光合碳同化
- 格式:ppt
- 大小:6.25 MB
- 文档页数:25
关于光合作用的碳同化的基本内容CO2同化(CO2assimilation)是光合作用过程中的一个重要方面。
碳同化是通过和所推动的一系列CO2同化过程,把CO2变成糖类等有机物质。
高等植物固定CO2的生化途径有3条:卡尔文循环、C4途径和景天酸代谢途径。
其中以卡尔文循环为最基本的途径,同时,也只有这条途径才具备合成淀粉等产物的能力;其他两条途径不普遍(特别是景天酸代谢途径),而且只能起固定、运转CO2的作用,不能形成淀粉等产物。
1. 卡尔文循环— C3途径卡尔文循环是所有植物光合作用碳同化的基本途径,大致可分为3个阶段,即羧化阶段、还原阶段和更新阶段。
1)羧化阶段:CO2必须经过羧化阶段,固定成羧酸,然后被还原。
核酮糖 -1,5 -二磷酸(RuBP)是CO2的接受体,在核酮糖 -1,5 -二磷酸羧化酶/加氧酶(Rubisco)作用下,和CO2形成中间产物,后者再与1分子H2O反应,形成2分子的甘油酸 -3 -磷酸(PGA),这就是CO2羧化阶段。
2)还原阶段:甘油酸 -3 -磷酸被ATP磷酸化,在甘油酸 -3 -磷酸激酶催化下,形成甘油酸 -1,3 -二磷酸(DPGA),然后在甘油醛 -3 -磷酸脱氢酶作用下被NADPH + H+还原,形成甘油醛-3磷酸(PGAld)。
3)更新阶段:更新阶段是PGAld进过一系列的转变,再形成RuBP的过程,也就是RuBP的再生阶段。
2. C4途径在前人研究的基础上,Hatch和Slack(1966)发现甘蔗和玉米等的CO2固定最初的稳定产物是四碳二羧酸化合物(苹果酸和天冬氨酸),故称为四碳二羧酸途径(C4 -dicarboxylicacidpathway),简称C4途径,亦称为Hatch-Slack途径。
具有这种碳同化途径的植物称为C4植物(C4plant)。
C4途径包括羧化、转变、脱羧与还原、再生四个步骤。
1)羧化:C4途径的CO2受体是叶肉细胞质中的PEP(磷酸烯醇式丙酮酸),在烯醇丙酮磷酸羧激酶(PEPC)催化下,固定HCO3-(CO2溶解于水),生成草酰乙酸(OAA)。
植物利用光反应中形成的NADPH和ATP将CO2转化成稳定的碳水化合物的过程,称为CO2同化(CO2 assimilation)或碳同化。
根据碳同化过程中最初产物所含碳原子的数目以及碳代谢的特点,将碳同化途径分为三类:C3途径(C3 pathway)、C4途径(C4 pathway)和CAM(景天科酸代谢,Crassulacean acid metabolism)途径。
一、C3途径糖和淀粉等碳水化合物是光合作用的产物,这在100多年前就知道了,但其中的反应步骤和中间产物用一般的化学方法是难以测定的。
因为植物体内原本就有很多种含碳化合物,无法辨认哪些是光合作用当时制造的,哪些是原来就有的。
况且光合中间产物量很少,转化极快,难以捕捉。
1946年,美国加州大学放射化学实验室的卡尔文(M.Calvin)和本森(A.Benson)等人采用了两项新技术:(1)14C同位素标记与测定技术(可排除原先存在于细胞里的物质干扰,凡被14C标记的物质都是处理后产生的);(2)双向纸层析技术(能把光合产物分开)。
选用小球藻等单细胞的藻类作材料,藻类不仅在生化性质上与高等植物类似,且易于在均一条件下培养,还可在试验所要求的时间内快速地杀死。
经过10多年周密的研究,卡尔文等人终于探明了光合作用中从CO2到蔗糖的一系列反应步骤,推导出一个光合碳同化的循环途径,这条途径被称为卡尔文循环或卡尔文 本森循环(图4-17)。
由于这条途径中CO2固定后形成的最初产物PGA为三碳化合物,所以也叫做C3途径或C3光合碳还原循环(C3photosynthetic carbon reduction cycle, C3PCR 循环),并把只具有C3途径的植物称为C3植物(C3plant)。
此项研究的主持人卡尔文获得了1961年诺贝尔化学奖。
图4-17 Calvin-Benson 循环(光合碳还原循环) (一)C3途径的反应过程C3途径是光合碳代谢中最基本的循环,是所有放氧光合生物所共有的同化CO2的途径。
光合作用中的碳的同化
光合作用中,植物通过吸收光能,将二氧化碳和水转化为有机物质,同时释放出氧气。
这个过程中,碳的同化是其中一个关键步骤。
碳同化是指将二氧化碳转化为有机物的过程。
在光合作用中,碳同化分为两个阶段:固定CO2和还原CO2。
固定CO2的过程发生在叶绿体的叶绿体基质中,主要由RuBP羧化酶催化,将CO2和RuBP(核酮糖-1,5-二磷酸)结合形成糖酮磷酸分子。
这个过程也被称为Calvin循环。
还原CO2的过程发生在叶绿体基质和叶绿体膜系统的光合体中。
在这个过程中,糖酮磷酸分子被NADPH和ATP还原为三碳糖分子,并最终合成葡萄糖等有机物。
总的来说,碳同化是光合作用中非常重要的步骤,它使植物能够将无机物质转化为有机物质,为植物的生长和发育提供能量和物质基础。
光合碳同化途径
光合碳同化途径主要包含三种类型,即C3途径、C4途径和CAM 途径。
C3途径(也称为卡尔文循环)是最基本的碳固定途径,其过程包括羧化、还原和更新三个阶段。
在羧化阶段,CO2的受体是RuBP,它通过RuBP羧化酶将CO2转化为PGA(磷酸甘油酸)。
在还原阶段,消耗同化力将碳固定为糖类。
在更新阶段,形成新的RuBP。
C4途径包括羧化、转变、脱羧和再生四个阶段。
在羧化阶段,CO2的受体是PEP(磷酸烯醇式丙酮酸),它通过PEP羧化酶将CO2转化为OAA(氧乙酰丙酸)。
在转变阶段,OAA被转变为其他的有机酸,例如苹果酸或天冬氨酸。
在脱羧阶段,这些有机酸释放CO2并通过卡尔文循环被还原为糖类。
在再生阶段,PEP的再生完成。
CAM途径是一种在干旱和半干旱地区常见的光合作用类型,其特点是夜间吸收CO2并固定为有机酸,然后在白天脱羧释放CO2并通过卡尔文循环被还原为糖类。
以上信息仅供参考,如需获取更多详细信息,建议查阅植物学相关书籍或文献。
光合作用之碳同化途径碳同化又称为CO2固定,是指植物利用光反应中形成的ATP和NADPH,将CO2转化为有机物的过程。
二氧化碳同化是在叶绿体的基质中进行的,有许多种酶参与反应。
根据碳同化过程中最初产物所含碳原子的数目以及碳代谢的特点,高等植物的碳同化途径有三条,即C3途径、C4途径和CAM(景天酸代谢)途径。
一、C3途径碳以二氧化碳的形态进入并以糖的形态离开卡尔文循环。
在这个循环中CO2固定的最初产物是一种三碳化合物,故又称C3途径。
C3途径可分为三个阶段: 羧化、还原和二磷酸核酮糖的再生。
大部分植物会将吸收到的一分子CO2通过1,5-二磷酸核酮糖羧化酶的作用整合到一个五碳糖分子1,5-二磷酸核酮糖(RuBP)的第二位碳原子上。
此过程称为CO2的固定。
这一步反应的意义是,把原本并不活泼的二氧化碳分子活化,使之随后能被还原。
但这种六碳化合物极不稳定,会立刻分解为两分子的三碳化合物3-磷酸甘油酸。
后者在光反应中生成的NADPH+还原,此过程需要消耗ATP。
产物是3-磷酸丙糖。
后来经过一系列复杂的生化反应,一个碳原子将会被用于合成葡萄糖而离开循环。
剩下的五个碳原子经一些列变化,最后在生成一个1,5-二磷酸核酮糖,循环重新开始。
循环运行六次,生成一分子的葡萄糖。
二、C4途径CO2同化的最初产物不是C3途径中的三碳化合物(3-磷酸甘油酸),而是四碳化合物(苹果酸或天门冬氨酸)的植物,称C4植物。
C4植物主要是生活在干旱热带地区的植物,如玉米、甘蔗等。
在这种环境中,植物若长时间开放气孔吸收CO2,会导致水分通过蒸腾作用过快的流失。
所以,植物只能短时间开放气孔,CO2的摄入量必然少。
植物必须利用这少量的CO2进行光合作用,合成自身生长所需的物质。
C4植物的维管束周围有两种不同类型的细胞:靠近维管束的内层细胞称为鞘细胞,围绕着鞘细胞的外层细胞是叶肉细胞。
两种不同类型的细胞各具不同的叶绿体。
围绕着维管束鞘细胞周围的排列整齐致密的叶肉细胞中的叶绿体,具有发达的基粒,而维管束鞘细胞的叶绿体中却只有很少的基粒,而有很多大的卵形淀粉粒。
光合作用之碳同化途径碳同化又称为CO2固定,是指植物利用光反应中形成的ATP和NADPH,将CO2转化为有机物的过程。
二氧化碳同化是在叶绿体的基质中进行的,有许多种酶参与反应。
根据碳同化过程中最初产物所含碳原子的数目以及碳代谢的特点,高等植物的碳同化途径有三条,即C3途径、C4途径和CAM(景天酸代谢)途径。
一、C3途径碳以二氧化碳的形态进入并以糖的形态离开卡尔文循环。
在这个循环中CO2固定的最初产物是一种三碳化合物,故又称C3途径。
C3途径可分为三个阶段: 羧化、还原和二磷酸核酮糖的再生。
大部分植物会将吸收到的一分子CO2通过1,5-二磷酸核酮糖羧化酶的作用整合到一个五碳糖分子1,5-二磷酸核酮糖(RuBP)的第二位碳原子上。
此过程称为CO2的固定。
这一步反应的意义是,把原本并不活泼的二氧化碳分子活化,使之随后能被还原。
但这种六碳化合物极不稳定,会立刻分解为两分子的三碳化合物3-磷酸甘油酸。
后者在光反应中生成的NADPH+还原,此过程需要消耗ATP。
产物是3-磷酸丙糖。
后来经过一系列复杂的生化反应,一个碳原子将会被用于合成葡萄糖而离开循环。
剩下的五个碳原子经一些列变化,最后在生成一个1,5-二磷酸核酮糖,循环重新开始。
循环运行六次,生成一分子的葡萄糖。
二、C4途径CO2同化的最初产物不是C3途径中的三碳化合物(3-磷酸甘油酸),而是四碳化合物(苹果酸或天门冬氨酸)的植物,称C4植物。
C4植物主要是生活在干旱热带地区的植物,如玉米、甘蔗等。
在这种环境中,植物若长时间开放气孔吸收CO2,会导致水分通过蒸腾作用过快的流失。
所以,植物只能短时间开放气孔,CO2的摄入量必然少。
植物必须利用这少量的CO2进行光合作用,合成自身生长所需的物质。
C4植物的维管束周围有两种不同类型的细胞:靠近维管束的内层细胞称为鞘细胞,围绕着鞘细胞的外层细胞是叶肉细胞。
两种不同类型的细胞各具不同的叶绿体。
围绕着维管束鞘细胞周围的排列整齐致密的叶肉细胞中的叶绿体,具有发达的基粒,而维管束鞘细胞的叶绿体中却只有很少的基粒,而有很多大的卵形淀粉粒。