)如图:取OA 的中点,记为点N ∵OA=OC=4,∠AOC=90° ∴∠ACB=45°∵点N 是OA 的中点 ∴ON=2 又∵OB=2 ∴OB=ON 又∵∠BON=90° ∴∠ONB=45° ∴∠ACB=∠ONB ∵∠OMB+∠OAB=∠ACB ∠NBA+∠OAB=∠ONB∴∠OMB=∠NBA ………………………………………………………………2分 1° 当点M 在点N 的上方时,记为M 1 ∵∠BAN=∠M 1AB ,∠NBA=∠OM 1B , ∴△ABN ∽△AM 1B ∴1AN ABAB AM =又∵AN=2,∴110AM = 又∵A (0,—4)∴1(0,6)M ………………………………………………………………………2分 2° 当点M 在点N 的下方时,记为M 2点M 1与点M 2关于x 轴对称,∴2(0,6)M - ……………………………………2分 综上所述,点M 的坐标为(0,6)或(0,6)-25.(本题满分14分,第(1)小题5分,第(2)小题5分,第(3)小题4分) (1)解:过点P 作PH ⊥AD ,垂足为点H∵∠ACB=90°,43tanB = ∴35sinA =∵PA x = ∴35PH x = ∵∠PHA=90° ∴222PH AH PA += ∴45AH x =……………………1分 ∵在⊙P 中,PH ⊥弦AD ∴45DH AH x ==, ∴85AD x = 又∵AC=8 ∴885CD x =- ………………………………………………1分∵∠PHA=∠BCA=90°,∴PH ∥BE ∴PH DHCE CD = ∴3455885x xy x=- ……………………………1分 ∴665y x =- (x 0<<5) (1)(2)∵PA=PD ,PH ⊥AD ∴∠1=∠2 ∵PH ∥BE∴∠1=∠B ,∠2=∠3 ∴PB=PE ∵Q 是BE 的中点∴PQ ⊥BE ………………………………………………………………………1分 ∴43PQ tanB =BQ = ∴35BQ cosB =BP = ∵PA x = ∴10PB x =- ∴365BQ x =-, 485PQ x =- 1°当⊙Q 和⊙P 外切时:PQ=AP+BQ∴438655x x x -=+- …………………………………………………………1分 53x = …………………………………………………………………1分2°当⊙Q 和⊙P 内切时,此时⊙P 的半径大于⊙Q 的半径,则PQ=A P —BQ ∴438(6)55x x x -=-- …………………………………………………………1分 321HQABP CED- 11 - 356x = ……………………………………………………………………1分 ∴当⊙Q 和⊙P 相切时,⊙P 的半径为53或356. (3)当△PMC 是等腰三角形,存在以下几种情况: 1°当MP=MC x =时 ,∵336(6)55QC x x =--= ∴45MQ x = 若M 在线段PQ 上时,PM+MQ=PQ ∴44855x x x +=- 4013x = ……………………………………………………………………1分 若M 在线段PQ 的延长线上时,PM —MQ=PQ ∴44855x x x -=- 8x = …………………………………………………………………………1分 2°当CP=CM 时∵CP=CM ,CQ ⊥PM∴PQ=QM=1122PM x = ∴41852x x -= 8013x = …………………………………………………………………………1分 3°当PM=PC x =时∵AP x = ∴PA=PC 又∵PH ⊥AC ∴AH=CH∵PH ∥BE ∴1AP AH BP CH== ∴110x x =- 5x = …………………………………………………………………………1分 综上所述:当△PMC 是等腰三角形时,AP 的长为4013或8013或5或8.。
2015潍城二模数学试题2015.5注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷,为选择题,36分;第Ⅱ卷,为非选择题,84分;共120分.考试时间为120分钟.2.答卷前务必将自己的姓名、准考证号、考试科目、试卷类型填涂在答题纸上。
考试结束,试题和答题纸一并收回。
3.第Ⅰ卷每题选出答案后,都必须用2B铅笔把答题纸上对应题目的答案标号(ABCD)涂黑,如需改动,必须先用橡皮擦干净,再改涂其它答案。
4.第Ⅱ卷的答案和解题过程,必须用蓝黑钢笔或圆珠笔答在答题纸的有效范围内。
第Ⅰ卷(选择题共36分)一、选择题(本大题共12小题,共36分. 在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,涂在答题纸上,每小题选对得3分. 错选、不选或多选均记零分.)1.下列四个实数中,绝对值最大的数是().A.﹣5 B.-C.2D.42.下列问题中,不适合用全面调查的是().A.了解全班同学每周体育锻炼的时间B.旅客上飞机前的安检C.学校招聘教师,对应聘人员面试D.了解全市中小学生每天的零花钱3.把右图中的三棱柱展开,所得到的展开图是().4.下列根式化简后被开方数是3的是().A B C D5.下列等式从左到右的变形,属于因式分解的是().A.a(x-y)=ax-ay B.x2+2x+1=x(x+2)+1C.(x+1)(x+3)=x2+4x+3D.x3-x=x(x+1)(x-1)6.一组数据按从大到小的顺序排列为2,4,8,x,10,14.若这组数据的中位数为9,则这组数据的众数为( ).A .6B .8C .9D .107.如图,一副分别含有30°和45°角的两个直角三角板,拼成如 下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD 的度 数是( ).A .15°B .25°C .30°D .10°8.某河堤的横断面如图所示,堤高BC=6米,迎水坡AB的坡度为1:,则AB 的长为( ).A .12B .4米C .5米D .6米9.如图,四边形ABCD 是菱形,∠A=60°,AB=2,扇形BEF 的半径为2,圆心角为60°,则图中阴影部分的面积是( ).A .23π B .23πC .πD .π 10.如果一个三角形的两边长分别是方程x 2﹣8x+15=0的两个根,那么连结这个三角形三边的中点,得到的三角形的周长可能是( ).A .5.5B .5C .4.5D .4 11.如图,的顶点与坐标原点重合,,AO =3BO ,当A 点在反比例函数()图象上移动时,B 点坐标满足的函数解析式是( ).A .1(0)y x x =-< B . 3(0)y x x=-<C . 1(0)3y x x =-< D . 1(0)9y x x=-< 12.如图,在ΔABC 中,∠C =90°,AC =8,AB =10,点P 在AC上,AP =2,若⊙O 的圆心在线段BP 上,且⊙O 与AB 、AC都相切,则⊙O 的半径是( ). A .45 B .1C .712D .94第Ⅱ卷(非选择题共84分)二、填空题(本大题共6小题,共18分. 只要求填写最后结果,每小题填对得3分.)13.已知线段CD是由线段AB平移得到的,点A(﹣1,4)的对应点为C(4,7),则点B (﹣4,﹣1)的对应点D的坐标为___________.14.不等式组的解集中,整数解的个数是 __________个.15.如图,梯形ABCD中,AD∥BC,AD=4,AB=5,BC=10,CD的垂直平分线交BC于E,连结DE,则四边形ABED的周长等于.16.如图,以O为端点画六条射线后OA,OB,OC,OD,OE,O后F,再从射线OA上某点开始按逆时针方向依次在射线上描点并连线,若将各条射线所描的点依次记为1,2,3,4,5,6,7,8,…,那么所描的第2013个点在射线上.17.如图,以点P(2,0)M(a,b)是⊙P上的一点,则ba的最大值是.18.如图,方格纸中每个小正方形的边长为1,△ABC和△DEF的顶点都在格点..上(小正方形的顶点).P1,P2,P3,P4,P5是△DEF边上的5个格点,请在这5个格点中选取2个作为三角形的顶点,使它和点D构成的三角形与△ABC相似.写出所.有.符合条件的三角形.三、解答题(本大题共6小题,共66分. 解答应写出文字说明、证明过程或演算步骤)19.(本题满分10分)为了提高学生书写汉字、识别汉字的能力,进一步提高汉语水平,我区举办了首届“汉字听写大赛”,经选拔后有50名学生参加决赛,这50名学生同时听写50个汉字,若每正确听写出一个汉字得1分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:(1)求出表中a的值;(2)请把频数分布直方图补充完整;(3)若测试成绩不低于40分为优秀,则本次测试的优秀率是多少?(4)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小宇与小强两名男同学能分在同一组的概率.20.(本题满分10分)已知四边形ABCD中,E、F分别是AB、AD边上的点,DE与CF交于点G.(1)如图①,若四边形ABCD 是矩形,且DE ⊥CF ,求证CDADCF DE =; (2)如图②,若四边形ABCD 是平行四边形,试探究:当∠B 与∠EGC 满足什么关系时,使得CDADCF DE =成立?并证明你的结论.21.(本题满分11分)某电器超市销售每台进价分别为200元、170元的A 、B 两种型号的电风扇,下表是近两周的销售情况:(1)求A 、B 两种型号的电风扇的销售单价;(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A 种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由. 22.(本题满分11分)如图,在平面直角坐标系中,△ABC 是⊙O 的内接三角形,AB =AC ,点P 是⋂AB 的中E FG ABCD第24题图①第24题图②ABCDF GE点,连结P A ,PB ,PC .(1)如图①,若∠BPC =60°,求证:AP AC 3=; (2)如图②,若2524sin =∠BPC ,求PAB ∠tan 的值.23.(本题满分12分)为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.李明按照相关政策投资销售本市生产的一种新型节能灯.已知这种节能灯的成本价为每件10元,出厂价为每件12元,每月销售量y (件)与销售单价x (元)之间的关系近似满足一次函数:y=﹣10x+500.(1)李明在开始创业的第一个月将销售单价定为20元,那么政府这个月为他承担的总差价为多少元?(2)设李明获得的利润为w (元),当销售单价定为多少元时,每月可获得最大利润? (3)物价部门规定,这种节能灯的销售单价不得高于25元.如果李明想要每月获得的利润不低于3000元,那么政府为他承担的总差价最少为多少元? 24.(本题满分12分)第22题图①第22题图②如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为(4,﹣),且与y轴交于点C(0,2),与x轴交于A,B两点(点A在点B的左边).(1)求抛物线的解析式及A,B两点的坐标;(2)在(1)中抛物线的对称轴l上是否存在一点P,使AP+CP的值最小?若存在,求AP+CP的最小值,若不存在,请说明理由;(3)过点C的直线与以AB为直径的⊙M相切于点E,CE交x轴于点D,求直线CE 的解析式.2015潍城二模数学试题答案及评分标准一、选择题:ADBCD DAABA AB二、填空题:13.(1,2) 14.6 15.19 16.OE 1718.△DP 2P 5、△DP 2P 4、△DP 4P 5(每个1分)三、解答题 19.解:(1)表中a 的值是:a =50﹣4﹣8﹣16﹣10=12(名).------------------------------------3分(2)根据题意画图如下:---------------------------------------------------------------------------------5分(3)本次测试的优秀率是%44%100501012=⨯+. 答:本次测试的优秀率是44%.------------------------------------------------------------------7分(4)用A 表示小宇B 表示小强,C 、D 表示其他两名同学,根据题意画树状图如下:共有12种情况,小宇与小强两名男同学分在同一组的情况有2种,--------------------9分则小宇与小强两名男同学分在同一组的概率是61122=.----------------------------------10分 20.解:(1)证明:∵四边形ABCD 是矩形,∴∠A =∠ADC =90°, ∵DE ⊥CF ,∴∠ADE+∠DFG=90°,又∵∠DCF+∠DFG=90°,∴∠ADE =∠DCF ,--------------------------------------------------------------------------------2分∴△ADE ∽△DCF ,∴DCADCF DE =.------------------------------------------------------------4分(2)当∠B+∠EGC =180°时,DCADCF DE =成立,证明如下: ------------------------------5分在AD 的延长线上取点M ,使CM =CF ,则∠CMF =∠CFM .-------------------------6分∵AB ∥CD ,∴∠A =∠CDM ,-------------7分∵∠B+∠EGC =180°,∴∠BEG+∠FCB =180°, 又∵∠AED+∠BEG =180°,∴∠AED =∠FCB , ∴∠CMF =∠AED .--------------------------------------------------------------------------------8分∴△ADE ∽△DCM ,∴DCADCM DE =,即DC AD CF DE =.-------------------------------------10分21.解:(1)设A 、B 两种型号电风扇的销售单价分别为x 元、y 元,依题意得:,--------------------------------------------------------------------3分解得:,答:A 、B 两种型号电风扇的销售单价分别为250元、210元;-------------------------4分(2)设采购A 种型号电风扇a 台,则采购B 种型号电风扇(30﹣a )台.依题意得:200a +170(30﹣a )≤5400,-------------------------------------------------------7分解得:a ≤10.答:A 种型号的电风扇最多采购10台;------------------------------------------------------8分(3)依题意有:(250﹣200)a +(210﹣170)(30﹣a )=1400,---------------------- ------10分解得:a =20,∵a >10,∴在(2)的条件下超市不能实现利润1400元的目标.--------------------11分22.解:(1)证明:∵AB =AC ,∠BAC =∠BPC =60°.∴△ABC 为等边三角形.------------------------------------------------------------- ----------1分∴∠ACB =60°,∵点P 是弧AB 的中点,∴∠ACP =30°,--------------- ---------2分又∠APC =∠ABC =60°,∴∠BAC =90°, ------------------------------------ ----------3分∴AC =A P ·tan60°=3AP .--------------------------------------------------------- -------4分ME GF D C B A 第24题图②(2)解:连结AO 并延长交PC 于E ,交BC 于F ,过点E 作EG ⊥AC 于G ,连结OC . ------------------------------------------------------ ---------5分∵AB =AC ,∴AF ⊥BC ,BF =CF .∵点P 是弧AB 中点,∴∠ACP =∠PCB ,∴EG =EF .--------------------------------6分∵∠BPC =∠FOC ,∴sin ∠FOC =sin ∠BPC=2524.设FC =24a ,则OC =OA =25a ,∴OF =7a ,AF =32a .----------------------------------8分在Rt △AFC 中,AC 2=AF 2+FC 2,∴AC =40a . 在Rt △AGE 和Rt △AFC 中,sin ∠FAC =ACFCAE EG =, ∴aa EG a EG 402432=-,∴EG =12a .-------------------------------------------------------10分 ∴tan ∠PAB =tan ∠PCB=212412==a a CF EF . ---------------------------------------------11分23.解:(1)当x=20时,y=﹣10x+500=﹣10×20+500=300,---------------------------------1分300×(12﹣10)=300×2=600,即政府这个月为他承担的总差价为600元.---------------------------------------------3分 (2)依题意得,w=(x ﹣10)(﹣10x+500)---------------------------------------------------4分=﹣10x 2+600x ﹣5000=﹣10(x ﹣30)2+4000---------------------------------------------5分 ∵a=﹣10<0,∴当x=30时,w 有最大值4000.即当销售单价定为30元时,每月可获得最大利润4000元.-------------------------7分 (3)由题意得:﹣10x 2+600x ﹣5000=3000,解得:x 1=20,x 2=40.------------------------------------8分 ∵a=﹣10<0,抛物线开口向下,∴结合图象可知:当20≤x ≤40时,w ≥3000. 又∵x ≤25,∴当20≤x ≤25时,w ≥3000.--------------9分 设政府每个月为他承担的总差价为p 元,∴p=(12﹣10)×(﹣10x+500)=﹣20x+1000.---11分 ∵k=﹣20<0,∴p 随x 的增大而减小, ∴当x=25时,p 有最小值500.即销售单价定为25元时,政府每个月为他承担的总差价最少为500元.---------12分24.解:(1)由题意,设抛物线的解析式为y=a (x ﹣4)2﹣(a ≠0)∵抛物线经过点(0,2),∴a (0﹣4)2﹣=2,解得a= ∴y=(x ﹣4)2﹣,即:y=x 2﹣x+2.----------2分 当y=0时,x 2﹣x+2=0,解得x=2或x=6GE FAP O第22(2)题图∴A(2,0),B(6,0).-----------------------------3分(2)存在.---------------------------------------------------------4分如图,由(1)知:抛物线的对称轴l为x=4,因为A、B两点关于l对称,连接CB交l于点P,则AP=BP,所以AP+CP=BC的值最小.------------6分∵B(6,0),C(0,2),∴OB=6,OC=2,∴BC=2,∴AP+CP=BC=2∴AP+CP的最小值为2.--------------------------8分(3)如图,连接ME,∵CE是⊙M的切线,∴ME⊥CE,∠CEM=90°.由题意,得OC=ME=2,∠ODC=∠MDE.∵在△COD与△MED中,∴△COD≌△MED(AAS),∴OD=DE,DC=DM.--------------------------------10分设OD=x,则CD=DM=OM﹣OD=4﹣x,则Rt△COD中,OD2+OC2=CD2,∴x2+22=(4﹣x)2,∴x=,∴D(,0).----------------------------------------------11分设直线CE的解析式为y=kx+b,∵直线CE过C(0,2),D(,0)两点,则,解得:∴直线CE的解析式为y=﹣+2.-----------------------------------------------------------12分。
数学试卷 第1页(共24页) 数学试卷 第2页(共24页)绝密★启用前山东省潍坊市2015年初中毕业学业水平考试数学 .............................................................. 1 山东省潍坊2015年初中毕业学业水平考试数学答案解析 .. (5)山东省潍坊市2015年初中毕业学业水平考试数学本试卷满分120分,考试时间120分钟.第Ⅰ卷(选择题 共36分)一、选择题(本大题共12小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在012,2,|2|--,最大的数是( ) A .|2|-B .02C .12- D2.如图所示几何体的左视图是( )ABCD3.2015年5月17日是第25个全国助残日.今年全国助残日的主题是“关注孤独症儿童,走向美好未来”.第二次全国残疾人抽样调查结果显示,我国0~6岁精神残疾儿童约为11.1万人.11.1万用科学记数法表示为( ) A .41.1110⨯B .411.110⨯C .51.1110⨯D .61.1110⨯ 4.下列汽车标志中不是中心对称图形的是( )AB C D 5.下列运算正确的是( )A=B .2233x y x y -=C .22a b a b a b+=++D .2363()a b a b = 6.不等式组21,39x x -⎧⎨-+⎩>≥0的所有整数解的和是( ) A .2B .3C .5D .67.如图,AB 是O 的弦,AO 的延长线交过点B 的O 的切线于点C ,如果20ABO =∠,则C ∠的度数是( )A .70B .50C .45D .208.01()k -有意义,则一次函数()11y k x k =-+-的图象可能是 ( )ABCD9.如图,在ABC △中,AD 平分BAC ∠,按如下步骤作图:第一步,分别以点,A D 为圆心,以大于12AD 的长为半径在AD 两侧作弧,交于两点,M N ;第二步,连接MN ,分别交,AB AC 于点,E F ; 第三步,连接,DE DF .若6BD =,4AF =,3CD =,则BE 的长是( ) A .2B .4C .6D .810.将一盛有不足半杯水的圆柱形玻璃水杯拧紧杯盖后放倒,水平放置在桌面上.水杯的底面如图所示,已知水杯内径(图中小圆的直径)是8cm ,水的最大深度是2cm ,则杯底有水部分的面毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共24页) 数学试卷 第4页(共24页)积是( ) A.216(πcm 3-B.216(πcm 3-C.28(πcm 3-D.24(πcm 3-11.如图,有一块边长为6cm 的正三角形纸板,在它的三个角处分别截去一个彼此全等的筝形,再沿图中的虚线折起,做成一个无盖的直三棱柱纸盒,则该纸盒侧面积的最大值是 ( )A2B2cmC2 D2 12.已知二次函数22y ax bx c =+++的图象如图所示,顶点为()1,0-,下列结论:①0abc <; ②240b ac -=; ③2a >; ④420a b c -+>. 其中正确结论的个数是( )A .1B .2C .3D .4第Ⅱ卷(非选择题 共84分)二、填空题(本大题共6小题,每小题3分,共18分.把答案填写在题中的横线上) 13.植树节时,九年级一班6个小组的植树棵数分别是:5,7,3,,6,4x .已知这组数据的众数是5,则该组数据的平均数是 .14.如图,等腰梯形ABCD 中,AD BC ∥,50BC =,20AB =,60B =∠,则AD = .15.因式分解:276ax ax a -+= .16.观光塔是潍坊市区的标志性建筑.为测量其高度,如图,一人先在附近一楼房的底端A 点处观测观光塔顶端C 处的仰角是60,然后爬到该楼房顶端B 点处观测观光塔底部D 处的俯角是30,已知楼房高AB 约是45m ,根据以上观测数据可求观光塔的高CD 是 m .17.如图,正ABC △的边长为2,以BC 边上的高1AB 为边作正11AB C △,ABC △与11AB C △公共部分的面积记为1S ;再以正11AB C △边11B C 上的高2AB 为边作正22AB C △,11AB C △与22AB C △公共部分的面积记为2S ;……,以此类推,则n S =(用含n 的式子表示).18.正比例函数1(0)y mx m =>的图象与反比例函数2(0)ky k x=≠的图象交于点4(),A n 和点B ,AM y ⊥轴,垂足为M ,若AMB △的面积为8,则满足12y y >的实数x 的取值范围是 .三、解答题(本大题共6小题,共66分.解答应写出文字说明、证明过程或演算步骤) 19.(本小题满分9分)为提高饮水质量,越来越多的居民开始选购家用净水器.一商场抓住商机,从厂家购进了,A B 两种型号家用净水器共160台,A 型号家用净水器进价是150元/台,B 型号家用净水器进价是350元/台,购进两种型号的家用净水器共用去36000元.(1)求,A B 两种型号家用净水器各购进了多少台;(2)为使每台B 型号家用净水器的毛利润是A 型号的2倍,且保证售完这160台家用净水器的毛利润不低于11000元,求每台A 型号家用净水器的售价至少是多少元.(注:毛利润=售价-进价)20.(本小题满分10分)某校为了解九年级学生近两个月“推荐书目”的阅读情况,随机抽取了该年级的部分学生,调查了他们每人“推荐书目”的阅读本数.设每名学生的阅读本数为n ,并按以下规定分为四档:当3n <时,为“偏少”;当35n ≤<时,为“一般”;当58n ≤<时,为“良好”;当8n ≥时,为“优秀”.将调查结果统计后绘制成如下不数学试卷 第5页(共24页) 数学试卷 第6页(共24页)请根据以上信息回答下列问题: (1)分别求出统计表中的,x y 的值;(2)估计该校九年级400名学生中为“优秀”档次的人数;(3)从被调查的“优秀”档次的学生中随机抽取2名学生介绍读书体会,请用列表或画树状图的方法求抽取的2名学生中有1名阅读本数为9的概率.21.(本小题满分10分)如图,在ABC △中,AB AC =,以AC 为直径的O 交BC 于点D ,交AB 于点E .过点D 作DF AB ⊥,垂足为F ,连接DE . (1)求证:直线DF 与O 相切; (2)若7AE =,6BC =,求AC 的长.22.(本小题满分11分)“低碳生活,绿色出行”的理念正逐渐被人们所接受,越来越多的人选择骑自行车上下班.王叔叔某天骑自行车上班从家出发到单位过程中行进速度v (米/分钟)随时间t (分钟)变化的函数图象大致如图所示,图象由三条线段,OA AB 和BC 组成.设线段OC 上有一动点0(),T t ,直线l 过点T 且与横轴垂直,梯形OABC 在直线l 左侧部分的面积即为t 分钟内王叔叔行进的路程s (米).(1)①当2t =分钟时,速度v = 米/分钟,路程s = 米; ②当15t =分钟时,速度v = 米/分钟,路程s = 米.(2)当03t ≤≤和315t <≤时,分别求出路程s (米)关于时间t (分钟)的函数解析式; (3)求王叔叔该天上班从家出发行进了750米时所用的时间t .23.(本小题满分12分)如图1,点O 是正方形ABCD 两对角线的交点.分别延长OD 到点,G OC 到点E ,使2OG OD =,2OE OC =,然后以,OG OE 为邻边作正方形OEFG ,连接,AG DE .(1)求证:DE AG ⊥;(2)正方形ABCD 固定,将正方形OEFG 绕点O 逆时针旋转α角()0360α<<得到正方形OE F G ''',如图2.①在旋转过程中,当OAG '∠是直角时,求α的度数;②若正方形ABCD 的边长为1,在旋转过程中,求AF '长的最大值和此时α的度数,直接写出结果不必说明理由.24.(本小题满分14分)毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------。
2015年山东省潍坊市中考数学试卷一、选择题(本大题共12小题,在每个小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来,每小题选对的3分,选错、不选或选出的答案超出一个均记0分.)0﹣1,,(a≠0,2.(3分)(2015•潍坊)如图所示几何体的左视图是()D3.(3分)(2015•潍坊)2015年5月17日是第25个全国助残日,今年全国助残日的主题是“关注孤独症儿童,走向美好未来”.第二次全国残疾人抽样调查结果显示,我国0~6岁D+=BD(a b)=a b =a+b:∵,n=a6.(3分)(2015•潍坊)不等式组的所有整数解的和是()解:>﹣∴不等式组的解集为﹣7.(3分)(2015•潍坊)如图,AB是⊙O的弦,AO的延长线交过点B的⊙O的切线于点C,如果∠ABO=20°,则∠C的度数是()8.(3分)(2015•潍坊)若式子+(k﹣1)0有意义,则一次函数y=(k﹣1)x+1﹣kD点:解:∵式子+9.(3分)(2015•潍坊)如图,在△ABC中,AD平分∠BAC,按如下步骤作图:第一步,分别以点A、D为圆心,以大于AD的长为半径在AD两侧作弧,交于两点M、N;第二步,连接MN分别交AB、AC于点E、F;第三步,连接DE、DF.若BD=6,AF=4,CD=3,则BE的长是()例定理得出=,代入求出即可.=,=,10.(3分)(2015•潍坊)将一盛有不足半杯水的圆柱形玻璃水杯拧紧杯盖后放倒,水平放置在桌面上,水杯的底面如图所示,已知水杯内径(图中小圆的直径)是8cm,水的最大深度是2cm,则杯底有水部分的面积是()π)π8ππ2小⊙O中,sin∠OAC==,AC=,∴AB=4﹣××2=(π411.(3分)(2015•潍坊)如图,有一块边长为6cm的正三角形纸板,在它的三个角处分别截去一个彼此全等的筝形,再沿图中的虚线折起,做成一个无盖的直三棱柱纸盒,则该纸盒侧面积的最大值是()cm2cm2cm2Dcm2x∴∠A=∠B=∠C=60°,,xx26﹣,x=时,纸盒侧面积最大为是关键.12.(3分)(2015•潍坊)已知二次函数y=ax2+bx+c+2的图象如图所示,顶点为(﹣1,0),下列结论:①abc<0;②b2﹣4ac=0;③a>2;④4a﹣2b+c>0.其中正确结论的个数是()﹣﹣轴交于(二、填空题(本大题共6小题,每小题3分,共18分,只要求填写最后结果.)13.(3分)(2015•潍坊)“植树节”时,九年级一班6个小组的植树棵数分别是:5,7,3,x,6,4.已知这组数据的众数是5,则该组数据的平均数是 5 .则平均数为:14.(3分)(2015•潍坊)如图,等腰梯形ABCD中,AD∥BC,BC=50,AB=20,∠B=60°,则AD= 30 .15.(3分)(2015•潍坊)因式分解:ax2﹣7ax+6a= a(x﹣1)(x﹣6).16.(3分)(2015•潍坊)观光塔是潍坊市区的标志性建筑,为测量其高度,如图,一人先在附近一楼房的底端A点处观测观光塔顶端C处的仰角是60°,然后爬到该楼房顶端B点处观测观光塔底部D处的俯角是30°.已知楼房高AB约是45m,根据以上观测数据可求观光塔的高CD是135 m.tan30°=,解得,=∴AD=45,CD=AD•tan60°=45×17.(3分)(2015•潍坊)如图,正△ABC的边长为2,以BC边上的高AB1为边作正△AB1C1,△ABC与△AB1C1公共部分的面积记为S1;再以正△AB1C1边B1C1上的高AB2为边作正△AB2C2,△AB1C1与△AB2C2公共部分的面积记为S2;…,以此类推,则S n= ()n.(用含n的式子表示),××(()的边长为,=,××(=)()故答案为:()18.(3分)(2015•潍坊)正比例函数y1=mx(m>0)的图象与反比例函数y2=(k≠0)的图象交于点A(n,4)和点B,AM⊥y轴,垂足为M.若△AMB的面积为8,则满足y1>y2的实数x的取值范围是﹣2<x<0或x>2 .列出方程×4n×2=8,解方程求出(k≠0)的图象交于点B,×4n×2=8,=题考查了一次函数和反比例函数的交点问题,三、解答题(本大题共6小题,共66分.解答要写出必要的文字说明、证明过程或演算步骤.)19.(9分)(2015•潍坊)为提高饮水质量,越来越多的居民选购家用净水器.一商场抓住商机,从厂家购进了A、B两种型号家用净水器共160台,A型号家用净水器进价是150元/台,B型号家用净水器进价是350元/台,购进两种型号的家用净水器共用去36000元.(1)求A、B两种型号家用净水器各购进了多少台;(2)为使每台B型号家用净水器的毛利润是A型号的2倍,且保证售完这160台家用净水器的毛利润不低于11000元,求每台A型号家用净水器的售价至少是多少元.(注:毛利润=售价﹣进价)由题意得,解得20.(10分)(2015•潍坊)某校了解九年级学生近两个月“推荐书目”的阅读情况,随机抽取了该年级的部分学生,调查了他们每人“推荐书目”的阅读本数.设每名学生的阅读本数为n,并按以下规定分为四档:当n<3时,为“偏少”;当3≤n<5时,为“一般”;当5≤n <8时,为“良好”;当n≥8时,为“优秀”.将调查结果统计后绘制成不完整的统计图表:(1)分别求出统计表中的x、y的值;(2)估计该校九年级400名学生中为“优秀”档次的人数;(3)从被调查的“优秀”档次的学生中随机抽取2名学生介绍读书体会,请用列表或画树状图的方法求抽取的2名学生中有1名阅读本数为9的概率.)由样本数据可知“优秀”档次所占的百分比为的概率为=;21.(10分)(2015•潍坊)如图,在△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,交AB于点E,过点D作DF⊥AB,垂足为F,连接DE.(1)求证:直线DF与⊙O相切;(2)若AE=7,BC=6,求AC的长.=,∴BD=CD=BC=3=,22.(11分)(2015•潍坊)“低碳生活,绿色出行”的理念正逐渐被人们所接受,越来越多的人选择骑自行车上下班.王叔叔某天骑自行车上班从家出发到单位过程中行进速度v(米/分钟)随时间t(分钟)变化的函数图象大致如图所示,图象由三条线段OA、AB和BC组成.设线段OC上有一动点T(t,0),直线l左侧部分的面积即为t分钟内王叔叔行进的路程s(米).(1)①当t=2分钟时,速度v= 200 米/分钟,路程s= 200 米;②当t=15分钟时,速度v= 300 米/分钟,路程s= 4050 米.(2)当0≤t≤3和3<t≤15时,分别求出路程s(米)关于时间t(分钟)的函数解析式;(3)求王叔叔该天上班从家出发行进了750米时所用的时间t.t=100tS=,∴s=∴S=23.(12分)(2015•潍坊)如图1,点O是正方形ABCD两对角线的交点,分别延长OD到点G,OC到点E,使OG=2OD,OE=2OC,然后以OG、OE为邻边作正方形OEFG,连接AG,DE.(1)求证:DE⊥AG;(2)正方形ABCD固定,将正方形OEFG绕点O逆时针旋转α角(0°<α<360°)得到正方形OE′F′G′,如图2.①在旋转过程中,当∠OAG′是直角时,求α的度数;②若正方形ABCD的边长为1,在旋转过程中,求AF′长的最大值和此时α的度数,直接写出结果不必说明理由.、F′在一条直线上时,AF′的长最大,AF′=AO+OF′=,∴∠AGO+∠DEO=90°,∵OA=OD=OG=OG′,Rt△OAG′中,sin∠AG′O==,∴OA=OD=OC=OB=∴OG′=OG=,∴AF′=AO+OF′=24.(14分)(2015•潍坊)如图,在平面直角坐标系中,抛物线y=mx2﹣8mx+4m+2(m>2)与y轴的交点为A,与x轴的交点分别为B(x1,0),C(x2,0),且x2﹣x1=4,直线AD∥x 轴,在x轴上有一动点E(t,0)过点E作平行于y轴的直线l与抛物线、直线AD的交点分别为P、Q.(1)求抛物线的解析式;(2)当0<t≤8时,求△AP C面积的最大值;(3)当t>2时,是否存在点P,使以A、P、Q为顶点的三角形与△AOB相似?若存在,求出此时t的值;若不存在,请说明理由.6解得:,y=x+3,﹣,∴PF=,,此时最大值为:,,﹣,∴PM=,,,若:△AOB∽△AQP,则:即:,若△AOB∽△PQA,则:即:若:△AOB∽△AQP,则:即:,若△AOB∽△PQA,则:即:∴t=或。
2015潍城二模数学试题2015.5注意事项:1.本试题分第Ⅰ卷和第Ⅱ卷两部分.第Ⅰ卷,为选择题,36分;第Ⅱ卷,为非选择题,84分;共120分.考试时间为120分钟.2.答卷前务必将自己的姓名、准考证号、考试科目、试卷类型填涂在答题纸上。
考试结束,试题和答题纸一并收回。
3.第Ⅰ卷每题选出答案后,都必须用2B铅笔把答题纸上对应题目的答案标号(ABCD)涂黑,如需改动,必须先用橡皮擦干净,再改涂其它答案。
4.第Ⅱ卷的答案和解题过程,必须用蓝黑钢笔或圆珠笔答在答题纸的有效范围内。
第Ⅰ卷(选择题共36分)一、选择题(本大题共12小题,共36分. 在每小题给出的四个选项中,只有一个是正确的,请把正确的选项选出来,涂在答题纸上,每小题选对得3分. 错选、不选或多选均记零分.)1.下列四个实数中,绝对值最大的数是().A.﹣5 B.-C.2D.42.下列问题中,不适合用全面调查的是().A.了解全班同学每周体育锻炼的时间B.旅客上飞机前的安检C.学校招聘教师,对应聘人员面试D.了解全市中小学生每天的零花钱3.把右图中的三棱柱展开,所得到的展开图是().4.下列根式化简后被开方数是3的是().A.B.C D5.下列等式从左到右的变形,属于因式分解的是().A.a(x-y)=ax-ay B.x2+2x+1=x(x+2)+1C.(x+1)(x+3)=x2+4x+3D.x3-x=x(x+1)(x-1)6.一组数据按从大到小的顺序排列为2,4,8,x,10,14.若这组数据的中位数为9,则这组数据的众数为( ).A .6B .8C .9D .107.如图,一副分别含有30°和45°角的两个直角三角板,拼成如 下图形,其中∠C=90°,∠B=45°,∠E=30°,则∠BFD 的度 数是( ).A .15°B .25°C .30°D .10°8.某河堤的横断面如图所示,堤高BC=6米,迎水坡AB的坡度为1:,则AB 的长为( ).A .12B .4米C .5米D .6米9.如图,四边形ABCD 是菱形,∠A=60°,AB=2,扇形BEF 的半径为2,圆心角为60°,则图中阴影部分的面积是( ).A .23π B .23π-C .πD .π 10.如果一个三角形的两边长分别是方程x 2﹣8x+15=0的两个根,那么连结这个三角形三边的中点,得到的三角形的周长可能是( ).A .5.5B .5C .4.5D .4 11.如图,的顶点与坐标原点重合,,AO =3BO ,当A 点在反比例函数()图象上移动时,B 点坐标满足的函数解析式是( ).A .1(0)y x x =-< B . 3(0)y x x=-<C . 1(0)3y x x =-< D . 1(0)9y x x=-< 12.如图,在ΔABC 中,∠C =90°,AC =8,AB =10,点P 在AC上,AP =2,若⊙O 的圆心在线段BP 上,且⊙O 与AB 、AC 都相切,则⊙O 的半径是( ). A .45 B .1C .712D .94第Ⅱ卷(非选择题共84分)二、填空题(本大题共6小题,共18分. 只要求填写最后结果,每小题填对得3分.)13.已知线段CD是由线段AB平移得到的,点A(﹣1,4)的对应点为C(4,7),则点B (﹣4,﹣1)的对应点D的坐标为___________.14.不等式组的解集中,整数解的个数是 __________个.15.如图,梯形ABCD中,AD∥BC,AD=4,AB=5,BC=10,CD的垂直平分线交BC于E,连结DE,则四边形ABED的周长等于.16.如图,以O为端点画六条射线后OA,OB,OC,OD,OE,O后F,再从射线OA上某点开始按逆时针方向依次在射线上描点并连线,若将各条射线所描的点依次记为1,2,3,4,5,6,7,8,…,那么所描的第2013个点在射线上.17.如图,以点P(2,0)M(a,b)是⊙P上的一点,则ba的最大值是.18.如图,方格纸中每个小正方形的边长为1,△ABC和△DEF的顶点都在格点..上(小正方形的顶点).P1,P2,P3,P4,P5是△DEF边上的5个格点,请在这5个格点中选取2个作为三角形的顶点,使它和点D构成的三角形与△ABC相似.写出所.有.符合条件的三角形.三、解答题(本大题共6小题,共66分. 解答应写出文字说明、证明过程或演算步骤)19.(本题满分10分)为了提高学生书写汉字、识别汉字的能力,进一步提高汉语水平,我区举办了首届“汉字听写大赛”,经选拔后有50名学生参加决赛,这50名学生同时听写50个汉字,若每正确听写出一个汉字得1分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:(1)求出表中a的值;(2)请把频数分布直方图补充完整;(3)若测试成绩不低于40分为优秀,则本次测试的优秀率是多少?(4)第5组10名同学中,有4名男同学,现将这10名同学平均分成两组进行对抗练习,且4名男同学每组分两人,求小宇与小强两名男同学能分在同一组的概率.20.(本题满分10分)已知四边形ABCD中,E、F分别是AB、AD边上的点,DE与CF交于点G.(1)如图①,若四边形ABCD 是矩形,且DE ⊥CF ,求证CDADCF DE =; (2)如图②,若四边形ABCD 是平行四边形,试探究:当∠B 与∠EGC 满足什么关系时,使得CDADCF DE =成立?并证明你的结论.21.(本题满分11分)某电器超市销售每台进价分别为200元、170元的A 、B 两种型号的电风扇,下表是近两周的销售情况:(1)求A 、B 两种型号的电风扇的销售单价;(2)若超市准备用不多于5400元的金额再采购这两种型号的电风扇共30台,求A 种型号的电风扇最多能采购多少台?(3)在(2)的条件下,超市销售完这30台电风扇能否实现利润为1400元的目标?若能,请给出相应的采购方案;若不能,请说明理由.22.(本题满分11分)如图,在平面直角坐标系中,△ABC 是⊙O 的内接三角形,AB =AC ,点P 是⋂AB 的中E F GABCD第24题图①第24题图②ABCDF GE点,连结PA ,PB ,PC .(1)如图①,若∠BPC =60°,求证:AP AC 3=; (2)如图②,若2524sin =∠BPC ,求PAB ∠tan 的值.23.(本题满分12分)为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.李明按照相关政策投资销售本市生产的一种新型节能灯.已知这种节能灯的成本价为每件10元,出厂价为每件12元,每月销售量y (件)与销售单价x (元)之间的关系近似满足一次函数:y=﹣10x+500.(1)李明在开始创业的第一个月将销售单价定为20元,那么政府这个月为他承担的总差价为多少元?(2)设李明获得的利润为w (元),当销售单价定为多少元时,每月可获得最大利润? (3)物价部门规定,这种节能灯的销售单价不得高于25元.如果李明想要每月获得的利润不低于3000元,那么政府为他承担的总差价最少为多少元?24.(本题满分12分)第22题图①第22题图②如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为(4,﹣),且与y轴交于点C(0,2),与x轴交于A,B两点(点A在点B的左边).(1)求抛物线的解析式及A,B两点的坐标;(2)在(1)中抛物线的对称轴l上是否存在一点P,使AP+CP的值最小?若存在,求AP+CP的最小值,若不存在,请说明理由;(3)过点C的直线与以AB为直径的⊙M相切于点E,CE交x轴于点D,求直线CE 的解析式.2015潍城二模数学试题答案及评分标准一、选择题:ADBCD DAABA AB二、填空题:13.(1,2) 14.6 15.19 16.OE 1718.△DP 2P 5、△DP 2P 4、△DP 4P 5(每个1分)三、解答题 19.解:(1)表中a 的值是:a =50﹣4﹣8﹣16﹣10=12(名).------------------------------------3分(2)根据题意画图如下:---------------------------------------------------------------------------------5分(3)本次测试的优秀率是%44%100501012=⨯+. 答:本次测试的优秀率是44%.------------------------------------------------------------------7分(4)用A 表示小宇B 表示小强,C 、D 表示其他两名同学,根据题意画树状图如下:共有12种情况,小宇与小强两名男同学分在同一组的情况有2种,--------------------9分则小宇与小强两名男同学分在同一组的概率是61122=.----------------------------------10分 20.解:(1)证明:∵四边形ABCD 是矩形,∴∠A =∠ADC =90°, ∵DE ⊥CF ,∴∠ADE+∠DFG=90°,又∵∠DCF+∠DFG=90°,∴∠ADE =∠DCF ,--------------------------------------------------------------------------------2分∴△ADE ∽△DCF ,∴DCADCF DE =.------------------------------------------------------------4分(2)当∠B+∠EGC =180°时,DCADCF DE =成立,证明如下: ------------------------------5分在AD 的延长线上取点M ,使CM =CF ,则∠CMF =∠CFM .-------------------------6分∵AB ∥CD ,∴∠A =∠CDM ,-------------7分∵∠B+∠EGC =180°,∴∠BEG+∠FCB =180°, 又∵∠AED+∠BEG =180°,∴∠AED =∠FCB , ∴∠CMF =∠AED .--------------------------------------------------------------------------------8分∴△ADE ∽△DCM ,∴DCADCM DE =,即DC AD CF DE =.-------------------------------------10分21.解:(1)设A 、B 两种型号电风扇的销售单价分别为x 元、y 元,依题意得:,--------------------------------------------------------------------3分解得:,答:A 、B 两种型号电风扇的销售单价分别为250元、210元;-------------------------4分(2)设采购A 种型号电风扇a 台,则采购B 种型号电风扇(30﹣a )台.依题意得:200a +170(30﹣a )≤5400,-------------------------------------------------------7分解得:a ≤10.答:A 种型号的电风扇最多采购10台;------------------------------------------------------8分(3)依题意有:(250﹣200)a +(210﹣170)(30﹣a )=1400,---------------------- ------10分解得:a =20,∵a >10,∴在(2)的条件下超市不能实现利润1400元的目标.--------------------11分22.解:(1)证明:∵AB =AC ,∠BAC =∠BPC =60°.∴△ABC 为等边三角形.------------------------------------------------------------- ----------1分∴∠ACB =60°,∵点P 是弧AB 的中点,∴∠ACP =30°,--------------- ---------2分又∠APC =∠ABC =60°,∴∠BAC =90°, ------------------------------------ ----------3分∴AC =A P ·tan60°=3AP .--------------------------------------------------------- -------4分MEGF D C B A 第24题图②(2)解:连结AO 并延长交PC 于E ,交BC 于F ,过点E 作EG ⊥AC 于G ,连结OC . ------------------------------------------------------ ---------5分∵AB =AC ,∴AF ⊥BC ,BF =CF .∵点P 是弧AB 中点,∴∠ACP =∠PCB ,∴EG =EF .--------------------------------6分∵∠BPC =∠FOC ,∴sin ∠FOC =sin ∠BPC=2524.设FC =24a ,则OC =OA =25a ,∴OF =7a ,AF =32a .----------------------------------8分在Rt △AFC 中,AC 2=AF 2+FC 2,∴AC =40a .在Rt △AGE 和Rt △AFC 中,sin ∠FAC =ACFCAE EG =, ∴aaEG a EG 402432=-,∴EG =12a .-------------------------------------------------------10分 ∴tan ∠PAB =tan ∠PCB=212412==a a CF EF . ---------------------------------------------11分23.解:(1)当x=20时,y=﹣10x+500=﹣10×20+500=300,---------------------------------1分300×(12﹣10)=300×2=600,即政府这个月为他承担的总差价为600元.---------------------------------------------3分 (2)依题意得,w=(x ﹣10)(﹣10x+500)---------------------------------------------------4分=﹣10x 2+600x ﹣5000=﹣10(x ﹣30)2+4000---------------------------------------------5分 ∵a=﹣10<0,∴当x=30时,w 有最大值4000.即当销售单价定为30元时,每月可获得最大利润4000元.-------------------------7分 (3)由题意得:﹣10x 2+600x ﹣5000=3000,解得:x 1=20,x 2=40.------------------------------------8分 ∵a=﹣10<0,抛物线开口向下,∴结合图象可知:当20≤x ≤40时,w ≥3000. 又∵x ≤25,∴当20≤x ≤25时,w ≥3000.--------------9分 设政府每个月为他承担的总差价为p 元,∴p=(12﹣10)×(﹣10x+500)=﹣20x+1000.---11分 ∵k=﹣20<0,∴p 随x 的增大而减小, ∴当x=25时,p 有最小值500.即销售单价定为25元时,政府每个月为他承担的总差价最少为500元.---------12分24.解:(1)由题意,设抛物线的解析式为y=a (x ﹣4)2﹣(a ≠0)∵抛物线经过点(0,2),∴a (0﹣4)2﹣=2,解得a= ∴y=(x ﹣4)2﹣,即:y=x 2﹣x+2.----------2分 当y=0时,x 2﹣x+2=0,解得x=2或x=6第22(2)题图∴A(2,0),B(6,0).-----------------------------3分(2)存在.---------------------------------------------------------4分如图,由(1)知:抛物线的对称轴l为x=4,因为A、B两点关于l对称,连接CB交l于点P,则AP=BP,所以AP+CP=BC的值最小.------------6分∵B(6,0),C(0,2),∴OB=6,OC=2,∴BC=2,∴AP+CP=BC=2∴AP+CP的最小值为2.--------------------------8分(3)如图,连接ME,∵CE是⊙M的切线,∴ME⊥CE,∠CEM=90°.由题意,得OC=ME=2,∠ODC=∠MDE.∵在△COD与△MED中,∴△COD≌△MED(AAS),∴OD=DE,DC=DM.--------------------------------10分设OD=x,则CD=DM=OM﹣OD=4﹣x,则Rt△COD中,OD2+OC2=CD2,∴x2+22=(4﹣x)2,∴x=,∴D(,0).----------------------------------------------11分设直线CE的解析式为y=kx+b,∵直线CE过C(0,2),D(,0)两点,则,解得:∴直线CE的解析式为y=﹣+2.-----------------------------------------------------------12分。