高一数学直线和平面所成的角(PPT)5-2
- 格式:pptx
- 大小:75.12 KB
- 文档页数:3
数学必修② · 人教A版第二章点、直线、平面之间的位置关系2.3直线、平面垂直的判定及其性质2.3.1直线与平面垂直的判定1 自主预习学案2 互动探究学案3 课时作业学案自主预习学案一个人走在灯火通明的大街上,会在地面上形成影子,随着人不停走动,这个影子忽前忽后、忽左忽右,但无论怎样,人始终与影子相交于一点,并始终保持垂直.你承认这个事实吗?为什么?1.直线与平面垂直定义如果直线l与平面α内的____________直线都垂直,我们就说直线l与平面α互相垂直记法l⊥α有关概念直线l叫做平面α的_______,平面α叫做直线l的_______.它们唯一的公共点P叫做_________.任意一条垂线垂面垂足图示画法画直线与平面垂直时,通常把直线画成与表示平面的平行四边形的一边垂直[归纳总结](1)定义中的“任任任任任任”任任任任任“任任任任”任任任任任任“任任任任任”任任任任任任(2)任任任任任任任任任任任任任任任任任任任任任任任(3)任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任2.判定定理文字语言一条直线与一个平面内的两条________直线都垂直,则该直线与此平面垂直图形语言符号语言 l ⊥a ,l ⊥b ,a ⊂α,b ⊂α,__________⇒l ⊥α 作用判断直线与平面垂直相交 a ∩b =P[归纳总结]直线与平面垂直的判定定理告诉我们:可以通过直线间的垂直任任任任任任任任任任任任任任任任任任任“任任任任任任任任任任”.任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任3.直线和平面所成的角(1)定义:一条直线和一个平面相交,但不和这个平面______,这条直线叫做这个平面的斜线,斜线和平面的______叫做斜足.过斜线上斜足以外的一点向平面引垂线,过_______和______的直线叫做斜线在这个平面上的射影.平面的一条斜线和它在平面上的射影所成的______,叫做这条直线和这个平面所成的角.(2)规定:一条直线垂直于平面,我们说它们所成的角等于______;一条直线和平面平行,或在平面内,我们说它们所成的角等于______.因此,直线与平面所成的角的范围是____________. 垂直 交点 垂足 斜足 锐角 90° 0° [0°,90°][解析] ∵直线l ⊥任任α任∴l 任α任任任任∵m ⊂α任∴l 任m 任任任任任任任任任任任任任任任任任任任任l ⊥m .任l 任m 任任任任任任1.直线l ⊥平面α,直线m ⊂α,则l 与m 不可能导学号 09024468() A .平行 B .相交 C .异面 D .垂直A2.直线l 与平面α内的无数条直线垂直,则直线l 与平面α的关系是导学号 09024469( )A .l 和平面α相互平行B .l 和平面α相互垂直C .l 在平面α内D .不能确定[解析] 如下图所示,直线l 和平面α相互平行,或直线l 和平面α相互垂直或直线l在平面α内都有可能.故选D .D3.(2016~2017·福州高二检测)在△ABC中,AB=AC=5,BC=6,P A⊥平面ABC,P A=8,则P到BC的距离是导学号09024471()A.5B.25C.35D.4 5[解析]取BC的中点D,∵AB=AC,∴AD⊥BC. 又∵P A⊥平面ABC,∴P A⊥BC.又P A∩AD=D,∴BC⊥平面P AD,∴BC⊥PD.∵在△ABC中,AB=AC=5,BC=6,∴AD=4,∴PD=P A2+AD2=4 5.故选D.D互动探究学案命题方向1⇨线面垂直的判定如图,P为△ABC所在平面外一点,P A⊥平面ABC,∠ABC=90°,AE⊥PB于E,AF⊥PC于F.求证:导学号 09024472(1)BC⊥平面P AB;(2)AE⊥平面PBC;(3)PC⊥平面AEF.[思路分析]本题是证线面垂直问题,要多观察题目中的一些“垂直”关系,看是否可利用.如看到PA⊥平面ABC,可想到PA⊥AB、PA⊥BC、PA⊥AC,这些垂直关系我们需要哪个呢?我们需要的是PA⊥BC,联系已知,问题得证.[解析](1)∵PA⊥平面ABC任BC⊂任任ABC任∴PA⊥BC.∵∠ABC任90°任∴AB⊥BC.任AB∩PA任A任∴BC⊥任任PAB.(2)∵BC⊥任任PAB任AE⊂任任PAB任∴BC⊥AE.∵PB⊥AE任BC∩PB任B任∴AE⊥任任PBC.(3)∵AE⊥任任PBC任PC⊂任任PBC任∴AE⊥PC.∵AF⊥PC任AE∩AF任A任∴PC⊥任任AEF.『规律方法』线面垂直的判定方法:(1)任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任(2)利用直线与平面垂直的判定定理判定直线与平面垂直的步骤:任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任(3)任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任〔跟踪练习1〕如图,在△ABC中,∠ABC=90°,D是AC的中点,S是△ABC所在平面外一点,且SA=SB=SC.导学号 09024473(1)求证:SD⊥平面ABC;(2)若AB=BC,求证:BD⊥平面SAC.[解析](1)因为SA=SC,D是AC的中点,所以SD⊥AC.在Rt△ABC中,AD=BD,由已知SA=SB,所以△ADS≌△BDS,所以SD⊥BD,又AC∩BD=D,所以SD⊥平面ABC.(2)因为AB=BC,D为AC的中点,所以BD⊥AC,由(1)知SD⊥BD,又因为SD∩AC=D,所以BD⊥平面SAC.命题方向2⇨直线与平面所成的角在正方体ABCD-A1B1C1D1中,导学号 09024474(1)求直线A1C与平面ABCD所成的角的正切值;(2)求直线A1B与平面BDD1B1所成的角.[思路分析](1)求线面角的关键是找出直线在平面内的射影,为此须找出过直线上一点的平面的垂线.(2)中过A1作平面BDD1B1的垂线,该垂线必与B 1D1、BB1垂直,由正方体的特性知,直线A1C1满足要求.[解析](1)∵直线A1A⊥平面ABCD,∴∠A1CA为直线A1C与平面ABCD所成的角,设A1A=1,则AC=2,∴tan∠A1CA=2 2.(2)连接A1C1交B1D1于O,在正方形A1B1C1D1中,A1C1⊥B1D1,∵BB1⊥平面A1B1C1D1,A1C1⊂平面A1B1C1D1,∴BB1⊥A1C1,又BB1∩B1D1=B1,∴A1C1⊥平面BDD1B1,垂足为O.∴∠A1BO为直线A1B与平面BDD1B1所成的角,在Rt△A1BO中,A1O=12A1C1=12A1B,∴∠A1BO=30°.即A1B与平面BDD1B1所成的角为30°.『规律方法』求线面角的方法:(1)任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任(2)任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任〔跟踪练习2〕如图,在三棱柱ΑΒC-A1B1C1中,∠BAC=90°,AB=AC=2,A1A=4,A1在底面ABC的射影为BC的中点,D是B1C1的中点.导学号 09024475(1)证明:A1D⊥平面A1BC;(2)求直线A1B和平面BB1C1C所成的角的正弦值.[解析] (1)取BC 任任任E 任任任A 1E 任DE 任AE 任任任任任A 1E ⊥任任ABC 任任任A 1E ⊥AE 任任任AB 任AC 任任任AE ⊥BC 任任AE ⊥任任A 1BC 任任D 任E 任任任B 1C 1任BC 任任任任任DE ∥B 1B 任DE 任B 1B 任任任DE ∥A 1A 任 任任任任任A 1AED 任任任任任任任任A 1D ∥AE 任任任任AE ⊥任任A 1BC 任任任A 1D ⊥任任A 1BC .(2)作A 1F ⊥DE ,垂足为F ,连接BF .因为A 1E ⊥平面ABC ,所以BC ⊥A 1E .因为BC ⊥AE ,所以BC ⊥平面AA 1DE .所以BC ⊥A 1F ,A 1F ⊥平面BB 1C 1C .所以∠A 1BF 为直线A 1B 与平面BB 1C 1C 所成的角.由AB =AC =2,∠CAB =90°,得EA =EB = 2.由∠A1EA =∠A 1EB =90°,得A 1A =A 1B =4,A 1E =14.由DE =BB 1=4,DA 1=EA =2,∠DA 1E =90°,得A 1F =72.所以sin ∠A 1BF =78.逻辑推理不严密致误如图,在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AC=BC,D 是AB的中点,连接CD.求证:CD⊥平面ABB1A1.导学号 09024476[错解]∵AA1⊥平面ABC,CD⊂平面ABC,∴CD⊥AA1.又BB1∥AA1,∴CD⊥BB1,又AA1⊂平面ABB1A1,BB1⊂平面ABB1A1,∴CD⊥平面ABB1A1.[错因分析]错解中AA1任BB1任任任ABB1A1任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任[正解]∵AA1⊥任任ABC任CD⊂任任ABC任∴CD⊥AA1.任AC任BC任D任AB任任任任∴CD⊥AB.∵AB⊂任任ABB1A1任AA1⊂任任ABB1A1任AB∩AA1任A任∴CD⊥任任ABB1A 1 .[警示]任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任.〔跟踪练习3〕如图,在三棱柱ABC -A 1B 1C 1中,侧棱AA 1⊥底面ABC ,AB =AC =1,AA 1=2,∠B 1A 2C 1=90°,D 为BB 1的中点.求证:AD ⊥平面A 1DC 1. 导学号09024477[错解] 在三棱柱中,∵AA 1⊥平面ABC ,∠B 1A 1C 1=90°,∴AD ⊥A 1C 1;又从图可知AD ⊥平面BCC 1B 1,∴AD ⊥C 1D ,∴AD ⊥平面A 1DC 1.[辨析]前半部分任任任任任任任任任任任任任AD⊥A1C1任任任任任任任任任任任任任任AD⊥任任BCC1B1任任任任任任任任任任任任任[分析]任任任C1A1⊥任任ABB1A1任任AD⊥C1A1任任任任任ABB1A1任任任任任任任任AD⊥A1D.[证明]∵AA1⊥任任ABC任任任A1B1C1∥任任ABC任∴AA1⊥任任A1B1C1.∴A1C1⊥AA1.任∠B1A1C1任90°任∴A1C1⊥A1B1.而A1B1∩AA1=A,∴A1C1⊥平面AA1B1B,AD⊂平面AA1B1B,∴A1C1⊥AD.由已知计算得AD=2,A1D=2,AA1=2. ∴AD2+A1D2=AA21,∴A1D⊥AD.∵A1C1∩A1D=A1,∴AD⊥平面A1DC1.1.线线垂直和线面垂直的相互转化(2016~2017·湖南张家界高一期末)如图,在棱长均为1的直三棱柱ABC-A1B1C1中,D是BC的中点.导学号 09024478(1)求证:AD⊥平面BCC1B1;(2)求直线AC1与平面BCC1B1所成角的正弦值.[解析](1)证明:直三棱柱ABC任A1B1C1任任BB1⊥任任ABC任∴BB1⊥AD任∵AB任AC任D任BC任任任任∴AD⊥BC.任BC∩BB1任B任∴AD⊥任任BCC1B 1 .(2)解:连接C1D.由(1)AD⊥平面BCC1B1,则∠AC1D即为直线AC1与平面BCC1B1所成角.在Rt△AC1D中,AD=32,AC1=2,sin∠AC1D=ADAC1=64,即直线AC1与平面BCC1B1所成角的正弦值为64.〔跟踪练习4〕如图,四边形ABCD 为矩形,AD ⊥平面ABE ,F 为CE 上的点,且BF ⊥平面ACE .求证:AE ⊥BE .导学号 09024479[证明] ∵AD ⊥平面ABE ,AD ∥BC ,∴BC ⊥平面ABE .又AE ⊂平面ABE ,∴AE ⊥BC .∵BF ⊥平面ACE ,AE ⊂平面ACE ,∴AE ⊥BF .∵BF ⊂平面BCE ,BC ⊂平面BCE ,BF ∩BC =B ,∴AE ⊥平面BCE .又BE ⊂平面BCE ,∴AE ⊥BE .2.关于垂直的存在型探索性问题在矩形ABCD 中,AB =1,BC =a ,P A ⊥平面ABCD ,且P A =1,边BC 上是否存在点Q ,使得PQ ⊥QD ?为什么?导学号 09024480[思路分析] 关键是将PQ ⊥QD 转化为DQ ⊥AQ ,再使DQ ⊥AP 即可,但AD =BC =a 是变化的,故需对a 进行讨论.[解析]∵PA⊥平面ABCD任∴PA⊥QD.任任BC任任任任任Q任任任QD⊥AQ任任任QD⊥任任PAQ任任任QD⊥PQ.任任任ABCD任任任AD任a<2任任任任BC任任AD任任任任任任任任任任任任任Q任任AQ⊥DQ.∴任a≥2任任任任任任Q任任任PQ⊥QD.[点评]任任任任任任任任任任任任任任AD任任任任任任BC任任任任任任任任Q任任任任任[解析] 三角形的两边任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任任.1.如果一条直线垂直于一个平面内的:导学号 09024481①三角形的两边;②梯形的两边;③圆的两条直径;④正六边形的两条边. 则能保证该直线与平面垂直( )A .①③B .①②C .②④D .①④A2.如图,在长方体ABCD-A1B1C1D1中,AB=BC=2,AA1=1,则AC1与平面A1B1C1D1所成角的正弦值为导学号 09024482()A.223B.23C.24D.13[解析]∵AA1⊥平面A1B1C1D1,∴∠AC1A1为直线AC1与平面A1B1C1D1所成角,∵AA1=1,AB=BC=2,∴AC1=3,∴sin∠AC1A1=AA1AC1=13.D3.如图所示,P A⊥平面ABC,△ABC中BC⊥AC,则图中直角三角形的个数有____.导学号 09024483[解析]∵P A⊥平面ABC,∴P A⊥AB,P A⊥AC,P A⊥BC.∴△P AB、△P AC为直角三角形.∵BC⊥AC,P A∩AC=A,∴BC⊥平面P AC.∴BC⊥AC,BC⊥PC.∴△ABC、△PBC为直角三角形.44.如图所示,在四棱锥P-ABCD中,底面ABCD是矩形,侧棱P A⊥平面ABCD,E、F分别是AB、PC的中点,P A=AD.求证:EF⊥平面PCD.导学号 09024484[解析] 如图,取PD 的中点H ,连接AH 、HF .∴FH 12CD ,∴FH AE ,∴四边形AEFH 是平行四边形, ∴AH ∥EF .∵底面ABCD 是矩形,∴CD ⊥AD .又∵P A⊥底面ABCD,∴P A⊥CD,P A∩AD=A,∴CD⊥平面P AD.又∵AH⊂平面P AD,∴CD⊥AH.又∵P A=AD,∴AH⊥PD,PD∩CD=D,∴AH⊥平面PCD,又∵AH∥EF,∴EF⊥平面PCD.课时作业学案。