2006年杭州市中考数学卷及答案
- 格式:docx
- 大小:340.76 KB
- 文档页数:10
2006年中考数学试题汇编及解析探索型问题探索型问题这类问题往往涉及面很广,主要是探索题设结论是否存在,或是否成立,或是让学生自己先猜想结论,再进行研究从而得出正确的结论等等,这些题通常有一定的难度,几乎在全国各地的中考数学试卷中都能见到。
1、(2006浙江舟山)如图1,在直角坐标系中,点A的坐标为(1,0),•以OA•为边在第四象限内作等边△AOB,点C 为x轴的正半轴上一动点(OC>1),连结BC,•以BC•为边在第四象限内作等边△CBD,直线DA交y轴于点E.(1)试问△OBC与△ABD全等吗?并证明你的结论.(2)随着点C位置的变化,点E的位置是否会发生变化,若没有变化,求出点E•的坐标;若有变化,请说明理由.(3)如图2,以OC为直径作圆,与直线DE分别交于点F、G,设AC=m,AF=n,用含n的代数式表示m.[解析](1)两个三角形全等∵△AOB、△CBD都是等边三角形∴OBA=∠CBD=60°∴∠OBA+∠ABC=∠CBD+∠ABC即∠OBC=∠ABD∵OB=AB,BC=BD△OBC≌△ABD(2)点E位置不变∵△OBC≌△ABD∴∠BAD=∠BOC=60°∠OAE=180°-60°-60°=60°在Rt△EOA中,EO=OA²tan60°或∠AEO=30°,得AE=2,∴∴点E的坐标为(0(3)∵AC=m ,AF=n ,由相交弦定理知1²m=n ²AG ,即AG=m n又∵OC 是直径,∴OE 是圆的切线,OE 2=EG ²EF在Rt △EOA 中,2=(2-m n)(2+n ) 即2n 2+n-2m-mn=0解得m=222n nn ++.2、(2006浙江金华)如图,平面直角坐标系中,直线AB 与x 轴,y 轴分别交于A (3,0),B (0,3)两点, ,点C 为线段AB 上的一动点,过点C 作CD ⊥x 轴于点D .(1)求直线AB 的解析式;(2)若S 梯形OBCD =3,求点C 的坐标; (3)在第一象限内是否存在点P ,使得以P,O,B 为顶点的三角形与△OBA 相似.若存在,请求出所有符合条件 的点P 的坐标;若不存在,请说明理由. [解析] (1)直线AB 解析式为:y=33-x+3. (2)方法一:设点C坐标为(x ,33-x+3),那么OD =x ,CD =33-x+3. ∴OBCD S 梯形=()2CD CD OB ⨯+=3632+-x . 由题意:3632+-x =334,解得4,221==x x (舍去) ∴ C(2,33) 方法二:∵ 23321=⨯=∆OB OA S AOB ,OBCD S 梯形=334,∴63=∆ACD S .由OA=3OB ,得∠BAO =30°,AD=3CD .∴ ACD S ∆=21CD ³AD =223CD =63.可得CD =33. ∴ AD=1,OD =2.∴C (2,33). (3)当∠OBP =Rt ∠时,如图①若△BOP ∽△OBA ,则∠BOP =∠BAO=30°,BP=3OB=3,∴1P (3,33). ②若△BPO ∽△OBA ,则∠BPO =∠BAO=30°,OP=33OB=1. ∴2P (1,3).当∠OPB =Rt ∠时③ 过点P 作OP ⊥BC 于点P(如图),此时△PBO ∽△OBA ,∠BOP =∠BAO =30° 过点P 作PM ⊥OA 于点M . 方法一: 在Rt △PBO 中,BP =21OB =23,OP =3BP =23. ∵ 在Rt △P MO 中,∠OPM =30°, ∴ OM =21OP =43;PM =3OM =433.∴3P (43,433). 方法二:设P(x ,33-x+3),得OM =x ,PM =33-x+3 由∠BOP =∠BAO,得∠POM =∠ABO .∵tan ∠POM==OMPM =x x 333+-,tan ∠ABOC=OBOA =3.∴33-x+3=3x ,解得x =43.此时,3P (43,433).④若△POB ∽△OBA(如图),则∠OBP=∠BAO =30°,∠POM =30°. ∴ PM =33OM =43. ∴ 4P (43,43)(由对称性也可得到点4P 的坐标). 当∠OPB =Rt ∠时,点P 在x轴上,不符合要求.综合得,符合条件的点有四个,分别是:1P (3,33),2P (1,3),3P (43,433),4P (43,43).3、(2006湖南常德)如图,在直角坐标系中,以点A 为圆心,以x 轴相交于点B C ,,与y 轴相交于点D E ,.(1)若抛物线213y x bx c =++经过C D ,两点,求抛物线的解析式,并判断点B 是否在该抛物线上. (2)在(1)中的抛物线的对称轴上求一点P ,使得PBD △的周长最小.(3)设Q 为(1)中的抛物线的对称轴上的一点,在抛物线上是否存在这样的点M ,使得四边形BCQM 是平行四边形.若存在,求出点M 的坐标;若不存在,说明理由.[解析] (1)OA =∵AB AC ==(B ∴,C又在Rt AOD △中,AD =OA =3OD ==∴D ∴的坐标为(03)-,又D C ,两点在抛物线上,23103c c =-⎧⎪⎨++=⎪⎩ ∴解得3b c ⎧=⎪⎨⎪=-⎩ ∴抛物线的解析式为:21333y x x =--当x =0y = ∴点(B 在抛物线上(2)2133y x x =-∵21(43x =- ∴抛物线2133y x x =-的对称轴方程为x = 在抛物线的对称轴上存在点P ,使PBD △的周长最小.BD ∵的长为定值 ∴要使PBD △周长最小只需PB PD +最小. 连结DC ,则DC 与对称轴的交点即为使PBD △周长最小的点. 设直线DC 的解析式为y mx n =+.由30n n =-⎧⎪⎨+=⎪⎩得3m n ⎧=⎪⎨⎪=-⎩∴直线DC的解析式为3y x =-由3y x x ⎧=-⎪⎨⎪=⎩得2x y ⎧=⎪⎨=-⎪⎩ 故点P的坐标为2)-(3)存在,设)Q t为抛物线对称轴x =M 在抛物线上要使四边形BCQM 为平行四边形,则BC QM ∥且BC QM =,点M 在对称轴的左侧.于是,过点Q 作直线L BC ∥与抛物线交于点()m M x t , 由BC QM =得QM =从而m x =-,12t =故在抛物线上存在点(M ,使得四边形BCQM 为平行四边形.4、(2006湖南常德)把两块全等的直角三角形ABC 和DEF 叠放在一起,使三角板DEF 的锐角顶点D 与三角板ABC的斜边中点O 重合,其中90ABC DEF ∠=∠= ,45C F ∠=∠=,4AB DE ==,把三角板ABC 固定不动,让三角板DEF 绕点O 旋转,设射线DE 与射线AB 相交于点P ,射线DF 与线段BC 相交于点Q .(1)如图9,当射线DF 经过点B ,即点Q 与点B 重合时,易证APD CDQ △∽△.此时,APCQ =· . (2)将三角板DEF 由图1所示的位置绕点O 沿逆时针方向旋转,设旋转角为α.其中090α<< ,问AP CQ ·的值是否改变?说明你的理由.(3)在(2)的条件下,设CQ x =,两块三角板重叠面积为y ,求y 与x 的函数关系式.[解析] (1)8(2)APCQ ·的值不会改变. 理由如下:在APD △与CDQ △中,45A C ∠=∠=18045(45)9A P D a a ∠=--+=-90CDQ a ∠=-BEE 图1 图3图3E即APD CDQ ∠=∠APD CDQ ∴△∽△AP CDAD CQ=∴22182A P C QA D C D A D A C⎛⎫==== ⎪⎝⎭∴ (3)情形1:当045a <<时,24CQ <<,即24x <<,此时两三角板重叠部分为四边形DPBQ ,过D 作DG AP⊥于G ,DN BC ⊥于N ,2D GD N ==∴ 由(2)知:8AP CQ = 得8AP x=于是111222y AB AC CQ DN AP DG =--88(24)x x x=--<<情形2:当4590a <≤时,02CQ <≤时,即02x <≤,此时两三角板重叠部分为DMQ △, 由于8AP x =,84PB x=-,易证:PBM DNM △∽△, B M P B M N D N =∴即22BM PB BM =-解得28424PB x BM PB x-==+- 84444xMQ BM CQ x x-=--=---∴于是1844(02)24xy MQ DN x x x-==--<- ≤ 综上所述,当24x <<时,88y x x=--当02x <≤时,8444xy x x-=---2484y x x x =⎛⎫-+ ⎪-⎝⎭或法二:连结BD ,并过D 作DN BC ⊥于点N ,在DBQ △与MCD △中,45DBQ MCD ∠=∠=45DQB QCB QDC QDC MDQ QDC MDC ∠=∠+∠=+∠=∠+∠=∠DBQ MCD ∴△∽△ M CD B C D B Q=∴4x =- 84MC x =-∴ 284844x x MQ MC CD x x x-+=-=-=--∴BG2148(02)24x x y DN MQ x x-+==<- ∴≤法三:过D 作DN BC ⊥于点N ,在Rt DNQ △中,222D Q D N NQ =+ 24(2)x =+- 248x x =-+于是在BDQ △与DMQ △中45DBQ MDQ ∠=∠= DMQ DBM BDM ∠=∠+∠ 45BDM =+∠ BDQ =∠BDQ DMQ ∴△∽△BQ DQDQ MQ =∴即4x DQDQ MQ-= 224844DQ x x MQ x x-+==--∴2148(02)24x x y DN MQ x x-+==<- ∴≤5、(2006湖北宜昌)如图,点O 是坐标原点,点A (n ,0)是x 轴上一动点(n <0)以AO 为一边作矩形AOBC ,点C 在第二象限,且OB =2OA .矩形AOBC 绕点A 逆时针旋转90o得矩形AGDE .过点A 的直线y =kx +m 交y 轴于点F ,FB =FA .抛物线y=ax 2+bx+c 过点E 、F 、G 且和直线AF 交于点H ,过点H 作HM ⊥x 轴,垂足为点M .(1)求k 的值;(2)点A 位置改变时,△AMH 的面积和矩形AOBC 的面积的比值是否改变?说明你的理由.[解析] (1)根据题意得到:E (3n ,0), G (n ,-n )当x =0时,y =kx +m =m ,∴点F 坐标为(0,m )∵Rt △AOF 中,AF 2=m 2+n 2, ∵FB =AF ,∴m 2+n 2=(-2n -m)2, 化简得:m =-0.75n , 对于y =kx +m ,当x =n 时,y =0, ∴0=kn -0.75n , ∴k =0.75(2)∵抛物线y=ax 2+bx+c 过点E 、F 、G ,∴ ⎪⎩⎪⎨⎧=-++=-++=c c nb a n n c nb a n 75.039022解得:a =n 41,b =-21,c =-0.75n∴抛物线为y=n 41x 2-21x -0.75n解方程组:⎪⎩⎪⎨⎧-=--=nx y n x x n y 75.075.075.021412 得:x 1=5n ,y 1=3n ;x 2=0,y 2=-0.75n∴H 坐标是:(5n ,3n ),HM =-3n ,AM =n -5n =-4n ,∴△AMH 的面积=0.5³HM ³AM =6n 2;而矩形AOBC 的面积=2n 2,∴△AMH 的面积∶矩形AOBC 的面积=3:1,不随着点A 的位置的改变而改变. 6、(2006山东日照)如图(1),在以AB 为直径的半圆O 内有一点P ,AP 、BP 的延长线分别交半圆O 于点C 、D .求证:AP ²AC+BP ²BD=AB 2.证明:连结AD 、BC ,过P 作PM ⊥AB ,则∠ADB =∠AMP =90o,∴点D 、M 在以AP 为直径的圆上;同理:M 、C 在以BP 为直径的圆上. 由割线定理得: AP ²AC=AM ²AB ,BP ²BD=BM ²BA ,所以,AP ²AC+BP ²BD=AM ²AB+BM ²AB=AB ²(AM+BM )=AB 2.当点P 在半圆周上时,也有AP ²AC+BP ²BD=AP 2+BP 2=AB 2成立,那么:(1)如图(2)当点P 在半圆周外时,结论AP ²AC+BP ²BD=AB 2是否成立?为什么? (2)如图(3)当点P 在切线BE 外侧时,你能得到什么结论?将你得到的结论写出来.[解析] (1)成立.证明:如图(2),∵∠PCM=∠PDM=900, ∴点C 、D 在以PM 为直径的圆上, ∴AC ²AP=AM ²MD ,BD ²BP=BM ²BC , ∴AC ²AP+BD ²BP=AM ²MD+BM ²BC ,由已知,AM ²MD+BM ²BC=AB 2,∴AP ²AC+BP ²BD=AB 2. (2)如图(3),过P 作PM ⊥AB ,交AB 的延长线于M ,连结AD 、BC , 则C 、M 在以PB 为直径的圆上,∴AP ²AC=AB ²AM ,① D 、M 在以PA 为直径的圆上,∴BP ²BD=AB ²BM ,② 由图象可知:AB=AM-BM ,③由①②③可得:AP ²AC-BP ²BD=AB ²(AM-BM )=AB 2. 7、(2006江西南昌)问题背景;课外学习小组在一次学习研讨中,得到了如下两个命题:①如图1,在正三角形ABC 中,M ,N 分别是AC 、AB 上的点,BM 与CN 相交于点O ,若∠BON =60°.则BM =CN :②如图2,在正方形ABCD 中,M 、N 分别是CD 、AD 上的点.BM 与CN 相交于点O ,若∠BON =90°.则BM =CN. 然后运用类似的思想提出了如下命题:③如图3,在正五边形ABCDE 中,M 、N 分别是CD ,DE 上的点,BM 与CN 相交于点O ,若∠BON =108°,则BM =CN .任务要求(1)请你从①.②,③三个命题中选择一个进行证明; (2) 请你继续完成下面的探索;①如图4,在正n (n ≧3)边形ABCDEF ⋅⋅⋅中,M ,N 分别是CD 、DE 上的点,BM 与CN 相交于点O ,试问当∠BON 等于多少度时,结论BM =CN 成立(不要求证明)②如图5,在正五边形ABCDE 中,M 、N 分别是DE ,AE 上的点,BM 与CN 相交于点O ,∠BON =108°时,试问结论BM =CN 是否还成立,若成立,请给予证明.若不成立,请说明理由 (I)我选[解析] (1) 如选命题①证明:在图1中,∵∠BON =60°∴∠1+∠2=60° ∵∠3+∠2=60°,∴∠1=∠3又∵BC =CA ,∠BCM =∠CAN =60°∴ΔBCM ≌ΔCAN ∴BM =CN(2)如选命题②证明:在图2中,∵∵∠BON =90°∴∠1+∠2=90° ∵∠3+∠2=90°,∴∠1=∠3又∵BC =CD ,∠BCM =∠CDN =90°∴ΔBCM ≌ΔCDN ∴BM =CN (3)如选命题③证明;在图3中,∵∠BON =108°∴∠1+∠2=108° ∵∠2+∠3=108°∴∠1=∠3 又∵BC =CD ,∠BCM =∠CDN =108° ∴ΔBCM ≌ΔCDN ∴BM =CN(2)①答:当∠BON=0(n-2)180n时结论BM =CN 成立.②答当∠BON =108°时。
浙江省杭州市中考数学试题分类解析 专题11 圆一、选择题1. (2002年浙江杭州3分)过⊙O 内一点M 的最长的弦长为6cm ,最短的弦长为4cm .则OM 的长为【 】. (A )3cm (B )5cm(C )2cm(D )3cm【答案】B 。
【考点】垂径定理,勾股定理。
【分析】⊙O 内一点M 的最长的弦是过点M 的直径;最短的弦是过点M 垂直于过点M 的直径的弦。
如图,AB 是最长的弦,CD 是最短的弦,连接OC 。
∵AB=6cm,CD=4cm ;∴OC=OA=3cm,CM=2cm 。
∴2222OM OC CM 325=-=-=(cm )。
故选B 。
2. (2003年浙江杭州3分)如图,点C 为⊙O 的弦AB 上的一点,点P 为⊙O 上一点,且OC⊥CP,则 有【 】(A )OC 2=CA•CB (B )OC 2=PA•PB (C )PC 2=PA•PB (D )PC 2=CA•CB【答案】D。
【考点】垂径定理,相交弦定理。
【分析】延长PC交圆于D,连接OP,OD。
根据相交弦定理,得CP•CD=CA•CB。
∵OP=OD,OC⊥PC,∴PC=CD。
∴PC2=CA•CB。
故选D。
3. (2004年浙江杭州3分)如图,三个半径为3的圆两两外切,且ΔABC的每一边都与其中的两个圆相切,那么ΔABC的周长是【】(A)12+63(B)18+63(C)18+123(D)12+123【答案】B。
【考点】相切圆的性质,等边三角形、矩形的判定和性质,锐角三角函数定义,特殊角的三角函数值。
【分析】∵三圆两两相切,∴外切的△ABC为等边三角形(证明略)。
如图,连接 BO 2,CO 3,分别过点O 1,O 2作BC 的垂线,垂足为D ,E 。
∴BO 2平分∠ABC,∠O 2BC =30° 。
∵O 2D⊥BD ,∴22O D 3tan O BC tan30BD 3∠︒===。
∵O 2D=3,∴2O D 3BD 33333===。
浙江省2006年中考试题(数学)参考公式:①二次函数2y ax bx c =++图象的顶点坐标是2424b ac b aa ⎛⎫-- ⎪⎝⎭,;②圆锥的侧面积是πrl ,其中r 是圆锥底面圆的半径,l 是圆锥的母线长.试卷Ⅰ一、选择题(本题有10小题,每小题4分,共40分.请选出各题中一个符合题意的正确选项,不选、多选、错选,均不给分) 1.计算12-的结果是( ) A.1- B.1 C.3- D.3 2.已知分式11x x -+的值是零,那么x 的值是( ) A.1-B.0 C.1 D.1±3.如图,A ,B ,C 是O 上的三点,45BAC =∠,则B O C ∠的大小是( ) A.90B.60C.45 D.22.54.已知两圆的半径分别为3和4,圆心距为8,那么这两个圆的位置关系是( ) A.内切 B.相交 C.外离 D.外切5.全国中小学危房改造工程实施五年来,已改造农村中小学危房7800 万平方米,如果按一幢教学楼的总面积是750平方米计算,那么该项改造工程共修建教学楼大约有( )A.10幢 B.10万幢 C.20万幢 D.100万幢6.如图,在菱形ABCD 中,E ,F 分别是AB ,AC 的中点,如果2EF =,那么菱形ABCD的周长是( )A.4 B.8 C.12 D.167.小华拿一个矩形木框在阳光下玩,矩形木框在地面上形成的投影不可能...是( )8.如果两点()111P y ,和()222P y ,在反比例函数1y x=的图象上,那么( ) A.210y y <<B.120y y <<C.210y y >>D.120y y >>9.Rt ABC △中,斜边4AB =,60B =∠,将ABC △绕点B 旋转60,顶点C 运动的路线长是( )(第3题)(第6题)A. B. C. D.A.π3B2π3C.πD.4π310.自2006年3月26日起,国家对石油开采企业销售国产石油因价格超过一定水平(每桶40美元)所获得的超额收入,将按比例征收石油特别收益金(征收比率及算法举例如下面的图和表),有人预测中国石油公司2006年第3季度将销售200百万桶石油,售价为每桶53美元,那么中国石油公司该季度估算的特别收益金将达到人民币(按1美元兑换8元人民币的汇率计算)( )A.62.4亿元 B.亿元 C.亿元 D.0.504亿元试卷Ⅱ二、填空题(本题有6小题,每小题5分,共30分) 11.不等式组21210x x ->⎧⎨+>⎩,的解集是_________.12.当3a =,1a b -=时,代数式2a ab -的值是_________.13.甲、乙两台机器分别灌装每瓶质量为500克的矿泉水.从甲、乙灌装的矿泉水中分别随机抽取了30瓶,测算得它们实际质量的方差是:24.8S =甲,23.6S =乙.那么_________(填“甲”或“乙”)灌装的矿泉水质量较稳定.14.如图,圆锥的底面半径为6cm ,高为8cm ,那么这个圆锥的侧面积是_________2cm .石油价格(美元/桶) 石油特别收益金征收比率 40-45(含) 45-50(含) 50-55 30% (第10题) 石油特别收益金计算举例86l (第14题)15.如图,点B 在AE 上,CAB DAB =∠∠,要使ABC ABD △≌△,可补充的一个条件是:_________(写出一个即可).16.如图,二次函数2y ax bx c =++的图象开口向上,图象经过点()12-,和()10,.且与y 轴相交于负半轴.(以下有(1),(2)两问,每个考生只须选答一问,若两问都答,则只以第(2)问计分)第(1)问:给出四个结论:①0a >;②0b >;③0c >;④0a b c ++=.其中正确结论的序号是_________(答对得3分,少选、错选均不得分).第(2)问:给出四个结论:①0abc <;②20a b +>;③1a c +=;④1a >.其中正确结论的序号是_________(答对得5分,少选、错选均不得分).三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22,23题每题12分,第24题14分,共80分) 17.(1)计算:()32cos4531-+-;(2)解方程:222x x +=.18.已知:如图,直线AB CD ∥,直线EF 分别交AB ,CD 于点E ,F ,BEF ∠的平分线与DFE ∠的平分线相交于点P .求证:90P =∠.19.现有一张长和宽之比为21∶的长方形纸片,将它折两次(第一次折后也可打开铺平再折第二次),使得折痕将纸片分为面积相等且不重叠的四个部分(称为一个操作),如图甲(虚线表示折痕).C A BE D (第15题)(第16题) AEBP FD C (第18题)除图甲外,请你再给出三个不同的...操作,分别将折痕画在图①至图③中(规定:一个操作得到的四个图形,和另一个操作得到的四个图形,如果能够“配对”得到四组全等的图形,那么就认为是相同的操作.如图乙和图甲是相同的操作).20.有四张背面相同的纸牌A ,B ,C ,D ,其正面分别画有四个不同的几何图形(如图).小华将这4张纸牌背面朝上洗匀后摸出一张,放回洗匀后再摸出一张.(1)用树状图(或列表法)表示两次摸牌所有可能出现的结果(纸牌可用A ,B ,C ,D 表示);(2)求摸出两张牌面图形都是中心对称图形的纸牌的概率.21.要了解某地区八年级学生的身高情况,从中随机抽取150名学生的身高作为一个样本,身高均在141cm ~175cm 之间(取整数厘米),整理后分成7组,绘制出频数分布直方图(不完整).根据图中提供的信息,解答下列问题: (1)补全频数分布直方图;(2)抽取的样本中,学生身高的中位数在哪个小组?(3)该地区共有3000 名八年级学生,估计其中身高不低于161cm 的人数.(甲)① ② ③ (第19题)(第20题) (第21题)cm140.5 150.5 160.5 170.522.如示意图,小华家(点A 处)和公路(l )之间竖立着一块35m 长且平行于公路的巨型广告牌(DE ).广告牌挡住了小华的视线,请在图中画出视点A 的盲区,并将盲区内的那段公路记为BC .一辆以60km/h 匀速行驶的汽车经过公路BC 段的时间是3s ,已知广告牌和公路的距离是40m ,求小华家到公路的距离(精确到1m ).23.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如:22420=-,221242=-,222064=-,因此4,12,20这三个数都是神秘数.(1)28和2012 这两个数是神秘数吗?为什么?(2)设两个连续偶数为22k +和2k (其中k 取非负整数),由这两个连续偶数构造的神秘数是4的倍数吗?为什么?(3)两个连续奇数的平方差(取正数)是神秘数吗?为什么?24.在平面直角坐标系xOy 中,已知直线1l 经过点()20A -,和点0B ⎛⎝,直线2l 的函数表达式为3y x =+1l 与2l 相交于点P .C 是一个动圆,圆心C 在直线1l 上运动,设圆心C 的横坐标是a ,过点C 作CM x ⊥轴,垂足是点M .(1)填空:直线1l 的函数表达式是________,交点P 的坐标是________,FPB ∠的度数是________; (2)当C 和直线2l 相切时,请证明点P 到直线CM 的距离等于C 的半径R,并写出2R =时a 的值.(3)当C 和直线2l 不相离时,已知C的半径2R =,记四边形NMOB 的面积为S (其中点N 是直线CM 与2l 的交点).S 是否存在最大值?若存在,求出这个最大值及此时a 的值;若不存在,请说明理由.(第20题) E D35m浙江省2006年中考试题数学参考答案二、填空题(本题有6小题,每小题5分,共30分)11.3x>12.313.乙14.60π(得到近似结果不扣分)15.答案不唯一,如CBA DBA=∠∠;C D=∠∠;CBE DBE=∠∠;AC AD=16.答案是:①,④;答案是:②,③,④三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22,23题每题12分,第24题14分,共80分)17.解:(1)()032cos453131-+-=2=+(2)解法1:两边都加上1,得22121x x++=+,即2(1)3x+=,开平方,得1x+=,即1x+=或1x+=.11x∴=-21x=-解法2:移项,得2220x x+-=,这里1a=,2b=,2c=-.()2242412120b ac-=-⨯⨯-=>,1x∴==-.11x∴=-21x=-(第24题)18.证明:AB CD ∥,180BEF DFE ∴+=∠∠. 又BEF ∠的平分线与DFE ∠的平分线相交于点P ,12PEF BEF ∴=∠∠,12PFE DFE =∠∠.()1902PEF PFE BEF DFE ∴+=+=∠∠∠∠.180PEF PFE P ++=∠∠∠,90P ∴=∠.19.解:答案例举如下:20.解:(1)树状图如下:列表如下:(2)摸出两张牌面图形都是中心对称图形的纸牌有4种情况, 即:()()()()B B B C C B C C ,,,,,,,,故所求概率是41164=. 21.解:(1)补全频数分布直方图如图所示.第一次摸到的牌 第二次摸到的牌 A A B C D A C D B AC D C A C DDAEBPFDC(第18题)(第19题)(第21题)cm 150.5 160.5 170.5(2)样本人数为150,则中位数为身高从低到高排列后第75个数据与第76个数据的平均数.由图可知,从低到高排列后第75个数据与第76个数据都在155.5cm ~160.5cm 这一个小组内,∴抽取的样本中,学生身高的中位数在155.5cm ~160.5cm 小组内. (3)样本中身高不低于161cm 的人数为2715648++=(人), 在样本中所占的比例为48815025=. ∴该地区身高不低于161cm 的八年级学生人数估计有8300096025⨯= (人). 22.解:画射线AD AE ,,分别交l 于点B C ,.过点A 作AF BC ⊥,垂足为点F AF ,交DE 于点H . DE BC ADE ABC DAE BAC ∴==∥,∠∠,∠∠. ADE ABC ∴△∽△.根据相似三角形对应高的比等于相似比的性质,可得AH DEAF BC=由题意,得60100035403503600DE HF BC ⨯===⨯= ,, .解法1:设AF x =,则40AH x =-,所以403550x x -=. 解得4001333x =≈,即133AF ≈. 解法2:设AH y =,则40AF y =+,所以354050y y =+.解得2802804013333y AF ==+,≈. 所以小华家到公路的距离约为133m .23.解:(1)找规律:2244120=⨯=-, 22124342=⨯=-, 22204564=⨯=-, 22284786=⨯=-, ……2220124503504502=⨯=- ,所以28和2012 都是神秘数.(2)()()()22222421k k k +-=+,因此由这两个连续偶数22k +和2k 构造的神秘数是4的倍数.(3)由(2)知,神秘数可以表示成()421k +,因为21k +是奇数,因此神秘数是4的倍(第22题)数,但一定不是8的倍数.另一方面,设两个连续奇数为21n +和21n -,则()()2221218n n n +--=, 即两个连续奇数的平方差是8的倍数.因此,两个连续奇数的平方差不是神秘数. 24.解:(1)3y x =(P60 (2)设C 和直线2l 相切时的一种情况如图甲所示,D 是切点,连接CD ,则CD PD ⊥.过点P 作CM 的垂线PG ,垂足为G ,则Rt Rt CDP PGC △≌△()30PCD CPG CP PC ===∠∠,,所以PG CD R ==.当点C 在射线PA 上,C 和直线2l 相切时,同理可证.取2R =时,11a R =+=, 或()13a R =--=-(3)当C 和直线2l 不相离时,由(2)知,分两种情况讨论:①如图乙,当01a ≤≤时,2132S a a ⎤⎛=+=-+⎥ ⎢⎥⎝⎭⎣⎦,当3a ==⎝⎭时,(满足1a ≤),S 有最大值.此时 S ==⎝⎝⎭最大值.(第24题图甲)(第24题图乙)②当30a -<时,显然C 和直线2l 相切即3a =-S 最大.此时1333223332S ⎡=--+-=⎢⎣⎦最大值.综合以上①和②,当3a =或3a =-S。
04~06年中考杭州卷分类整理第一册第一章科学入门1.(04杭州)小东和小明分别购买了两种橡胶球.小东说:“我的球弹性比你的好.”小明回答说:“我希望你能证实你的说法.”请你帮助小东选择下列哪个方案来解决这个问题( )A.把两球向墙掷去,测量它们反弹时离墙的距离 B.用手触摸两球,看哪一个球较硬 C.让两球与离地等高处坠下,测量哪一个反弹得高D.把两球向地面掷下,测量它们反弹的高度答案:A2.(06杭州)具备基本的实验技能是进行科学探究活动的基础和保证。
下列有关实验操作错.误.的是( )A.倾倒液体 B.装入固体粉末 C.加热液体 D.读取液体体积答案:C第一册第二章观察生物1.(05杭州)(5分)显微镜是初中自然科学实验中常用的仪器,请回答下列有关显微镜操作的问题.(1)在显微镜下观察到的是物体的倒像,若在显微镜下观察到黑藻叶细胞中细胞质的流动方向是逆时针方向(如图),则其实际流动方向应是。
(2)在显微镜下要把视野中的物像“E”从图中甲转为乙所示的状况,其正确的操作步骤是:首先将玻片往方向移动到合适位置,然后将低倍物镜转换成高倍物镜。
(3)当显微镜视野太暗时,怎样调节显微镜可以提高视野亮度? 。
(要求写出二种方法)(4)显微镜的放大倍数越高,则视野中观察到的细胞数目越_______。
(5)某同学制作了一张植物叶的纵切片,放在显微镜下观察,结果观察到显微镜视野中右侧的细胞十分清晰而左侧的细胞却很模糊。
经检查显微镜仪器正常且操作步骤正确,则导致这种情况的最可能原因是。
答案:(1)逆时针方向 (2)右下方 (3)将凹面反光镜改为平面反光镜或增大光圈等(4)少 (5)切片厚薄不均第一册第三章地球与宇宙1. (04杭州)近年探测火星形成一个热潮,相继有“火星快车”“机遇号”“勇气号”飞临火星上空和登陆火星,使人们对火星的认识有了很大提高。
火星上大气的主要成分是二氧化碳(95%)还有少量氮气、氩气,大气压为6~7百帕,火星有自转和公转,火星上温度极低,为一5℃至一90℃之间,火星上已发现有液态水存在过的证据,根据以上情况,下列说法正确的是( )。
浙江省2006年中考试题数学参考答案二、填空题(本题有6小题,每小题5分,共30分) 11.3x > 12.3 13.乙 14.60π(得到近似结果不扣分)15.答案不唯一,如CBA DBA =∠∠;C D=∠∠;CBE DBE =∠∠;AC AD =16.答案是:①,④;答案是:②,③,④三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22,23题每题12分,第24题14分,共80分) 17.解:(1)()32cos 453131-+-=+2=(2)解法1:两边都加上1,得22121x x ++=+,即2(1)3x +=,开平方,得1x +=,即1x +=1x+=.11x ∴=-21x =-解法2:移项,得2220x x +-=,这里1a =,2b =,2c =-.()2242412120b ac -=-⨯⨯-=>,2121x -±∴==-⨯.11x ∴=-21x =-18.证明:AB CD ∥,180BEF DFE ∴+=∠∠. 又BEF ∠的平分线与DFE ∠的平分线相交于点P ,12PEF BEF ∴=∠∠,12PFE DFE =∠∠.()1902PEF PFE BEF DFE ∴+=+=∠∠∠∠.180PEFPFE P ++=∠∠∠,90P ∴=∠.19.解:答案例举如下:20.解:(1)树状图如下:第一次摸到的牌 第二次摸到的牌 A A B C D A C D B A C D C A C DDAEBPFDC(第18题)(第19题)列表如下:(2即:()()()()B B B C C B C C ,,,,,,,,故所求概率是41164=. 21.解:(1)补全频数分布直方图如图所示.(2)样本人数为150,则中位数为身高从低到高排列后第75个数据与第76个数据的平均数.由图可知,从低到高排列后第75个数据与第76个数据都在155.5cm ~160.5cm 这一个小组内,∴抽取的样本中,学生身高的中位数在155.5cm ~160.5cm 小组内. (3)样本中身高不低于161cm 的人数为2715648++=(人), 在样本中所占的比例为48815025=. ∴该地区身高不低于161cm 的八年级学生人数估计有8300096025⨯= (人). 22.解:画射线AD AE ,,分别交l 于点B C ,.过点A 作AF BC ⊥,垂足为点F AF ,交DE 于点H . DE BC ADE ABC DAE BAC ∴==∥,∠∠,∠∠. ADE ABC ∴△∽△.根据相似三角形对应高的比等于相似比的性质,可得AH DEAF BC=由题意,得60100035403503600DE HF BC ⨯===⨯= ,, .(第21题) cm150.5 160.5 170.5 (第22题)解法1:设AF x =,则40AH x =-,所以403550x x -=. 解得4001333x =≈,即133AF ≈. 解法2:设AH y =,则40AF y =+,所以354050y y =+.解得2802804013333y AF ==+,≈. 所以小华家到公路的距离约为133m .23.解:(1)找规律:2244120=⨯=-, 22124342=⨯=-, 22204564=⨯=-, 22284786=⨯=-, ……2220124503504502=⨯=- ,所以28和2012 都是神秘数.(2)()()()22222421k k k +-=+,因此由这两个连续偶数22k +和2k 构造的神秘数是4的倍数.(3)由(2)知,神秘数可以表示成()421k +,因为21k +是奇数,因此神秘数是4的倍数,但一定不是8的倍数.另一方面,设两个连续奇数为21n +和21n -,则()()2221218n n n +--=, 即两个连续奇数的平方差是8的倍数.因此,两个连续奇数的平方差不是神秘数.24.解:(1)3y x =+ (1P 60 (2)设C 和直线2l 相切时的一种情况如图甲所示,D 是切点,连接CD ,则CD PD ⊥.过点P 作CM 的垂线PG ,垂足为G ,则Rt Rt CDP PGC △≌△()30PCD CPG CP PC ===∠∠,,所以PG CD R ==.当点C 在射线PA 上,C 和直线2l 相切时,同理可证.取2R =时,11a R =+=,或()13a R =--=- (3)当C 和直线2l 不相离时,由(2)知,分两种情况讨论:①如图乙,当01a ≤≤时,2132S a a ⎤⎛=+=-+⎥ ⎢⎥⎝⎭⎣⎦,当3a ==⎝⎭时,(满足1a ≤),S 有最大值.此时26S ==⎝⎝⎭最大值.②当30a -<时,显然C 和直线2l 相切即3a =-S 最大.此时133322S =--=⎣⎦最大值综合以上①和②,当3a =或3a =-时,存在S(第24题图甲)(第24题图乙)。
浙江省2006年初中毕业生学业考试数学试卷(湖州卷)请考生注意:1.全卷分卷Ⅰ和卷Ⅱ两部分,共8页.考试时间为100分钟.2.第四题为自选题,供考生选做,本题分数将计入本学科的总分,但考生所得总分最多为120分.3.卷Ⅰ中试题(第1-12小题)的答案填在答题卡上,写在试卷上无效. 温馨提示:请仔细审题,细心答题,相信你一定会有出色的表现!参考公式:二次函数2y ax bx c =++图像的顶点坐标是2424b ac b aa ⎛⎫-- ⎪⎝⎭,.卷Ⅰ一、选择题(本题有12小题,每小题3分,共36分)下面每小题给出的四个选项中,只有一个是正确的.请选出各题中一个最符合题意的选项,并在答题卡上将相应题次中对应字母的方框涂黑,不选、多选、错选均不给分. 1.2的倒数是( ) A.2-B.12C.12-D.12.反比例函数()0ky k x=≠的图像经过点()13-,,则k 的值为( ) A.3-B.3 C.13 D.13-3.数据24457,,,,的众数是( )A.2 B.4 C.5D.74.不等式组1030x x ->⎧⎨-<⎩的解集是( )A.1x > B.3x < C.13x <<D.无解5.下列图形中,不是..轴对称图形的是( )A. B. C. D.6.随着新农村建设的进一步加快,湖州市农村居民人均纯收入增长迅速.据统计,2005年本市农村居民人均纯收入比上一年增长14.2%.若2004年湖州市农村居民人均纯收入为a 元,则2005年本市农村居民人均纯收入可表示为( )A.14.2a 元 B.1.42a 元 C.1.142a 元 D.0.142a 元7.如图,在O 中,AB 是弦,OC AB ⊥,垂足为C ,若16AB =,6OC =,则O 的半径OA 等于( )A.16 B.12 C.10 D.88.如图是一个正方体纸盒的展开图,每个面内都标注了字母或数字,则面a 在展开前所对的面的数字是( ) A.2 B.3 C.4 D.5 9.下列各式从左到右的变形正确的是( )A.122122x yx yx yx y --=++B.0.220.22a b a ba b a b ++=++ C.11x x x y x y+--=-- D.a b a ba b a b+-=-+ 10.在拼图游戏中,从图1的四张纸片中,任取两张纸片,能拼成“小房子”(如图2)的概率等于( ) A.1B.12C.13D.2311.已知一次函数y kx b =+(k b ,是常数,0k ≠),x 与y 的部分对应值如下表所示:x2- 1- 0 1 2 3 y3 2 10 1- 2-那么不等式0kx b +<的解集是( ) A.0x < B.0x > C.1x <D.1x >12.已知二次函数()2111y x bx b =-+-≤≤,当b 从1-逐渐变化到1的过程中,它所对应的抛物线位置也随之变动.下列关于抛物线的移动方向的描述中,正确的是( ) A.先往左上方移动,再往左下方移动 B.先往左下方移动,再往左上方移动 C.先往右上方移动,再往右下方移动 D.先往右下方移动,再往右上方移动卷Ⅱ二、填空题(本题有6小题,每小题4分,共24分)(第7题)(第8题)6 3 54 2 (第10题 图1) (第10题 图2)13.请你写出一个..比0.1小的有理数.14.分解因式:322________a a a-+=.15.分式方程121x x=+的解是______x=.16.如图,O的半径为4cm,直线l OA⊥,垂足为O,则直线l沿射线OA方向平移cm时与O相切.17.为了测量校园内水平地面上一棵不可攀的树的高度,学校数学兴趣小组做了如下的探索:根据《科学》中光的反射定律,利用一面镜子和一根皮尺,设计如下图所示的测量方案:把一面很小的镜子放在离树底()8.4B米的点E处,然后沿着直线BE后退到点D,这时恰好在镜子里看到树梢顶点A,再用皮尺量得 2.4DE=米,观察者目高 1.6CD=米,则树()AB的高度约为米.(精确到0.1米)18.一青蛙在如图88⨯的正方形(每个小正方形的边长为1)网格的格点(小正方形的顶点)上跳跃,青蛙每次所跳的最远距离为5,青蛙从点A开始连续跳六次正好跳回到点A,则所构成的封闭图形的面积的最大值是.三、解答题(本题有6小题,共60分)19.(本小题8分)计算:()()201322-+-.20.(本小题8分)如图,在梯形ABCD中,60AD BC AB DC B DE AB==∥,,∠,∥.求证:(1)DE DC=;(2)DEC△是等边三角形.(第17题)(第18题)(第20题)(第16题)21.(本小题10分)初三某班对最近一次数学测验成绩(得分取整数)进行统计分析,将所有成绩由低到高分成五组,并绘制成如下图所示的频数分布直方图,请结合直方图提供的信息,回答下列问题:(1)该班共有名同学参加这次测验;(2)在该频数分布直方图中画出频数折线图;(3)这次测验成绩的中位数落在分数段内;(4)若这次测验中,成绩80分以上(不含80分)为优秀,那么该班这次数学测验的优秀率是多少?22.(本小题10分)已知Rt ABC△中,90C∠.(1)根据要求作图(尺规作图,保留作图痕迹,不写画法)①作BAC∠的平分线AD交BC于D;②作线段AD的垂直平分线交AB于E,交AC于F,垂足为H;③连结ED.(2)在(1)的基础上写出一对相似比不为1的相似三角形和一对全等三角形:△_______∽△________;△_______≌△________.并选择其中的一对加以证明.证明:成绩(分)50.560.570.580.590.5100.53691215人数2910145(第21题)(第22题)23.(本小题12分)为了鼓励小强勤做家务,培养他的劳动意识,小强每月的费用都是根据上月他的家务劳动时间所得奖励加上基本生活费从父母那里获取的.若设小强每月的家务劳动时间为x 小时,该月可得(即下月他可获得)的总费用为y (元),则y (元)和x (小时)之间的函数图像如图所示.(1)根据图像,请你写出小强每月的基本生活费为多少元;父母是如何奖励小强家务劳动的?(2)写出当020x ≤≤时,相对应的y 与x 之间的函数关系式; (3)若小强5月份希望有250元费用,则小强4月份需做家务多少时间? 24.(本小题12分)已知如图,矩形OABC 的长3OA =,宽1OC =,将AOC△沿AC 翻折得APC △.(1)填空:______PCB =∠度,P 点坐标为( , ); (2)若P A ,两点在抛物线243y x bx c =-++上,求b c ,的值,并说明点C 在此抛物线上;(3)在(2)中的抛物线CP 段(不包括C P ,点)上,是否存在一点M ,使得四边形MCAP 的面积最大?若存在,求出这个最大值及此时M 点的坐标;若不存在,请说明理由.(第23题)20 30150200 240 (小时)(元) (第24题)四、自选题(10分)请注意:本题为自选题,供考生选做.自选题得分将计入本学科总分,但总得分最多为120分.25.如图,已知平面直角坐标系,A B ,两点的坐标分别为()()2341A B --,,,.(1)若()0P p ,是x 轴上的一个动点,则当____p =时,PAB △的周长最短; (2)若()()030C a D a +,,,是x 轴上的两个动点,则当____a =时,四边形ABDC 的周长最短;(3)设M N ,分别为x 轴和y 轴上的动点,请问:是否存在这样的点()0M m ,,()0N n ,,使四边形ABMN 的周长最短?若存在,请求出____m =,_____n =(不必写解答过程);若不存在,请说明理由.(第25题)。
2006年杭州市各类高中招生考试数 学一、选择题(本题有15个小题,每小题3分,共45分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项的字母填在答题卷中相应的格子内。
1.11(2)()222⨯-+-⨯=A .-2B .0C .1D .22x 的取值必须满足A .x >32- B .x ≥32- C .x >32 D .x ≥323.12x y =⎧⎨=⎩是方程ax -y =3的解,则a 的取值是A .5B .-5C .2D .14.在下列图形中,既是中心对称图形又是轴对称图形的是A .等边三角形B .菱形C .等腰梯形D .平行四边形5.计算324()a a ÷的结果是A .1B .aC .2aD .a 106.已知△ABC 如右图,则下列4个三角形中,与△ABC 相似的是7.在某一场比赛前,教练预测:这场比赛我们队有50%的机会获胜,那么相比之下在下面4种情形的哪一种情形下,我们可以说这位教练说得比较准 A .该队真的赢了这场比赛 B .该队真的输了这场比赛 C .假如这场比赛可以重复进行10场而这个队赢了6场 D .假如这场比赛可以重复进行100场而这个队赢了51场 8.边长为4的正方形绕一条边旋转一周,所得几何体的侧面积等于 A .16 B .16π C .32π D .64π 9.已知y 是x 的一次函数,右表中列出了部分对应值,则m 等于 A .-1 B .0 C .12 D .2 10.如图,若圆心角∠ABC =100º,则圆周角∠ADC = A .80º B .100º C .130º D .180º11.已知a 与212a -互为倒数,则满足条件的实数a 的个数是A .0B .1C .2D .312.如图,△ABC 、△ADE 及△EFG 都是等边三角形,D 和G 分别为AC 和AE 的中点。
若AB=4时,则图形ABCDEFG 外围的周长是A .12B .15C .18D .2113.已知方程260x x q -+=可以配方成2()7x p -=的形式,那么262x x q -+=可以配方成下列的A .2()5x p -=B .2()9x p -=C .2(2)9x p -+=D .2(2)5x p -+=14.如图,把△PQR 沿着PQ 的方向平移到△P ′Q ′R ′的位置,它们重叠部分的面积是△PQR 面积的一半,若PQ则此三角形移动的距离PP ′是A .12 BC .1D1- 15.考虑下面4个命题: ①有一个角是100º的两个等腰三角形相似; ②斜边和周长对应相等的两个直角三角形全等; ③对角线互相垂直且相等的四边形是正方形; ④对角线相等的梯形是等腰梯形。
【2013版中考12年】浙江省杭州市2002-2013年中考数学试题分类解析专题4 图形的变换一、选择题1. (2002年浙江杭州3分)在时刻8∶30,时钟上的时针和分针之间的夹角为【】.(A)85°(B)75°(C)70°(D)60°【答案】B。
【考点】钟面角。
【分析】∵时针走一圈(3600)要12小时,即速度为003603600.5/121260==⨯分小分钟时钟;分针走一圈(3600)要1小时,即速度为000 3603606/160==分小分钟时钟。
∴时针从数字8开始到8点30分,走过的角度为30×0.50=150,即时针在8点30分的位置离开数字6的角度为300×2+15=750 (钟面360度被分成了12等份,每份是300)。
又∵分针从8点(数字12)开始到8点30分时,分针指向数字6,所以8点30分时,时钟上时针和分针夹角750。
故选B。
2. (2002年浙江杭州3分)为解决四个村庄用电问题,政府投资在已建电厂与这四个村庄之间架设输电线路.现已知这四个村庄及电厂之间的距离如图所示(距离单位:公里),则能把电力输送到这四个村庄的输电线路的最短总长度应该是【】.(A)19.5 (B)20.5 (C)21.5 (D)25.5【答案】B。
3. (2006年浙江杭州大纲卷3分)边长为4的正方形绕一条边旋转一周,所得几何体的侧面积等于【 】A .16B .16πC .32πD .64π【答案】C 。
【考点】圆柱的计算。
【分析】边长为4的正方形绕一条边旋转一周,所得几何体是圆柱体,根据圆柱的侧面积公式圆柱侧面积=底面周长×高可得:π×4×2×4=32π。
故选C 。
4. (2006年浙江杭州大纲卷3分)如图,把△PQR 沿着PQ 的方向平移到△P′Q′R′的位置,它们重叠部分的面积是△PQR 面积的一半,若PQ =2,则此三角形移动的距离PP′是【 】A .12B .22C .1D 21-【答案】D 。
2011年杭州市各类高中招生文化考试数 学考生须知:1。
本试卷满分120分,考试时间100分钟。
2. 答题前,在答题纸上写姓名和准考证号。
3. 必须在答题纸的对应答题位置上答题,写在其它地方无效。
答题方式详见答题纸上的说明。
4. 考试结束后,试题卷和答题纸一并上交。
试题卷一. 仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的。
注意可以用多种不同的方法来选取正确答案。
1. 下列各式中,正确的是A 3=-B . 3=-C 3=±D 3=±答案:B解析:A 3=;B 正确;C 3=;D 3=,故选B 。
2. 正方形纸片折一次,沿折痕剪开,能剪得的图形是A . 锐角三角形B 。
钝角三角形C 。
梯形D 。
菱形答案:C解析:折一次能得到直角三角形、长方形和梯形。
故选C 3. 63(210)⨯=A 。
9610⨯B 。
9810⨯C . 18210⨯D 。
18810⨯答案:D解析:6336318(210)210810⨯⨯=⨯=⨯4. 正多边形的一个内角为135°,则该多边形的边数为A 。
9B 。
8C 。
7D 。
4答案:B解析:设边数为n ,正多边形也有n 个内角,180(2)135n n -=,解得8n =,选B 。
5。
在平面直角坐标系xOy 中,以点(-3,4)为圆心,4为半径的圆A 。
与x 轴相交,与y 轴相切B . 与x 轴相离,与y 轴相交C . 与x 轴相切,与y 轴相交D . 与x 轴相切,与y 轴相离答案:C解析:因为点的横坐标34r -<=,所以与y 轴相交,点的纵坐标44r ==,所以与x 轴相切。
6。
如图,函数11y x =-和函数22y x=的图像相交于点M (2,m ),N (—1,n ),若12y y >,则x 的取值范围是A . 1x <-或02x <<B . 1x <-或2x >C 。
2006年杭州市各类高中招生考试
数 学
一、选择题(本题有15个小题,每小题3分,共45分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项的字母填在答题卷中相应的格子内。
1.
11
(2)()222
⨯-+-⨯= A .-2
B .0
C .1
D .2
2
x 的取值必须满足
A .x >3
2- B .x ≥32
-
C .x >
32
D .x ≥
32
3.1
2
x y =⎧⎨
=⎩是方程ax -y =3的解,则a 的取
值是
A .5
B .-5
C .2
D .1
4.在下列图形中,既是中心对称图形又是轴
对称图形的是 A .等边三角形 B .菱形
C .等腰梯形
D .平行四边形
5.计算324()a a ÷的结果是
A .1
B .a
C .2a
D .a 10
6.已知△ABC 如右图,则下列4个三角形中,与△ABC
相似的是
7.在某一场比赛前,教练预测:这场比赛我们队有50%的机会获胜,那么相比之下在
下面4种情形的哪一种情形下,我们可以说这位教练说得比较准
A.该队真的赢了这场比赛
B.该队真的输了这场比赛
C.假如这场比赛可以重复进行10场而这个队赢了6场
D.假如这场比赛可以重复进行100场而这个队赢了51场
8.边长为4的正方形绕一条边旋转一周,所得几何体的侧面积等
于
A.16 B.16π
C.32π
D.64π
9.已知y是x的一次函数,右表中列出了部分对应值,则m等于
A.-1 B.0 C.1
2 D.2
10.如图,若圆心角∠ABC=
100º,则圆周角∠ADC=
A.80º B.100º
C.130º D.180º
11.已知a与
2
1
2
a-
互为倒数,则满足条件的实数a的个数是
A.0 B.1 C.2 D.3
12.如图,△ABC、△ADE及△EFG都是等边三角形,D和G分别为
AC和AE的中点。
若
AB=4时,则图形
ABCDEFG外围的周长是
A.12 B.15 C.18 D.21
13.已知方程260
x x q
-+=可以配方成
2
()7
x p
-=的形式,那么
262
x x q
-+=可以配方成下列的A.2
()5
x p
-=
B.2
()9
x p
-=
C .2(2)9x p -+=
D .2(2)5x p -+=
14.如图,把△PQR 沿着PQ 的方向平移到△P ′
Q ′R ′的位置,它们重叠部分的面积是△PQR 面积的一半,若PQ
形移动的距离PP ′是
A .12
B
C .1
D
1
15.考虑下面4个命题:
①有一个角是100º的两个等腰三角形相似;
②斜边和周长对应相等的两个直角三角形全等;
③对角线互相垂直且相等的四边形是正方形;
④对角线相等的梯形是等腰梯形。
其中正确命题的序号是
A .①②③④
B .①③④
C .①②④
D .②③④
二、填空题(本题有5个小题,每小题4分,共20分)
16.因式分解:
22(21)x x +-=。
17.如图,北京奥运的5个吉祥物“福娃”
都已放置在展桌上,其中“欢欢”和
“贝贝”的位置已确定,则在另外三个位置中任取两个,其中有“迎迎”的概率为 。
18.在整式运算中,任意两个一次二项式相
乘后,将同类项合并得到的项数可以是 。
19.如图,在△ABC 中,AB =12,AC =5,∠
BAC =90º。
若点P 是BC 的中点,则线段AP 的长等于 ;若点P 在直线BC 上运动,设点B ,C 关于直线AP 的对
称点分别为B ′C ′,则线段B ′C ′的长等于
20.如图,已知正方形ABCD 的边长为2,△
BPC 是等边三角形,则△CDP 的面积是 ;△BPD 的面积是 。
三、解答题(本题有6个小题,共55分)解答应写出文字说明,证明过程或推演步骤。
21.(本小题满分7分)
在下面两个集合中各有一些实数,请你
分别从中选出2个有理数和2个无理数,再用“+,-,×,÷”中的3种符号将选出的4个数进行3次运算,使得运算的结果是一个正整数。
22.(本小题满分8分)
如图,在Rt △ABC 中,已知∠
ACB =90º,且CH ⊥AB ,HE ⊥BC ,HF ⊥AC 。
求证:(1)△HEF ≌△EHC ; (2)△HEF ∽△HBC
23.(本小题满分8分)
已知43x a +=
,27
4
x b -=,并且5
22
b a ≤
<。
请求出x 的取值范围,并将这个范围在数轴上表示出来。
24.(本小题满分10分)
如图,点P 在圆O 外,PA 与圆O 相切于A 点,OP 与圆周相交于C 点,点B 与点A 关于直线PO 对称,已知OA =4,PA
=
(1)∠POA的度数;(2)
弦AB的长;(3)阴影部分
的面积。
25.(本小题满分10分)
杭州休博会期间,嘉年华游乐场投资150
万元引进一项大型游乐设施。
若不计维
修保养费用,预计开放后每月可创收33
万元。
而该游乐设施开放后,从第1个
月到第x个月的维修保养费用累计
..
为y (万元),且y=ax2+bx;若将创收扣除
投资和维修保养费用称为游乐场的纯收
益g(万元),g也是关于x的解析式;
(1)若维修保养费用第1个月为2万元,第2个月为4万元。
求y关于x的解析
式;
(2)求纯收益g关于x的解析式;
(3)问设施开放几个月后,游乐场的纯
收益达到最大?几个月后,能收回投资?26.(本小题满分12分)
已知,直线1
3
y x
=-+与x轴,y轴分别交于点A、B,以线段AB为直角边
在第一象限内作等腰Rt△ABC,∠BAC=
90º。
且点P(1,a)为坐标系中的一个
动点。
(1)求三角形ABC的面积S△ABC;
(2)证明不论a取任何实数,三角形
BOP的面积是一个常数;
(3)要使得△ABC和△ABP的面积相等,
求实数a的值。