滞后系统控制策略及仿真研究
- 格式:pdf
- 大小:2.42 MB
- 文档页数:3
第1章 过程控制系统概述习题与思考题1.1 什么是过程控制系统,它有那些特点?1.2 过程控制的目的有那些?1.3 过程控制系统由哪些环节组成的,各有什么作用?过程控制系统有那些分类方法?1.4 图1.11是一反应器温度控制系统示意图。
A 、B 两种物料进入反应器进行反应,通过改变进入夹套的冷却水流量来控制反应器的温度保持不变。
试画出该温度控制系统的方框图,并指出该控制系统中的被控过程、被控参数、控制参数及可能影响被控参数变化的扰动有哪些?1.5 锅炉是化工、炼油等企业中常见的主要设备。
汽包水位是影响蒸汽质量及锅炉安全的一个十分重要的参数。
水位过高,会使蒸汽带液,降低了蒸汽的质量和产量,甚至会损坏后续设备;而水位过低,轻则影响汽液平衡,重则烧干锅炉甚至引起爆炸。
因此,必须对汽包水位进行严格控制。
图1.12是一类简单锅炉汽包水位控制示意图,要求:1)画出该控制系统方框图。
2)指出该控制系统中的被控过程、被控参数、控制参数和扰动参数各是什么。
3)当蒸汽负荷突然增加,试分析该系统是如何实现自动控制的。
V-1图1.12 锅炉汽包水位控制示意图1.6 评价过程控制系统的衰减振荡过渡过程的品质指标有那些?有那些因素影响这些指标?1.7 为什么说研究过程控制系统的动态特性比研究其静态特性更意义?1.8 某反应器工艺规定操作温度为800 10℃。
为确保生产安全,控制中温度最高不得超过850℃。
现运行的温度控制系统在最大阶跃扰动下的过渡过程曲线如图1.13所示。
1)分别求出稳态误差、衰减比和过渡过程时间。
2)说明此温度控制系统是否已满足工艺要求。
T/℃图1.13 某反应器温度控制系统过渡过程曲线1.9 简述过程控制技术的发展。
1.10 过程控制系统与运动控制系统有何区别?过程控制的任务是什么?设计过程 控制系统时应注意哪些问题?第3章 过程执行器习题与思考题3.1 试简述气动和电动执行机构的特点。
3.2 调节阀的结构形式有哪些?3.3 阀门定位器有何作用?3.4 调节阀的理想流量特性有哪些?实际工作时特性有何变化?3.5 已知阀的最大流量min v q =50m 3,可调范围R=30。
大纯滞后在对象控制方法应用研究摘要:针对一般工业过程中存在的大纯滞后问题,提出了一种克服大纯滞后的预测控制方法。
利用递推最小二乘法进行参数估计,获得对象的一阶简化模型,提出了一种Smith预估神经元控制器设计方法,再用构建的神经网络预测模型预测出未来相应时刻的系统输出,然后用该输出来调整当前时刻的控制量,从而达到预期的控制目的,仿真结果验证了该方法的有效性。
关键词:神经网络;预测控制;大纯滞后0 前言一般工业过程中都具有非线性大纯滞后的特点,特别是滞后较大(即额定滞后S/T>0.5)的系统,常规控制往往无能为力。
采用Smith控制是解决对象大纯滞后问题的有效方法,但它需要建立对象的精确的数学模型,而且鲁棒性和抗干扰能力较差,面向对象的神经元模型及其学习算法具有算法简单、适应性好等优点,但是对于大纯滞后过程,由于被控量的偏差不能及时反映控制量的变化影响了神经元的控制效果。
预测控制是上世纪70年代兴起的一种新控制算法,在工业上已被广泛应用,其主要思想是:在当前时刻,基于过程的动态模型预测未来一定时域内每个采样周期(或按一定间隔)的过程输出,即可以根据当前的输入预测未来多个时刻的输出,从而根据控制要求调整下一时刻的控制量,有利于对纯滞后系统的控制,将预测函数控制应用于大纯滞后温度控制系统,减少了稳态静差,但超调量偏大,要有一种具有自补偿功能的非线性预测反馈校正法,提高了系统的鲁棒性,但该方法限于纯滞后时间已知的情况下,对于纯滞后参数未知或者改变的情况未加讨论。
根据上述情况提出一种用神经网络辨识系统的滞后时间参数,用预测控制算法实现对大纯滞后对象的控制方法。
其中预测模型是用神经网络逼近被控的动态对象而建立的,从而无需知道系统的精确数学模型。
1 神经元模型及控制系统1.1神经元模型针对将神经网络直观套用于自动控制中存在的局限性,提出了一种面向控制的神经元模型它的输出u(t)可以表示为u(t)=K∑wi(t) xi(t) (1)式中:K>0,为神经元的比例系数;xi(t)为神经元的n个输入状态;wi(t)为相应于xi(t)的加权值;wi(t)由某种学习算法确定。
滞后校正的原理
滞后校正是一种用于修正系统响应滞后的方法,常用于控制系统中。
其原理基于对系统的输出信号进行滞后处理,在时间上对信号进行一定的延迟,以使系统的响应更加准确、稳定。
滞后校正的原理是通过引入一个滞后补偿器来改变控制系统的传递函数。
滞后补偿器由一个或多个衰减器和一个延迟器组成。
衰减器可以减小信号的振幅,而延迟器可以延迟信号的相位。
具体来说,当系统的响应滞后时,可以通过增加延迟器的时间常数来减小滞后。
延迟器会导致系统的相位响应滞后,并减弱系统的频率响应。
通过在系统的传递函数中引入延迟器,可以使系统的相位响应向后移动,从而达到校正滞后的效果。
实际上,滞后校正可以看作是一种频率域设计方法,通过调整系统的频率响应曲线,使其更加接近期望的频率响应。
在控制系统中应用滞后校正可以提高系统的稳定性和响应速度。
总之,滞后校正通过引入延迟器来改变系统的传递函数,从而校正系统响应中的滞后现象。
这种方法可用于改善控制系统的稳定性和响应特性,使系统的性能更加优良。
滞后校正原理
滞后校正原理是一种控制系统的校正方法,主要用于改善系统的稳态性能。
其基本原理是利用滞后网络的高频幅值衰减特性,使系统的截止频率下降,从而使系统获得足够的相位裕度。
具体来说,滞后校正通过降低高频增益,使系统的总增益增大,从而改善了稳态精度(降低了稳态误差)。
同时,系统中包含的高频噪音也可以得到衰减,增强了系统的抗干扰能力。
此外,滞后校正还可以保持暂态性能不变的基础上,提高开环增益。
或者等价地说,滞后校正可以补偿因开环增益提高而发生的暂态性能的变化。
总的来说,滞后校正是一种有效的控制系统校正方法,能够改善系统的稳态性能和抗干扰能力。
最优控制问题的时滞系统方法时滞系统是一类具有延迟因素的动态系统,其在最优控制问题中的研究具有重要意义。
本文将介绍最优控制问题中时滞系统的基本概念、建模方法以及常用的求解方法。
一、时滞系统的基本概念时滞系统是指系统的输出值在时间上滞后于输入值的一类动态系统。
时滞的存在往往会对系统的性能和稳定性产生显著影响,因此在最优控制问题中需要对时滞进行合理的处理。
对于时滞系统,其状态方程可以表示为:x'(t) = f(t, x(t), x(t-τ), u(t))其中,x(t)为系统的状态变量,u(t)为系统的控制输入,τ表示时滞时间。
时滞系统的目标是设计出一种最优的控制策略,使得系统的性能指标达到最优。
二、时滞系统的建模方法在进行最优控制问题的研究时,需要首先对时滞系统进行合理的建模。
常用的建模方法有以下几种:1. 离散化方法:将连续时间上的时滞系统离散化为差分方程的形式。
这种方法适用于对系统进行数字化计算和仿真。
2. 插值方法:通过插值技术,将时滞项转化为历史状态变量和控制输入的函数。
这种方法可以减小时滞项对系统性能的影响。
3. 延迟微分方程方法:将时滞系统转化为一组延迟微分方程,通过求解微分方程来得到系统的性能指标。
这种方法可以准确地描述时滞系统的动态特性。
三、时滞系统的求解方法针对时滞系统的最优控制问题,常用的求解方法有以下几种:1. 动态规划方法:动态规划是一种基于状态和决策的最优化方法,可以用于求解时滞系统的最优控制问题。
通过建立状态-动作-奖励模型,可以得到最优的控制策略。
2. 最优化方法:将时滞系统的最优控制问题转化为一个最优化问题,通过求解最优化问题的数学模型,可以得到最优的控制策略。
常用的最优化方法包括线性规划、非线性规划、动态规划等。
3. 近似方法:由于时滞系统的求解往往存在较高的复杂度,可以通过近似方法来简化求解过程。
常用的近似方法包括最小二乘法、模型预测控制等,这些方法可以在保证系统性能的基础上有效减小计算量。
大滞后温度系统的控制方法研究
大滞后温度系统通常指系统响应具有较大延迟时间的控制系统,常见于工业过程控制、气象预报等领域。
针对大滞后温度系统的控制方法,以下是一些可能的研究方向:
1. 大滞后温度系统的建模与分析方法:大滞后温度系统中,由于系统响应具有延迟时间,因此传统的建模方法如卡尔曼滤波、粒子滤波等可能无法有效地捕捉系统中的延迟信息。
因此,需要进行更加有效的建模方法,如基于模型不确定性的建模方法、基于模型演化的建模方法等。
2. 大滞后温度系统的控制策略:针对大滞后温度系统,常见的控制策略包括自适应控制、基于模糊逻辑的控制、基于反馈控制等。
这些控制策略可以有效地抑制系统的延迟时间,提高系统的响应速度。
3. 大滞后温度系统的优化控制方法:针对大滞后温度系统,需要采用一些优化方法,如最小二乘法、遗传算法、粒子群优化等,来优化控制策略的参数,提高系统的控制性能和稳定性。
4. 大滞后温度系统中的控制效果评估方法:大滞后温度系统中
的控制效果评估方法需要考虑到系统延迟时间和模型不确定性等因素,因此可能无法得到理想的评估结果。
因此,需要探索更加有效的评估方法,如基于误差限的评估方法、基于模型不确定性的评估方法等。
大滞后温度系统的控制方法研究需要结合系统建模、控制策略、优化方法和评估方法等多个方面,以进一步提高系统的控制性能和稳定性。
软件设计-Smith纯滞后补偿PID控制算法⼀、题⽬题⽬5:以中等纯度的精馏塔为研究对象,考虑到不等分⼦溢流的影响和⾮理想的汽液平衡,可以得到塔顶产品轻组分含量Y 与回流量L 之间的传递函数为:s e s s s s L s Y 12)15.17)(13.28()19.0(4.3)()(-?+++= 控制要求:1、采⽤Smith 纯滞后补偿PID 控制算法将塔顶轻组分含量控制在0.99。
2、采⽤继电法整定PID 参数。
3、整定效果验证:当被控过程参数时变时,如滞后时间由12→24,开环增益由3.4→6时,讨论PID 控制的响应速度及鲁棒性问题,考察当系统参数发⽣改变时,上述PID 参数是否选取合适。
⼆、Smith 纯滞后补偿控制原理针对纯滞后系统闭环特征⽅程含的影响系统控制品质的纯滞后问题,1957年Smith 提出了⼀种预估补偿控制⽅案,即在PID 反馈控制基础上,引⼊⼀个预估补偿环节,使闭环特征⽅程不含有纯滞后项,以提⾼控制质量。
如果能把图2-1中假想的变量B 测量出来,那么就可以按照图2-1所⽰的那样,把B 点信号反馈到控制器,这样就把纯滞后环节移到控制回路外边。
图2-1 反馈回路的理想结构⽰意图由图2-1可以得出闭环传递函数为G (s )=D (s )G P (s)e ?τs1+D(s)G P (s)由上式可见,由于反馈信号B 没有延迟,闭环特征⽅程中不含有纯滞后项,所以系统的响应将会⼤⼤地改善。
但是由于B 点信号是⼀个不可测(假想)的信号,所以这种⽅案是⽆法实现的。
为了实现上⾯的⽅案,假设构造了⼀个过程的模型,并按图2-2所⽰那样把控制量U(S)加到该模型上去。
在图 2-2中,如果模型是精确的,那么虽然假想的过程变量B 是得不到的,但能够得到模型中的B m 。
如果不存在建模误差和负荷扰动,那么B m 就会等于B , E m (s )= Y (s )?Y m (s )=0 ,可将B m 点信号作为反馈信号。
机械运动控制的时滞补偿与优化算法研究时滞是机械运动控制中的一个重要问题。
在机械运动控制系统中,由于信号传输的延迟、控制器的计算时间以及执行器的响应时间等因素,往往会产生时滞现象,导致实际输出与期望输出之间存在误差。
这种误差会对系统的稳定性和精度造成影响。
因此,时滞补偿与优化算法的研究显得尤为重要。
一、时滞的定义和特点时滞是指输入信号与输出信号之间存在一段时间间隔。
在机械运动控制系统中,时滞表现为控制指令的发送到执行器的延迟,以及执行器的响应时间。
时滞会导致输出信号的滞后,从而影响系统的性能。
时滞的特点包括非线性、不确定性和时变性等。
二、时滞补偿方法的分类时滞补偿方法可以分为模型预测控制、滑模控制、自适应控制等。
模型预测控制是一种基于系统模型的方法,通过预测系统的未来状态来补偿时滞。
滑模控制基于滑模变量的滑模面,通过滑模面上的滑模控制律来补偿时滞。
自适应控制是一种根据系统实时状态对控制器参数进行更新的方法,以实现对时滞的补偿。
三、时滞补偿与优化算法的研究时滞补偿与优化算法的研究旨在寻找对机械运动控制系统效果最佳的补偿策略。
常用的优化算法包括遗传算法、粒子群算法、模拟退火算法等。
这些算法可以通过优化控制器的参数、优化补偿策略等方式来实现时滞补偿的优化。
在时滞补偿算法中,稳定性是一个关键问题。
稳定性的分析和保证是时滞补偿与优化算法研究的核心内容之一。
常用的稳定性分析方法包括Lyapunov稳定性分析和频域分析等。
通过这些方法,可以分析系统是否稳定,并进一步设计相应的补偿控制策略。
此外,时滞补偿与优化算法的研究还需要考虑系统的鲁棒性和自适应性。
机械运动控制系统通常面临外部扰动和参数变化等不确定因素,这就要求时滞补偿算法具有一定的鲁棒性和自适应性。
鲁棒性可以提高系统对干扰的抵抗能力,自适应性可以使系统在参数变化时仍能保持良好的控制性能。
四、案例分析以一个机械运动控制系统为例,该系统由控制器、执行器和传感器组成。
非线性调节技术在大滞后系统中的应用(山东大学控制科学与工程学院,山东济南 250061)张凌云,肖维荣摘要:针对大滞后被控对象介绍了一种非线性PID 控制器,并采用贝加莱PCC 控制器将该控制方法用于温度控制。
关键词:非线性PID;非线性函数;大滞后;温度控制Abstract: This paper introduces a kind of nonlinear PID controller for large lag object, and use this method in temperature control on the base of B&RPCC。
Key words: Nonlinear PID;Nonlinear function; Large lag;Temperature control文献标识码:B 文章编号:1003-0492(2005)04-0065-03 中图分类号:TP2141. 引言在轻工、化工等很多行业的过程控制中,被控对象大都带有滞后特性,热量、物料和信号等的转移或转换需经过一定的时间,这便造成了许多过程存在大的滞后时间。
无论控制作用如何,在滞后时间阶段,控制作用对过程变量的影响是不可测的。
更为重要的是,时间滞后导致了过程变量输出不能迅速地响应控制信号,这等于在这段时间内反馈作用失效,而反馈是自动控制所必须得到的信息。
PID 控制方法是目前应用最广泛的控制策略之一,但若用PID 来控制具有显著时间滞后的过程,则控制器输出在滞后时间内由于得不到合适的反馈信号保持增长,从而导致系统响应超调大甚至使系统失控。
通常PID 控制为了维持自动状态必须明显调低PID 参数,这就必然造成控制性能的降低。
一般而言,PID 控制器能控制τ-T 比(滞后时间/时间常数)小于1 的过程,对于大τ-T 比的系统,则必须调低PID 参数,所以难免控制迟缓,品质变差。
史密斯预估器是处理具有大滞后过程的一种非常有用的控制方法,然而构造史密斯预估器通常需要精确的过程模型,否则,其性能不能令人满意。