数据结构与算法分析ch07图
- 格式:ppt
- 大小:1.31 MB
- 文档页数:134
第7章图(基础知识)习题练习答案7.1 在图7.23所示的各无向图中:(1)找出所有的简单环。
(2)哪些图是连通图?对非连通图给出其连通分量。
(3)哪些图是自由树(或森林)?答:(1)所有的简单环:(同一个环可以任一顶点作为起点)(a)1231(b)无(c)1231、2342、12341(d)无(2)连通图:(a)、(c)、(d)是连通图,(b)不是连通图,因为从1到2没有路径。
具体连通分量为:(3)自由树(森林):自由树是指没有确定根的树,无回路的连通图称为自由树:(a)不是自由树,因为有回路。
(b)是自由森林,其两个连通分量为两棵自由树。
(c)不是自由树。
(d)是自由树。
7.2 在图7.24(下图)所示的有向图中:(1) 该图是强连通的吗? 若不是,则给出其强连通分量。
(2) 请给出所有的简单路径及有向环。
(3) 请给出每个顶点的度,入度和出度。
(4) 请给出其邻接表、邻接矩阵及逆邻接表。
答:(1)该图是强连通的,所谓强连通是指有向图中任意顶点都存在到其他各顶点的路径。
(2)简单路径是指在一条路径上只有起点和终点可以相同的路径:有v1v2、v2v3、v3v1、v1v4、v4v3、v1v2v3、v2v3v1、v3v1v2、v1v4v3、v4v3v1、v3v1v4、另包括所有有向环,有向环如下:v1v2v3v1、v1v4v3v1(这两个有向环可以任一顶点作为起点和终点)(3)每个顶点的度、入度和出度:D(v1)=3ID(v1)=1OD(v1)=2D(v2)=2 ID(v2)=1OD(v2)=1D(v3)=3 ID(v3)=2OD(v3)=1D(v4)=2 ID(v4)=1OD(v4)=1(4)邻接表:(注意边表中邻接点域的值是顶点的序号,这里顶点的序号是顶点的下标值-1)vertex firstedge next┌─┬─┐┌─┬─┐┌─┬─┐0│v1│─→│ 1│─→│ 3│∧│├─┼─┤├─┼─┤└─┴─┘1│v2│─→│ 2│∧│├─┼─┤├─┼─┤2│v3│─→│ 0│∧│├─┼─┤├─┼─┤3│v4│─→│ 2│∧│└─┴─┘└─┴─┘逆邻接表:┌─┬─┐┌─┬─┐0│v1│─→│ 2│∧│├─┼─┤├─┼─┤1│v2│─→│ 0│∧│├─┼─┤├─┼─┤┌─┬─┐2│v3│─→│ 1│─→│ 3│∧│├─┼─┤├─┼─┤└─┴─┘3│v4│─→│ 0│∧│└─┴─┘└─┴─┘邻接矩阵:0 1 0 10 0 1 01 0 0 00 0 1 07.3 假设图的顶点是A,B...,请根据下述的邻接矩阵画出相应的无向图或有向图。
数据结构与算法分析课后习题答案第一章:基本概念一、题目:什么是数据结构与算法?数据结构是指数据在计算机中存储和组织的方式,如栈、队列、链表、树等;而算法是一系列解决问题的清晰规范的指令步骤。
数据结构和算法是计算机科学的核心内容。
二、题目:数据结构的分类有哪些?数据结构可以分为以下几类:1. 线性结构:包括线性表、栈、队列等,数据元素之间存在一对一的关系。
2. 树形结构:包括二叉树、AVL树、B树等,数据元素之间存在一对多的关系。
3. 图形结构:包括有向图、无向图等,数据元素之间存在多对多的关系。
4. 文件结构:包括顺序文件、索引文件等,是硬件和软件相结合的数据组织形式。
第二章:算法分析一、题目:什么是时间复杂度?时间复杂度是描述算法执行时间与问题规模之间的增长关系,通常用大O记法表示。
例如,O(n)表示算法的执行时间与问题规模n成正比,O(n^2)表示算法的执行时间与问题规模n的平方成正比。
二、题目:主定理是什么?主定理(Master Theorem)是用于估计分治算法时间复杂度的定理。
它的公式为:T(n) = a * T(n/b) + f(n)其中,a是子问题的个数,n/b是每个子问题的规模,f(n)表示将一个问题分解成子问题和合并子问题的所需时间。
根据主定理的不同情况,可以得到算法的时间复杂度的上界。
第三章:基本数据结构一、题目:什么是数组?数组是一种线性数据结构,它由一系列具有相同数据类型的元素组成,通过索引访问。
数组具有随机访问、连续存储等特点,但插入和删除元素的效率较低。
二、题目:栈和队列有什么区别?栈和队列都是线性数据结构,栈的特点是“先进后出”,即最后压入栈的元素最先弹出;而队列的特点是“先进先出”,即最先入队列的元素最先出队列。
第四章:高级数据结构一、题目:什么是二叉树?二叉树是一种特殊的树形结构,每个节点最多有两个子节点。
二叉树具有左子树、右子树的区分,常见的有完全二叉树、平衡二叉树等。
807数据结构摘要:1.数据结构的概述2.常见的数据结构及其应用3.数据结构的优化与管理4.总结与展望正文:一、数据结构的概述数据结构是计算机科学中研究数据组织、存储、管理和访问的一门学科。
它旨在通过对数据的高效组织和管理,提高程序的运行效率和性能。
数据结构涵盖了线性结构、树状结构、图形结构等多种类型,为开发者提供了丰富的工具和策略。
二、常见的数据结构及其应用1.线性结构:包括数组、链表、栈、队列等。
它们主要用于存储顺序、有序的数据,支持快速查找、插入、删除等操作。
2.树状结构:如二叉树、B树、红黑树等。
树状结构具有良好的层次结构和分支特性,适用于高效地进行数据查找、排序和压缩等操作。
3.图形结构:如图、网等。
图形结构具有复杂的关联关系,适用于分析复杂系统的结构和性质。
4.数据结构在实际应用中的例子:数据库、搜索引擎、网络爬虫、算法优化等领域,都离不开数据结构的支持。
三、数据结构的优化与管理1.空间优化:通过压缩、编码等技术,降低数据存储空间,提高存储效率。
2.时间优化:通过缓存、索引、局部搜索等技术,提高数据访问速度。
3.算法优化:对现有算法进行改进和优化,提高程序运行效率。
4.数据安全管理:防止数据泄露、篡改和丢失,确保数据安全。
四、总结与展望数据结构在现代计算机科学中具有重要地位,对于提高程序性能和解决实际问题具有重要意义。
随着科技的不断发展,数据结构也将不断创新和完善,为更多领域提供强大的支持。
作为开发者,掌握数据结构的知识和技能,将有助于提升编程能力和解决实际问题。