第七章 离子注入原理下晶格损伤
- 格式:ppt
- 大小:4.71 MB
- 文档页数:37
离子注入扩散掺杂技术原理及应用20世纪70年代,半导体离子注入获得突破,离子注入、离子刻蚀和电子束曝光技术的结合,形成集成电路微细加工新技术,推动激光技术和红外技术飞速发展促成了今天全新的电子工业、计算机工业喝光通讯技术全面发展的新局面。
由于非半导体离子注入的材料表面处理量大,体积庞大,形状复杂,所需束流强度高,故非半导体离子注入材料改性起初发展缓慢。
随着强流氮离子注入机,特别是金属蒸发真空弧离子源( MEVV A)的问世,非半导体离子技术在20世纪80年代末期得到迅速发展。
用离子注入方法可获得高度过饱和的固溶体、亚稳定相、非晶态和平衡合金等不同组织结构形成,大大改善了工件的使用性能。
目前离子注入又与各种沉积技术、扩渗技术结合形成复合表面处理新工艺,如离子辅助沉积(IAC)、离子束增强沉积(IBED)、等离子体浸没离子注入(PSII)以及PSII—离子束混简单地说,离子注入的过程,就是在真空系统中,用经过加速的,要掺杂的原子的离子照射(注入)固体材料,从而在所选择的(即被注入的)区域形成一个具有特殊性质的表面层(注入层)。
合等,为离子注入技术开拓了更广阔的前景。
掺杂就是使杂质进入wafer内部,并在wafer中的某区域以一定浓度分布,从而改变器件的电学性能,掺入的杂质可以是IIIA族和V A族的元素。
利用掺杂技术,可以制作PN结、欧姆接触区、以及电阻等各种器件。
什么是离子注入呢?离子注入是将被注入元素利用离子注入机电离成带正电荷的离子,经过高压电场加速后高速轰击工件表面,使之注入工件表面一定浓度的真空处理工艺。
简单地说,离子注入的过程,就是在真空系统中,用经过加速的,要掺杂的原子的离子照射(注入)固体材料,从而在所选择的(即被注入的)区域形成一个具有特殊性质的表面层(注入层)。
离子注入技术的原理如图所示:离子注入是将离子源产生的离子经加速后高速射向材料表面,当离子进入表面,将与固体中的原子碰撞,将其挤进内部,并在其射程前后和侧面激发出一个尾迹。
半导体离子注入原理及工艺1. 引言1.1 概述本文将深入探讨半导体离子注入原理及工艺。
离子注入作为一种重要的半导体加工技术,广泛应用于集成电路制造和材料改性领域。
通过向半导体材料中注入特定类型和能量的离子,可以实现掺杂调节、PN结修复、特殊结构制造等目标。
1.2 文章结构本文共分为五个部分进行论述。
首先,在引言部分,我们将介绍整篇文章的概述、结构以及目的。
接下来,在第二部分,我们将详细讲解半导体离子注入原理,包括对半导体材料的概述、离子注入原理的介绍以及离子注入设备和工艺流程。
第三部分将阐述影响离子注入工艺控制的因素,包括能量控制因素、剂量控制因素和温度控制因素。
在第四部分,我们将重点探讨离子注入在半导体加工中的应用与优势,包括PN结形成与修复、掺杂调节与电性能优化以及特殊结构和器件应用方面的内容。
最后,在结论与展望部分,我们将对全文进行总结,并对未来的研究方向和发展趋势进行展望。
1.3 目的本文旨在全面介绍半导体离子注入原理及工艺,让读者了解离子注入技术在半导体加工中的重要性和应用价值。
通过对离子注入原理、工艺控制因素以及应用优势的深入分析,希望读者能够全面了解并掌握该领域的基础知识,为进一步研究和实践提供参考和指导。
同时,本文也将为行业相关人士提供有益的信息和思路,促进半导体制造技术的发展与创新。
2. 半导体离子注入原理2.1 半导体材料概述半导体是一种具有介于导电体和绝缘体之间的电阻特性的材料。
常见的半导体材料包括硅、锗和砷化镓等。
这些材料中,原子结构具有特殊的能带结构,使得它们在一定条件下可以表现出较好的电导性能。
2.2 离子注入原理介绍离子注入是一种将高能量离子引入半导体材料中的技术。
其原理基于离子与半导体材料之间发生相互作用,从而改变材料内部的物理和化学性质。
在离子注入过程中,离子源产生高能量的正或负离子束,并通过加速装置使得这些离子获得足够高的动能。
这些高能量离子穿过空气以及其他保护层,在最终进入半导体材料前经过滤波等处理。
半导体工艺--离子注入离子注入法掺杂相比扩散法掺杂来说,它的加工温度低、容易制作浅结、均匀的大面积注入杂质、易于自动化等优点。
目前,离子注入法已成为超大规模集成电路制造中不可缺少的掺杂工艺。
1.离子注入原理离子是原子或分子经过离子化后形成的,即等离子体,它带有一定量的电荷。
可通过电场对离子进行加速,利用磁场使其运动方向改变,这样就可以控制离子以一定的能量进入wafer内部达到掺杂的目的。
离子注入到wafer中后,会与硅原子碰撞而损失能量,能量耗尽离子就会停在wafer中某位置。
离子通过与硅原子的碰撞将能量传递给硅原子,使得硅原子成为新的入射粒子,新入射离子又会与其它硅原子碰撞,形成连锁反应。
杂质在wafer中移动会产生一条晶格受损路径,损伤情况取决于杂质离子的轻重,这使硅原子离开格点位置,形成点缺陷,甚至导致衬底由晶体结构变为非晶体结构。
2.离子射程离子射程就是注入时,离子进入wafer内部后,从表面到停止所经过的路程。
入射离子能量越高,射程就会越长。
投影射程是离子注入wafer内部的深度,它取决于离子的质量、能量,wafer的质量以及离子入射方向与晶向之间的关系。
有的离子射程远,有的射程近,而有的离子还会发生横向移动,综合所有的离子运动,就产生了投影偏差。
3.离子注入剂量注入剂量是单位面积wafer表面注入的离子数,可通过下面的公式计算得出,式中,Q是剂量;I是束流,单位是安培;t是注入时间,单位是秒;e是电子电荷,1.6×10-19C;n是电荷数量;A是注入面积,单位是。
4.离子注入设备离子注入机体积庞大,结构非常复杂。
根据它所能提供的离子束流大小和能量可分为高电流和中电流离子注入机以及高能量、中能量和低能量离子注入机。
离子注入机的主要部件有:离子源、质量分析器、加速器、聚焦器、扫描系统以及工艺室等。
(1)离子源离子源的任务是提供所需的杂质离子。
在合适的气压下,使含有杂质的气体受到电子碰撞而电离,最常用的杂质源有和等,(2)离子束吸取电极吸取电极将离子源产生的离子收集起来形成离子束。
离子注入引起的晶格损伤与消除措施
离子注入是新兴的材料制备技术,其可提供一种新颖的强大工具来改变室温条件下材料表面以及表面形貌。
它还被广泛应用于金属,金属氧化物和非金属材料的表面改性。
然而,随着它的发展,晶格损伤的问题也变得越来越突出。
一、晶格损伤的产生
离子注入过程中,高速离子或原子将进入材料晶格,对它们的层间距造成影响,从而引起晶格的改变,即晶格损伤。
二、晶格损伤的影响
晶格损伤会对材料的疲劳强度、热稳定性和耐腐蚀性产生负面影响,从而降低材料的性能。
三、晶格损伤的消除措施
(1)改变护层材料:护层材料可以帮助减少晶格损伤的发生。
(2)调整离子速度:调整离子速度有助于减少晶格损伤,使其更小。
(3)离子浓度调控:离子浓度调控能够更好地减少晶格损伤。
(4)研究材料晶格:通过研究材料晶格的结构强度及其最坏的受损形态,可以更好地减少晶格损伤。
综上所述,离子注入是一种新兴的技术,不仅可以改善材料的表面形貌和表面性能,还可以改善材料的结构性能,但其也会导致晶格损伤等副作用。
因此,如何消除晶格损伤是非常重要的。
通过改变护层材料、调整离子速度和离子浓度、研究材料晶格等措施,我们可以有效地减少晶格损伤的产生。