秋新人教版数学八上13.1《轴对称》(第二课时)word教案
- 格式:doc
- 大小:204.50 KB
- 文档页数:6
人教版数学八年级上册教学设计13.1《轴对称》一. 教材分析人教版数学八年级上册第13.1节《轴对称》是初中数学中的重要内容,主要让学生理解轴对称的概念,掌握轴对称的性质,并能够运用轴对称解决实际问题。
本节内容通过具体的实例,引导学生探究轴对称的性质,培养学生的观察能力、操作能力和解决问题的能力。
二. 学情分析学生在学习本节内容前,已经学习了平面几何的基本概念,对图形的性质有一定的了解。
但轴对称作为一个全新的概念,对学生来说还是有一定难度的。
因此,在教学过程中,需要结合学生的实际情况,从生活实例出发,引导学生理解轴对称的概念,逐步掌握轴对称的性质。
三. 教学目标1.了解轴对称的概念,能够识别生活中的轴对称现象。
2.掌握轴对称的性质,能够运用轴对称解决实际问题。
3.培养学生的观察能力、操作能力和解决问题的能力。
四. 教学重难点1.轴对称的概念和性质。
2.运用轴对称解决实际问题。
五. 教学方法1.采用情境教学法,从生活实例出发,引导学生发现轴对称现象。
2.采用探究教学法,让学生通过合作交流,自主发现轴对称的性质。
3.采用实践教学法,让学生动手操作,巩固对轴对称的理解。
4.采用问题教学法,引导学生运用轴对称解决实际问题。
六. 教学准备1.准备相关的多媒体教学课件,展示生活中的轴对称现象。
2.准备一些实际的例子,用于引导学生发现轴对称的性质。
3.准备一些练习题,用于巩固学生对轴对称的理解。
七. 教学过程1.导入(5分钟)通过展示一些生活中的轴对称现象,如剪纸、衣服的折叠等,引导学生发现并理解轴对称的概念。
2.呈现(10分钟)呈现一些实际的例子,让学生观察并探讨轴对称的性质。
如:轴对称图形的大小、形状、位置关系等。
3.操练(10分钟)让学生分组进行操作,通过实际动手,发现并验证轴对称的性质。
可以让学生剪出一些轴对称的图形,观察并总结其性质。
4.巩固(10分钟)让学生解决一些实际问题,运用轴对称的知识。
如:设计一个轴对称的图案,或解决一些与轴对称相关的几何问题。
八年级数学上册 13.1 轴对称 13.1.1 轴对称教学设计(新版)新人教版一. 教材分析《新人教版八年级数学上册》第13.1节介绍了轴对称的概念和性质。
本节内容是学生对几何图形变换的一次重要学习,它不仅巩固了学生对平面几何图形的认识,而且为后续学习其他几何变换打下基础。
教材通过丰富的实例,引导学生认识轴对称,探索轴对称的性质,提高学生的空间想象能力和抽象思维能力。
二. 学情分析八年级的学生已经掌握了基本的几何知识,具备一定的观察、分析和推理能力。
但轴对称概念较为抽象,学生可能难以理解。
因此,在教学过程中,教师应注重引导学生通过具体实例去发现和探索轴对称的性质,让学生在实践中掌握知识。
三. 教学目标1.让学生了解轴对称的概念,理解轴对称的性质。
2.培养学生观察、分析和推理的能力。
3.引导学生运用轴对称的性质解决实际问题。
四. 教学重难点1.轴对称的概念及性质。
2.如何运用轴对称的性质解决实际问题。
五. 教学方法采用问题驱动法、实例教学法和小组合作学习法。
通过生动有趣的实例,引导学生发现轴对称的性质,激发学生的学习兴趣。
在小组合作学习中,培养学生团队合作精神和沟通能力。
六. 教学准备1.准备与轴对称相关的实例图片和练习题。
2.准备课件,展示轴对称的性质和应用。
3.准备黑板,用于板书重要知识点。
七. 教学过程1. 导入(5分钟)利用生活中常见的实例,如剪纸、折纸等,引导学生发现这些实例中存在一种对称现象。
提问:“这种现象叫做什么?”让学生回答,引出本节课的主题——轴对称。
2. 呈现(10分钟)展示轴对称的定义和性质。
通过PPT呈现轴对称的图片,让学生观察并总结轴对称的性质。
同时,教师在黑板上画出轴对称的图形,标注出对称轴,让学生更直观地理解轴对称。
3. 操练(15分钟)让学生分组讨论,每组找出生活中的一个实例,运用轴对称的性质进行解释。
讨论结束后,每组选代表进行分享。
教师对每组的分享进行点评,指出优点和需要改进的地方。
第十三章轴对称13.1轴对称13.1.1 轴对称【知识与技能】(1)理解轴对称图形和两个图形关于某条直线对称的概念.(2)了解轴对称图形的对称轴,两个图形关于某条直线对称的对应点.(3)掌握线段垂直平分线的概念.(4)理解和掌握轴对称的性质.【过程与方法】通过已知图形画对称轴及画轴对称图形,让学生体会轴对称图形的性质和轴对称在实际生活中的应用.【情感态度与价值观】通过对轴对称图形和轴对称的认识,增强学生对对称美的认识,使学生感受数学带来的美.轴对称图形和两个图形关于某条直线对称的概念.轴对称图形和两个图形关于某条直线对称的区别和联系.多媒体课件、剪刀、长方形纸片教师引入:我们生活在一个充满对称的世界中,许多建筑物都设计成对称形,艺术作品的创作往往也从对称的角度考虑,自然界的许多动植物也按照对称形生长,中国的方块字中有些也具有对称性,(教师利用投影出示一些图片,如图13-1.1-1)……对称给我们带来很多美的感受!其中轴对称是对称中重要的一种,那么这节课我们就学习轴对称.(教师板书课题)探究1:轴对称教师提出问题:把一张长方形纸片对折,剪出一个图案,再打开,就剪出了美丽的窗花,你能剪出什么样的窗花呢?教师先把长方形纸片对折,用剪刀剪出一个图案,再打开这个图案,让学生欣赏,然后学生自己动手按要求剪纸.学生在观察、互相交流的基础上描述图形的特征,教师归纳轴对称图形及轴对称的概念,并板书概念:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫作轴对称图形,这条直线就是它的对称轴.这时,我们也说这个图形关于这条直线(成轴)对称.然后教师让学生举出一些轴对称图形的例子.教师出示例题:例1在如图13-1.1-2所示的图形中,轴对称图形的个数是(B).学生先独立思考,再口答哪些是轴对称图形,教师进行点评.然后教师让学生完成:教材P60练习第1题.(学生口答,并在书上画出对称轴,标注它们的一对对称点)探究2:两个图形成轴对称教师提出问题:在教材P59图13.1-3中,每对图形有什么共同特征?你们能类比前面的内容概括出它们的共同特征吗?学生观察思考,并互相交流,发现其共同特征——每一对图形沿着虚线折叠,左边的图形都能与右边的图形重合.教师进一步说明:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线(成轴)对称,这条直线叫作对称轴,折叠后重合的点是对应点,叫作对称点.然后教师让学生举出一些两个图形成轴对称的例子.教师提出问题:(1)将教材P58-59图13.1-2和图13.1-3进行比较,轴对称图形与两个图形成轴对称有什么区别?(2)如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形成轴对称吗?如果把两个成轴对称的图形看成一个整体,它是一个轴对称图形吗?学生独立思考后,进行交流,然后学生代表发言.教师根据学生回答的情况进行点评,最后师生共同归纳得出:把成轴对称的两个图形看成一个整体,它就是一个轴对称图形;把一个轴对称图形沿对称轴分成两个图形,这两个图形关于这条轴对称.接着,教师继续提出问题:(1)成轴对称的两个图形全等吗?全等的两个图形一定成轴对称吗?为什么?(2)在教材图13.1-3中,你能标出A,B,C的对称点吗?学生独立思考后,再展开讨论,教师参与学生的讨论,并及时指导.然后教师让学生完成:教材P60练习第2题.(学生口答,并在书上画出对称轴,标注它们的一对对称点)最后教师总结:探究3:垂直平分线教师出示问题:(1)观察教材P59图13.1-4,线段AA′,BB′,CC′与直线MN有什么关系?(2)在教材图13.1-5中,你能测量出线段AA′,BB′与直线l的夹角吗?它们与直线l垂直吗?点A与点A′到直线l的距离相等吗?点B与点B′到直线l的距离呢?教师提出问题,学生独立思考,然后小组交流,学生汇报交流结果.教师接着引导学生从观察三条线段与直线MN的位置关系,利用投影动画展示点A与点A′等重合的情形,并指出:经过线段中点并垂直于这条线段的直线,叫作这条线段的垂直平分线.最后师生共同归纳:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.类似地,轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线.1.概念:轴对称图形、两个图形关于某条直线对称、对称轴、对称点.2.找轴对称图形的对称点.3.垂直平分线.【正式作业】教材P64习题13.1第1-5题。
人教版数学八年级上册教学设计《13-1轴对称》(第2课时)一. 教材分析《13-1轴对称》(第2课时)是人教版数学八年级上册的教学内容,本节课的主要内容是让学生掌握轴对称的性质,并能够运用轴对称的知识解决实际问题。
教材通过丰富的图片和实例,引导学生探究轴对称的性质,培养学生的观察能力、推理能力和解决问题的能力。
二. 学情分析学生在七年级时已经学习了图形的对称性,对对称的概念有一定的了解。
但轴对称是一种特殊的对称形式,学生可能对其性质和运用还不够清晰。
因此,在教学过程中,教师需要通过实例和活动,帮助学生深化对轴对称性质的理解,并能够灵活运用。
三. 教学目标1.知识与技能目标:学生能够理解轴对称的性质,并能运用轴对称的知识解决实际问题。
2.过程与方法目标:通过观察、操作、推理等数学活动,培养学生的观察能力、推理能力和解决问题的能力。
3.情感态度与价值观目标:学生能够积极参与数学活动,体验数学的乐趣,增强对数学的学习兴趣。
四. 教学重难点1.重点:轴对称的性质。
2.难点:运用轴对称的知识解决实际问题。
五. 教学方法1.情境教学法:通过丰富的图片和实例,引导学生观察和探究轴对称的性质。
2.问题驱动法:通过提出问题,激发学生的思考,引导学生积极参与数学活动。
3.合作学习法:通过小组讨论和合作,培养学生的团队协作能力和解决问题的能力。
六. 教学准备1.教学PPT:准备相关的教学PPT,包括图片、实例和练习题。
2.教学素材:准备一些实际的图片和图形,用于引导学生观察和操作。
3.练习题:准备一些练习题,用于巩固学生对轴对称性质的理解。
七. 教学过程1.导入(5分钟)教师通过展示一些实际的图片,如剪纸、建筑设计等,引导学生观察和思考这些图片的共同特征。
学生可能会发现这些图片都具有对称性,教师进而引出轴对称的概念。
2.呈现(10分钟)教师通过PPT呈现轴对称的性质,如对称轴的定义、对称点的性质等。
同时,教师可以结合实际的例子,解释这些性质的含义和应用。
轴对称【学习目标】1.知识技能(1)了解两个图形成轴对称性的性质,了解轴对称图形的性质.(2)探究线段垂直平分线的性质.(3)进一步加强探索、参与讨论的能力和解决实际问题的能力。
2.解决问题(1)理解轴对称的性质.(2)会利用线段垂直平分线的定理和逆定理解决相关问题。
3.数学思考(1)通过学习会线段垂直平分线的定理和逆定理解决相关问题。
(2)让我们经历从实际问题中抽象出线段垂直平分线的数学模型的过程,体会垂直平分线的定理和逆定理源于实际.4.情感态度(1)通过对轴对称图形性质的探索,促使我们对轴对称有了更进一步的认识,活动与探究的过程可以更大程度地激发我们学习的主动性和积极性,•并使我们具有一些初步研究问题的能力【学习重难点】1.重点:(1)轴对称的性质.(2)线段垂直平分线的性质.2.难点:(1)体验轴对称的特征一.课前延伸:【知识梳理】一、基础知识填空(1)轴对称图形的对称轴是一条_____________。
(2)写出五个成轴对称的汉字:______(3)写出3个是轴对称图形的英文字母:_________________________二、预习思考如图,△ABC和△A′B′C′关于直线MN对称,点A′、B′、C′分别是点A、• B、C的对称点,猜想一下线段AA′、BB′、CC′与直线MN有什么关系?自主学习记录卡课内探究课堂探究1(问题探究,自主学习)线段的垂直平分线:____________________________________________.图形轴对称的性质:1.______________________________________________.2__________________________________________________MN垂直平分______.MN垂直平分______.MN垂直平分______.探究一:如下图.木条L与AB钉在一起,L垂直平分AB,P1,P2,P3,…是L上的点,•分别量一量点P1,P2,P3,…到A与B的距离,你有什么发现?思考方法1.用平面图将上述问题进行转化,先作出线段AB,过AB中点作AB的垂直平分线L,在L 上取P1、P2、P3…,连结AP1、AP2、BP1、BP2、CP1、CP2…2.作好图后,用直尺量出AP1、AP2、BP1、BP2、CP1、CP2…讨论发现什么样的规律.用我们已有的知识来证明这个结论吗?讨论给出证明.探究二:如下图.用一根木棒和一根弹性均匀的橡皮筋,做一个简易的“弓”,“箭”通过木棒中央的孔射出去,怎么才能保持出箭的方向与木棒垂直呢?为什么?动手操作:1.用平面图形将上述问题进行转化.作线段AB,取其中点P,过P作L,在L上取点P1、P2,连结AP1、AP2、BP1、BP2.会有以下两种可能.2.讨论:要使L与AB垂直,AP1、AP2、BP1、BP2应满足什么条件?三.、随堂练习1.在AE的垂直平分线上,AB、AC、CE的长度有什么关系?AB+BD与DE有什么关系?2.如下图,AB=AC,MB=MC.直线AM是线段BC的垂直平分线吗?四、课时小结:这节课我们主要学习了什么内容?有哪些收获呢?五、课后提升(1)已知:MN是线段AB的垂直平分线,下列说法中,正确的是____A. 与AB距离相等的点在MN上B.与点A和B距离相等的点在MN上C.与MN距离相等的点在AB上 D.AB垂直平分MN(2) 如图1,PA=PB,QA=QB,则直线PQ是线段AB的________________,(补全下列推理过程)证明:因为PA=PB(已知)所以P点在线段AB的中垂线上(____________________)因为QA=QB(已知)所以Q点在线段AB的中垂线上(____________________)所以_____________________________(两点确定一条直线)(3)如图2,△ABC中,BC=10,边BC的垂直平分线分别交AB、BC于点E、D,BE=6,求△BCE的周长。
13.1 轴对称(第2课时)教学内容线段的垂直平分线的性质.教学过程一、导入新课如下图,直线l垂直平分AB,P1,P2,P3,…是l上的点,分别量一量点P1,P2,P3,…到A与B的距离,你有什么发现?二、探究新知1.线段垂直平分线的性质让学生用直尺量出AP1、AP2、BP1、BP2、…讨论发现什么样的规律.会发现线段AP1=BP1,AP2=BP2,….学生如将线段AB沿直线l对折,线段AP1与BP1,AP2与BP2…是重合的.即线段AP1=BP1,AP2=BP2,….所以可得到结论:线段垂直平分线上的点与这条线段两个端点的距离相等.利用判定两个三角形全等的方法,也可以证明这个性质.如右图,直线l垂直于⊥AB,垂足为C,AC=CB,点P在l上,求证:PA=PB.证明:∵l⊥AB,∴∠PCA=∠PCB.又AC=CB,PC=PC,∴△PCA≌△PCB(SAS).∴ PA=PB.2.线段垂直平分线性质的反用反过来,如果PA=PB,那么点P 是否在线段AB的垂直平分线上呢?学生按照几何证明的一般步骤写出上题的过程,教师及时点评.已知:如上图,PA=PB.求证:点P在线段AB的垂直平分线上.证明:过点P作线段AB的垂线PC,垂足为C.则∠PCA=∠PCB=90°.在Rt△PCA和Rt△PCB中,∵PA=PB,PC=PC,∴Rt△PCA≌Rt△PCB(HL).∴AC=BC.又PC⊥AB,∴点P在线段AB的垂直平分线上.3.画线段的垂线让学生思考如何用尺规作图的方法经过直线外一点作已知直线的垂线,学生思考后,师及时点评.让学生阅读教材上用尺规过直线外一点作已知直线的垂线的作法.三、课堂小结1.记住线段垂直平分线的性质及反向应用.2.能证明线段垂直平分线的性质及反向定理.3.会用尺规作图的方法过一点作线段垂线的方法.四、课后作业习题13.1第6、9题.教学反思:。
第1课时轴对称(1)小结:对称现象无处不在,从自然景观到分子结构,从建筑物到艺术作品,•甚至日常生活用品,人们都可以找到对称的例子.现在同学们就从我们生活周围的事物中来找一些具有对称特征的例子.我们的黑板、课桌、椅子等.我们的身体,还有飞机、汽车、枫叶等都日常生活中常见的动物图片如:蝴蝶、蜻蜓、对称简笔画等,能发现它标出下列图形中的对称点观察下列各种图形,判断是不是轴对称图形,若是,请画出对称轴。
课本Р4 练习拓展升华这节课我们主要认识了轴对称图形,了解了轴对称图形及有关概念,第2课时轴对称(2)线段垂直平分线上的与这条与一条线段两个端点距离相等的点,在这条线段的其中对称轴就是任何一对对应点连线的垂直平分线,因此只要找到一对对应点,作出连接它们的线段的垂直平分线,就可以】第3课时轴对称(3)的垂直平分线.就是这个五角星的一条对称轴.用同样的方法,可以找出五条对称轴,所以五角星有五条对称轴.和两点A、B,在直线L上求作一点P,使根据对称图形的性质可知:这几个图形的对称轴分别有解:如图所示:如下图小河边有两个村庄,要在河对岸建一自来水厂向要符合条件:(1)若要使厂部到A、B的距离相等,则应选在哪儿?作出线段的垂直平分线.并据此得到作出一个轴对称图形一条对称轴的方法:找出轴对称图形的任意一对对应点,连结这对对应点,•直平分线,该垂直平分线就是这个轴对称图形的一条对称轴.第4课时作轴对称图形(1)第5课时作轴对称图形(2)对称.地有三条路可供选择,你会选择哪条路距离最短?你的理由的同旁,泵站应修在管道的什能发现什么规),八年级某班同学做游戏,在活动区域边放了一些球,则小明按怎样的路线跑,去捡哪个位置的球,才能最短的距离拿到球并跑到目的地A F E DC B A A第6课时用坐标表示轴对称-5)D(0.5,1)E(4,0))D’( )E’( )第7课时等腰三角形(1)第8课时等腰三角形(2)第9课时等边三角形(1)第10课时等边三角形(2)。
人教版八年级数学上册教学设计13.1 轴对称一. 教材分析人教版八年级数学上册第十三章第一节“轴对称”是学生在学习了平面几何基本概念、性质和判定之后的内容,是初中数学中的重要内容之一。
本节内容主要让学生了解轴对称的概念,掌握轴对称的性质,学会用轴对称的观点解决实际问题。
教材通过丰富的现实情境和探究活动,让学生经历从现实物体中抽象出轴对称图形的过程,培养学生的抽象思维能力。
二. 学情分析学生在学习本节内容前,已经掌握了平面几何的基本概念、性质和判定,具备了一定的逻辑思维和抽象思维能力。
但部分学生对抽象概念的理解和运用还有待提高,因此,在教学过程中,需要关注这部分学生的学习需求,通过具体实例和实际操作,帮助他们更好地理解和掌握轴对称的概念和性质。
三. 教学目标1.了解轴对称的概念,能识别生活中的轴对称现象。
2.掌握轴对称的性质,能运用轴对称的观点解决实际问题。
3.培养学生的抽象思维能力和观察能力。
四. 教学重难点1.轴对称的概念和性质。
2.运用轴对称的观点解决实际问题。
五. 教学方法1.情境教学法:通过现实生活中的实例,引导学生认识轴对称现象。
2.探究教学法:让学生通过小组合作、讨论,发现轴对称的性质。
3.案例教学法:通过典型例题,讲解轴对称在实际问题中的应用。
4.练习法:通过适量练习,巩固学生对轴对称的理解和运用。
六. 教学准备1.准备相关的现实生活中的轴对称实例图片。
2.准备轴对称的典型例题和练习题。
3.准备黑板、粉笔等教学工具。
七. 教学过程1.导入(5分钟)利用多媒体展示一些现实生活中的轴对称实例,如剪纸、衣服折叠等,引导学生发现这些实例都具有某种共同特征,从而引出轴对称的概念。
2.呈现(10分钟)展示轴对称的定义和性质,让学生通过观察和思考,发现轴对称的特点。
同时,引导学生用数学语言表述轴对称的概念和性质。
3.操练(10分钟)让学生分组讨论,每组找出生活中的一个轴对称实例,并解释其轴对称的性质。
第十三章轴对称第一课时13.1 轴对称(1)教学目标1.通过丰富的实例认识轴对称图形,并能找出轴对称图形的对称轴.2.了解轴对称图形、两个图形成轴对称这两个概念之间的联系和区别.3.经历丰富材料的学习过程,发展对图形的观察、分析、判断、归纳等能力.4.体验数学与生活的联系、发展审美观.教学重点:轴对称的有关概念;教学难点:轴对称图形与两个图形关于某条直线对称这两个概念之间的联系与区别.教学准备教师:收集有关轴对称的素材(包括图形、实物、图片等).学生:准备复写纸;收集有关窗花的素材,并要求进行剪纸----双喜字或其他窗花.教学设计作品展示,交流体会1.作品展示:让部分学生展示课前的剪纸作品(可以将作品粘贴到黑板上);2.小组活动: (1)在窗花的制作过程中,你是如何进行剪纸的?为什么要这样?(2)这些窗花(图案)有什么共同的特点?概念形成(一)轴对称图形1.在学生充分交流的基础上,教师提出“轴对称图形”的概念,并让学生尝试给它下定义,通过逐步地修正形成“轴对称图形”的定义,同时给出“对称轴”.2.结合教科书第118页图14.1-1进一步分析轴对称图形的特点,以及对称轴的位置.3.学生举例:试举几个在现实生活中你所见到的轴对称例子.4.概念应用:(1)教科书第119页练习;(2)补充:判断下面的图形是不是轴对称图形?并简要说明理由.(二)两个图形关于某条直线对称对于第二个概念的建立,分两个步骤进行:先观察图形,再进行画图.其目的是突出两个图形和这两个图形之间的关系,在这个基础上再给出定义,比较合理.1.观察教科书第119页中的图14.1-3,思考:图中的每对图形有什么共同的特点?2.操作:取一张薄纸,先对折,然后中间夹一张复写纸,再在纸上任意画一个图案,取出复写纸后你发现两层纸上的图案有什么关系?3.两个图形成轴对称的定义.如下图,图形F与图形F'就是关于直线l对称,点A与点A'是对称的.4.举例:你能举出一些生活中两个图形成轴对称的例子吗?5.练习:教科书第120页.辨析概念分组讨论:轴对称图形和两个图形成轴对称这两个概念之间的联系和区别.讨论后可列表比较如下:轴对称图形两个图形成轴对称区别一个图形两个图形联系1.沿着某条直线对折后,直线两旁的部分都能够互相重合(即直线两旁的两部分全等)2.都有对称轴(至少一条)3.如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形关于这条直线对称;如果把两个成轴对称的图形看成一个图形,那么这个图形就是轴对称图形实践和应用1.下列图形是部分汽车的标志,哪些是轴对称图形?奔驰宝马大众奥迪3.下图中的两个图形是否成轴对称?如果是,请找出它的对称轴.归纳小结通过本节课的学习,你有什么收获?布置作业教科书第60页第1、2题,第65页第6题.教学后记: 1.本课努力体现数学与生活的联系,让学生能感受到数学就在我们身边.同时,学生在这些图案的认识过程中学习新知,应用新知,激发他们学习数学的兴趣.2.处理好概念教学与能力培养的关系.本课先让学生收集图案,然后在学生有了感性认识的基础上提出有关的概念,再让学生把概念运用到实际问题情景中,这样的设计过程有利于学生对数学概念的真正理解,也有利于学生学习能力的提高.第二课时13.1 轴对称(2)教学目标①探索并理解对应点所连的线段被对称轴垂直平分的性质.②探索并理解线段垂直平分线的两个性质.③通过观察、实验、猜测、验证与交流等数学活动,初步形成数学学习的方法.④在数学学习的活动中,养成良好的思维品质.教学重点:图形轴对称的性质和线段垂直平分线的性质.教学难点:由线段垂直平分线的两个性质得出的“点的集合”的描述.教学准备木棒、橡皮筋教学设计提出问题1.下面的图形是轴对称图形吗?如果是,请说出它的对称轴.2.如果两个图形成轴对称,那么这两个图形有什么关系?(如下图,△ABC和△A'B'C'关于直线MN对称)图53.如图,△ABC 和△A'B'C'关于直线MN 对称,点A'、B'、C'分别是点A 、B 、C 的对称点,线段AA'、BB'、CC'与直线MN 有什么关系?实验探究1.折一折.要解决问题3,我们可以从最简单的一个点开始:先将一张纸对折,用圆规在纸上穿一个孔,然后再把纸展开,记两个孔的位置为点A 和点A',折痕为直线MN(如图3).显然,此时点A 和点A'关于直线MN 对称.连结点A ,A',交直线MN 于点P . 2.说一说.观察图形,线段AA'与直线MN 有怎样的位置关系?你能说明理由吗?类似地,点B 与点B',点C 与点C'是否也有同样的关系?你能用语言归纳上述发现的规律吗?注:在这个基础上,教师给出垂直平分线的概念,然后把上述规律概括成图形轴对称的性质()3.想一想.上述性质是对两个成轴对称的图形来说的,如果是一个轴对称图形,那么它的对应点的连线与对称轴之间是否也与同样的关系呢? (结合教科书第121页的图14.1-5让学生说明)从而得出:类似地,轴对称图形的对称轴,是任何一对对应点连线的垂直平分线. 合作探究探究一:教科书第121页的“探究”.学生先思考教科书上的问题,然后让学生以线段代替木条进行画图探究.任意画一条线段AB ,再画出它的垂直平分线MN ,在MN上任意取点P1,P2,P3(如图4),分别量一量点P1,P2,P3到A与B 的距离,你有什么发现?你能说明理由吗?请与同伴交流.处理方式:要求学生在独立尝试、独立思考的基础上进行合作交流,然后小组汇报.学生可以量一量、折一折,也可以运用第十三章的知识证明三角形全等.在学生充分讨论的基础上归纳出:线段垂直平分线上的点与这条线段两个端点的距离相等.想一想:如图5,我们在教科书第99页的练习1中,应用三角形全等的知识说明了CB=CB ,你能运用今天所学的知识给出解释吗?问题:反过来,如果PA=PB ,那么点P 是否在线段AB 的垂直平分线上?图3 图4 图6探究二:如图6,PA=PB,取线段AB的中点O,连结PO,PO与AB有怎样的位置关系?从而得出:与一条线段两个端点距离相等的点在这条线段的垂直平分线上.归纳结论:见教科书第122页的最后一段话.3.练习:教科书第123页.小结提高1.本节课你学到了什么? 2.轴对称图形的性质与线段垂直平分线的性质之间的联系;在解决问题的过程中所看到的新旧知识之间的联系作业布置:教科书第,第60页第5、9题.教学后记:“实践探究、合作探究、折一折、说一说、想一想”,充分体现了新课程所倡导的理念,此外本课非常注意知识的前后联系.如在复习轴对称概念的基础上探究轴对称的性质,轴对称的性质与全等三角形联系,用本课的知识去解释前面的问题等等.同时还注重知识的应用,因此,学生学起来兴致很高。
轴对称
(新授课)
【理论支持】
义务教育阶段的数学课程应突出体现基础性、普及性和发展性,使数学教育面向全体。
《数学课程标准》指出:对学生数学学习的评价,既要关注学生学习的结果,更要关注学生在学习过程中的变化和发展;既要关注学生数学学习的水平,更要关注他们在数学实践活动中所表现出来的情感和态度
本节课研究的内容“轴对称”是以后学习等腰三角形的基础。
因此,让学生正确而深刻地理解轴对称是学好全章的关键所在。
从设置情景提出问题,到动手操作,交流,直至归纳得出结论,整个过程学生不仅得到了垂直平分线的性质,更重要得是经历了知识的形成过程,体会了一种分析问题的方法,积累了数学活动经验,这将有利于学生更好的理解数学,应用数学。
难点:垂直平分线性质的探索过程,特别是创设出问题后,学生面对开放性问题,要做出全面、正确得分析,并对各种情况进行讨论,对初二学生有一定的难度。
教学对象分析:
根据初二学生年龄、生理及心理特征,还不具备独立系统地推理论证几何问题的能力,思维受到一定的局限,考虑问题不够全面,因此要充分发挥教师的主导作用,适时点拨、引导,尽可能调动所有学生的积极性、主动性参与到合作探讨中来,使学生在与他人的合作交流中获取新知,并使个性思维得以发展。
充分利用教科书提供的素材和活动,鼓励学生经历观察、操作、推理、想象等活动,发展学生的空间观念,体会分析问题、解决问题的方法,积累数学活动经验。
培养学生有条理的思考,表达和交流的能力,并且在以直观操作的基础上,将直观与简单推理相结合,注意学生推理意识的建立和对推理过程的理解,能运用自己的方式有条理的表达推理过程。
【教学目标】
【教学重难点】
1. 重点:(1)轴对称的性质.
(2)线段垂直平分线的性质.
2. 难点:(1)体验轴对称的特征.
【课时安排】
一课时
【教学设计】
课前延伸
一、基础知识填空及答案
(1)轴对称图形的对称轴是一条_____________。
(2)写出五个成轴对称的汉字:______
(3)写出3个是轴对称图形的英文字母:_________________________
〖答案〗(1)直线 (2)例如日、中等。
(3)A、E等。
〖设计说明〗复习旧知,让学生进一步的了解和掌握是轴对称图形和成轴对称图形的区别。
通过具体实例来分析,学生更容易掌握。
二、预习思考题及答案
如图,△ABC和△A′B′C′关于直线MN对称,点A′、B′、C′分别是点A、•B、C的对称点,猜想一下线段AA′、BB′、CC′与直线MN 有什么关系?
〖答案〗:垂直平分
〖设计说明〗让学生加深轴对称的性质并发展空间观察学生通过观察,主动思考,认识两个图形关于某直线对称的本质特征,鼓励学生善于观察,勇于发现,
敢于发表,培养合作意识。
课内探究
一、导入新课:
1.创设情境,引入新课
上节课我们共同探讨了轴对称图形,知道现实生活中由于有轴对称图形,而使得世
界非常美丽.那么大家想一想,什么样的图形是轴对称图
形呢?
〖设计说明〗复习旧知。
鼓励学生积极的投入到活动中,
并留给学生足够的独立思考和自主探索的
2.揭示课题,整理概念,板书
请同学们观察图中一些点所连线段与对称轴的关系
学生先讨论,猜想后论证。
3.教师指导得出答案
线段的垂直平分线:经过线段中点并且垂直于这条线段的直线。
这样,我们就得到图形轴对称的性质:
如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
MN 垂直平分______.
MN 垂直平分______.
MN 垂直平分______.
二 、 [探究1]
如下图.木条L 与AB 钉在一起,L 垂直平分AB ,P 1,P 2,P 3,…是L 上的点,•分别量一量点P 1,P 2,P 3,…到A 与B 的距离,你有什么发现?
探究结果:
线段垂直平分线上的点与这条线段两个端点的距离相等.即AP 1=BP 1,AP 2=BP 2,…
学生活动:
1.学生用平面图将上述问题进行转化,先作出线段AB ,过AB 中点作 AB 的垂直平分线
L ,在L 上取P 1、P 2、P 3…,连结AP 1、AP 2、BP 1、BP 2、CP 1、CP 2…
2.作好图后,用直尺量出AP 1、AP 2、BP 1、BP 2、CP 1、CP 2…讨论发现什么样的结论?.
用我们已有的知识来证明这个结论吗?
学生讨论给出证明.
证法一:利用判定两个三角形全等.
如下图,在△APC 和△BPC 中,
PC PC PCA PCB Rt AC BC =⎧⎪∠=∠=∠⎨⎪=⎩
⇒ △APC ≌△BPC ⇒ PA=PB .
证法二:利用轴对称性质.
由于点C 是线段AB 的中点,将线段AB 沿直线L 对折,线段PA 与PB 是重合的,•因
此它们也是相等的.
〖设计说明〗探索线段垂直平分线的性质,培养学生认真探究、积极思考的能力通过
举例,独立练习,进一步认识两个图形成轴对称的本质。
带着探究1的结论我们来看下面的问题.
[探究2]
如下图.用一根木棒和一根弹性均匀的橡皮筋,做一个简易的“弓”,“箭”通过木棒中央的孔射出去,怎么才能保持出箭的方向与木棒垂直呢?为什么?
学生活动:
1.学生用平面图形将上述问题进行转化.作线段AB,取其中点P,过P作L,在L上取点P1、P2,连结AP1、AP2、BP1、BP2.会有以下两种可能.
2.讨论:要使L与AB垂直,AP1、AP2、BP1、BP2应满足什么条件?
我们探究可以得到:
与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
三、随堂练习
1.在AE.BC的垂直平分线上,AB、AC、CE的长度有什么关系?AB+BD与DE有什么关系?
〖点拨方法〗通过垂直平分线的定理来证明
答:AB=AC=CE.理由:线段垂直平分线上的点到线段两端点距离相等.AB+BD=DE.•因为AB=CE,BD=DC,所以AB+BD=DC+CE,即AB+BD=DE.
2.如下图,AB=AC,MB=MC.直线AM是线段BC的垂直平分线吗?
答:是.因为到线段两端点距离相等的点在线段的垂直平分线上,所以A、M•都在BC 的垂直平分线上,所以直线AM是线段BC的垂直平分线.〖点拨方法〗通过垂直平分线的定理来证明。
〖设计说明〗这节课通过探索轴对称图形对称性的过程,•了解了线段的垂直平分线的有关性质,同学们应灵活运用这些性质来解决问题.
四、课时小结
这节课我们主要学习了什么内容?有哪些收获呢?
〖设计说明〗让学生在互相交流的活动中,通过总结与归纳,更加清楚地理解轴对称的相关知识。
一方面巩固本节知识,另一方面再次感受生活中轴对称图形的广
泛应用价值和文化价值,用对称美支创造生活美。
五、课后提升
1.已知:MN是线段AB的垂直平分线,下列说法中,正确的是____
A.与AB距离相等的点在MN上
B.与点A和B距离相等的点在MN上
C.与MN距离相等的点在AB上 D.AB垂直平分MN
2.如图,PA=PB,QA=QB,则直线PQ是线段AB的________________,(补全下列推理过程)
证明:因为PA=PB(已知)
所以P点在线段AB的中垂线上(_______________)
因为QA=QB(已知)
所以Q点在线段AB的中垂线上(____________)
所以________________________(两点确定一条直线)
3.如图,△ABC中,BC=10,边BC的垂直平分线分别交AB、BC于点E、D,BE=6,求△
BCE的周长。
〖设计说明〗当堂训练,当堂反馈的这一环节的实施不但使学生对所学的新知识得到
及时巩固和提升,同时又使得还存在模糊认识的学生得到进一步澄清,
这就让学生在学习新知识的第一时间得到最清晰的认识,这正是高效的
价值所在.
六、课后作业
课本第37页练习5
〖设计说明〗通过课后作业,教师及时了解学生对本节知识的掌握情况,并可以对学有余力的学生加以启发,引导他们探索其他的解法,从而为下一节课的内容
进行铺垫。