陈氏定理
- 格式:doc
- 大小:350.00 KB
- 文档页数:2
几个世纪以来,一些数学问题一直在困扰着我们,尽管近来超级计算机的出现让其中的一些难题取得了一些新进展,例如“三方求和”问题,但数学界仍然存在10大悬而未解的难题。
1.科拉兹猜想科拉兹猜想科拉兹猜想又称为奇偶归一猜想,是指对于每一个正整数,如果它是奇数,则对它乘3再加1,如果它是偶数,则对它除以2,如此循环,最终都能够得到1。
澳大利亚数学家陶哲轩本月初,澳大利亚数学家陶哲轩对科拉兹猜想有了一个接近解决方案,但这个猜想仍未完全解决。
科拉兹猜想称,任何正整数,经过上述计算步骤后,最终都会得到1,可能所有自然数都是如此。
目前已知数目少于1万的,计算最高的数是6171,共有261个步骤;数目少于10万的,步骤中最高的数是77031,共有350个步骤;数目少于100万的,步骤中最高的数是837799,共有524个步骤;数目少于1亿的,步骤中最高的数是63728127,共有949个步骤; 数目少于10亿的,步骤中最高的数是670617279,共有986个步骤。
但是这并不能够证明对于任何大小的数,这猜想都能成立。
2.哥德巴赫猜想将一个偶数用两个素数之和表示的方法,等于同一横线上,蓝线和红线的交点数。
哥德巴赫猜想是数学界中存在最久的未解问题之一。
它可以表述为:任一大于2的偶数,都可表示成两个素数之和。
例如,4 = 2 + 2;12 = 5 + 7;14 = 3 + 11 = 7 + 7。
也就是说,每个大于等于4的偶数都是哥德巴赫数,可表示成两个素数之和的数。
中国数学家陈景润哥德巴赫猜想在提出后的很长一段时间内毫无进展,直到二十世纪二十年代,数学家从组合数学与解析数论两方面分别提出了解决的思路,并在其后的半个世纪里取得了一系列突破。
目前最好的结果是中国数学家陈景润在1973年发表的陈氏定理(也被称为“1+2”)。
他用筛法证明了任何一个充分大的偶数都可以表示成两个素数的和或者一个素数及一个半素数(2次殆素数)的和。
3.孪生素数猜想这个猜想是最初发源于德国数学家希尔·伯特,他在1900年国际数学家大会上提出:存在无穷多个素数 p ,使得 p + 2 是素数。
格物致知的事例
孔子的故事
孔子“晚年喜易”,花了很大的精力,反反复复把《易》全部读了许多遍,又附注了许多内容,不知翻开来又卷回去地阅读了多少遍。
即使读书读到了这样的地步,孔子还谦虚地说:“假如让我多活几年,我就可以完全掌握《易》的文与质了。
”
陈景润的故事
陈景润是一个家喻户晓的数学家,在攻克歌德巴赫猜想方面作出了重大贡献,创立了著名的“陈氏定理”。
一天,沈元老师在数学课上给大家讲了一故事:“200年前有个法国人发现了一个有趣的现象:6=3+3,8=5+3,10=5+5,12=5+7,
28=5+23,100=11+89。
每个大于4的偶数都可以表示为两个奇数之和。
因为这个结论没有得到证明,所以还是一个猜想。
大数学欧拉说过:虽然我不能证明它,但是我确信这个结论是正确的。
它像一个美丽的光环,在我们不远的前方闪耀着眩目的光辉。
……”陈景润瞪着眼睛,听得入神。
从此,陈景润对这个奇妙问题产生了浓厚的兴趣。
课余时间他最爱到图书馆,不仅读了中学辅导书,这些大学的数理化课程教材他也如饥似渴地阅读。
因此获得了“书呆子”的雅号。
兴趣是第一老师。
正是这样的数学故事,引发了陈景润的兴趣,引发了他的勤奋,从而引发了一位伟大的数学家。
…。
1.华氏定理数学家华罗庚关于完整三角河的研究成果,被国际数学界称为“华氏定理”。
2.陈氏定理著名数学家陈景润1973年发表了关于歌德巴赫猜想研究中提出的问题,被誉为“陈氏定理”,是“筛选法的光辉顶点”。
3.柯氏定理数学家柯召关于卡兰特问题的不定方程的研究成果被国际数学界称为“柯氏定理”。
4.王氏定理数学家王戌堂在点集拓扑学研究方面成就卓越,他的有关定理被国际数学界称为“王氏定理”5苏氏锥面数学家苏步青在防射微分几何学方面的研究成果卓越,被国际数学界称为“苏氏锥面”。
6.吴氏方法数学家吴文俊关于几何定理机器证明的方法,实现了欧氏几何证明的机械化,举世公认为“吴氏方法”,另外还有以他命名的“吴氏公式”。
7.侯氏方法数学家侯振挺于1974年发表的概率论中关于马尔科夫过程的研究成果震惊国际数学界,被称为“侯氏定理”,他自己也荣获了国际概率论研究卓越成就奖“戴维逊奖”。
8.袁氏定理数学家袁亚湘在非线性规划方面的研究成果被国际数学界称为“袁氏引理”9.周氏猜测数学家周海中关于梅森素数分布的研究成果被国际上命名为“周氏猜测”10.周氏坐标数学家周炜良在代数几何方面的研究成果被国际数学界称为“周氏坐标”,另外还以他的名字命名的“周氏定理”和“周氏环”。
11.陈氏性类数学家陈省身关于示性类的研究成果被国际数学界称为“陈氏性类”12.王氏悖论数学家王浩关于数学逻辑的一个命题被国际数学界称为“王氏悖论”。
13.胡定理数学家胡国定关于数学信息论的研究成果被第四届国际概率统计会议誉为“胡定理”。
14 夏道行函数数学家夏道行研究的一类解析函数成果,被称为“夏道行函数”,另外,他在泛涵积分,和拟不变测度论方面的研究成果,被国际数学界称为“夏氏定理”或“夏不等式”。
15.江泽涵定理中国拓扑学泰斗江泽涵在拓扑学中的研究成果,被国际数学界称为“江泽涵定理”。
世界近代三大数学难题之一----哥德巴赫猜想哥德巴赫是德国一位中学教师,也是一位著名的数学家,生于1690年,1725年当选为俄国彼得堡科学院院士。
1742年,哥德巴赫在教学中发现,每个不小于6的偶数都是两个素数(只能被和它本身整除的数)之和。
如6=3+3,12=5+7等等。
1742年6月,哥德巴赫写信将这个问题告诉给意大利大数学家欧拉,并请他帮助作出证明。
欧拉在6月30日给他的回信中说,他相信这个猜想是正确的,但他不能证明。
叙述如此简单的问题,连欧拉这样首屈一指的数学家都不能证明,这个猜想便引起了许多数学家的注意。
他们对一个个偶数开始进行验算,一直算到3.3亿,都表明猜想是正确的。
但是对于更大的数目,猜想也应是对的,然而不能作出证明。
欧拉一直到死也没有对此作出证明。
从此,这道著名的数学难题引起了世界上成千上万数学家的注意。
200年过去了,没有人证明它。
哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的“明珠”。
到了20世纪20年代,才有人开始向它靠近。
1920年、挪威数学家布爵用一种古老的筛选法证明,得出了一个结论:每一个比大的偶数都可以表示为(99)。
这种缩小包围圈的办法很管用,科学家们于是从(9十9)开始,逐步减少每个数里所含质数因子的个数,直到最后使每个数里都是一个质数为止,这样就证明了“哥德巴赫”。
1924年,数学家拉德马哈尔证明了(7+7);1932年,数学家爱斯尔曼证明了(6+6);1938年,数学家布赫斯塔勃证明了(5十5),1940年,他又证明了(4+4);1956年,数学家维诺格拉多夫证明了(3+3);1958年,我国数学家王元证明了(2十3)。
随后,我国年轻的数学家陈景润也投入到对哥德巴赫猜想的研究之中,经过10年的刻苦钻研,终于在前人研究的基础上取得重大的突破,率先证明了(l十2)。
华罗庚证明的哥德巴赫猜想与三素数定理、陈氏定理的比童信平1742年6月7日,时任普鲁士派往俄罗斯的公使、数学业余爱好者哥德巴赫写信给欧拉。
同年的6月30日,欧拉回了信。
这二封信确立了下面的二个哥德巴赫猜想:哥德巴赫猜想(A): “大于 4 的偶数可以写成二个奇素数相加。
”又称为偶数哥德巴赫猜想。
简称“ 1+1”哥德巴赫猜想(B): “大于7 的奇数可以写成三个奇素数相加。
”又称为奇数哥德巴赫猜想。
20 世纪20 年代,哈代和李特伍德二人进一步提出了这二个猜想的表法个数( 答案数量)的猜想:公式(1) 是偶数哥德巴赫猜想的表法个数(答案数量)的计算公式,称为哈代-李特伍德猜想(A) 。
公式(2) 是奇数哥德巴赫猜想的表法个数计算公式,称为哈代-李特伍德猜想(B) 。
参照素数定理的证明过程,需要通过公式(1a) 、(2a) 来证明公式(1) 、(2) ,条件是找到公式中前面的那些参变量和后面的0(1)并证明,N??寸,0(1)?0。
p-1N1 [1][2](1) r(n) ,2c(n) 【其中,c(n)(=c(N))= ? (1- ) ? 。
】222(p-1)p-2lnN 3?p?N p|N 3?p?NN[1][2](1a) r(n)(= r(N)) ,2c(N)(1+ 0(1)) 【要求找到前面的参变量和0(1) 并证明,N??寸,0(1)?0。
】2221nNNNNl nInNNInIn N[3](1b) ①(N)= S(N)+ 0()=2 c(N) + 0() 1985 年,华罗庚指出,r(N)(=15/25/222(lnN)(lnN)lnNlnN[3]r(N))= ①(N)+①(N)+①(N)+ 0()。
其中,后面三项目可以忽略。
他得到公式(1b) 。
】N2123N [4](1c) N(1,2),0.67c(N) 这是陈景润证明的下界估计。
】2lnN211 n1[1](2)r( n), S (n)【其中,S (n)= ? (1 - ) ? (1+) 。
陈景润的名人故事陈景润的名人故事(精选20篇)古今中外,有很多著名的人,我们不仅要看到他们光鲜亮丽的一面,更要看到他们背后的故事。
下面是小编整理的陈景润的名人故事,欢迎阅览。
陈景润的名人故事篇1陈景润出生在贫苦的家庭,母亲生下他来就没有奶汁,靠向邻居借熬米汤活过来。
快上学的年龄,因为当邮局小职员的父亲的工资太少,供大哥上学,母亲还要背着不满两岁的小妹妹下地干活挣钱。
这样,平日照看3岁小弟弟的担子就落在小景润的肩上。
白天,他带领小弟弟坐在小板凳上,数手指头玩;晚上,哥哥放了学,就求哥哥给他讲算数。
稍大一点,挤出帮母亲下地干活的空隙,忙着练习写字和演算。
母亲见他学习心切,就把他送进了城关小学。
别看他长得瘦小,可十分用功,成绩很好,因而引起有钱人家子弟的嫉妒,对他拳打脚踢。
他打不过那些人,就淌着泪回家要求退学,妈妈抚摸着他的伤处说:“孩子,只怨我们没本事,家里穷才受人欺负。
你要好好学,争口气,长大有出息,那时他们就不敢欺负咱们了!”小景润擦干眼泪,又去做功课了。
此后,他再也没流过泪,把身心所受的痛苦,化为学习的动力,成绩一直拔尖,终于以全校第一名的成绩考入了三元县立初级中学。
在初中,他受到两位老师的特殊关注:一位是年近花甲的语文老师,原是位教授,他目睹日本人横行霸道,国民党却节节退让,感到痛心疾首,只可惜自己年老了,就把希望寄托于下一代身上。
他看到陈景润勤奋刻苦,年少有为,就经常把他叫到身边,讲述中国5000年文明史,激励他好好读书,肩负起拯救祖国的重任。
老师常常说得满眼催泪,陈景润也含泪表示,长大以后,一定报效祖国!另一位是不满30岁的数学教师,毕业于清华大学数学系,知识非常丰富。
陈景润最感兴趣的是数学课,一本课本,只用两个星期就学完了。
老师觉得这个学生不一般,就分外下力气,多给他讲,并进一步激发他的爱国热情,说:“一个国家,一个民族,要想强大,自然科学不发达是万万不行的,而数学又是自然科学的基础。
华罗庚证明的哥德巴赫猜想与三素数定理、陈氏定理的比较童信平1742年6月7日,时任普鲁士派往俄罗斯的公使、数学业余爱好者哥德巴赫写信给欧拉。
同年的6月30日,欧拉回了信。
这二封信确立了下面的二个哥德巴赫猜想:哥德巴赫猜想(A):“大于4的偶数可以写成二个奇素数相加。
”又称为偶数哥德巴赫猜想。
简称“1+1”。
哥德巴赫猜想(B):“大于7的奇数可以写成三个奇素数相加。
”又称为奇数哥德巴赫猜想。
20世纪20年代,哈代和李特伍德二人进一步提出了这二个猜想的表法个数(答案数量)的猜想:公式(1)是偶数哥德巴赫猜想的表法个数(答案数量)的计算公式,称为哈代-李特伍德猜想(A)。
公式(2)是奇数哥德巴赫猜想的表法个数计算公式,称为哈代-李特伍德猜想(B)。
参照素数定理的证明过程,需要通过公式(1a)、(2a)来证明公式(1)、(2),条件是找到公式中前面的那些参变量和后面的O(1)并证明,N??时,O(1)?0。
p-1N1 [1][2](1) r(n),2c(n)【其中,c(n)(=c(N))= ? (1- ) ? 。
】222(p-1)p-2lnN 3?p?N p|N 3?p?NN[1][2](1a) r(n)(= r(N)),2c(N)(1+ O(1))【要求找到前面的参变量和O(1)并证明,N??时,O(1)?0。
】 222lnNNNNlnlnNNlnlnN[3](1b) Ф(N)= S(N)+ O()=2 c(N) + O() 【1985年,华罗庚指出,r(N)(= 15/25/222(lnN)(lnN)lnNlnN[3]r(N))= Ф(N)+ Ф(N)+ Ф(N)+ O()。
其中,后面三项目可以忽略。
他得到公式(1b)。
】 N2123N [4](1c) N(1,2),0.67c(N) 【这是陈景润证明的下界估计。
】 2lnN211n1[1](2) r(n),δ(n)【其中,δ(n)= ? (1- ) ? (1+)。
以中国人姓名命名的数学成果(2) 从不同的方向看
10.柯氏定理:我国数学家柯召于20世纪50年代开始专攻“卡特兰问题”,于1963年发表了《关于不定方程x2-1=y》一文,其中的结论被人们誉为“柯氏定理”,另外他与数学家孙琦在数论方面的研究成果被称为“柯—孙猜测”.
11.王氏定理:西北大学教授王戍堂在点集拓扑研究方面成绩卓著,其中《关于序数方程》等三篇论文,引起日、美等国科学家的重视,他的有关定理被称为“王氏定理”.
12.陈氏定理:我国著名数学家陈景润,于1973年发表论文,把200多年来人们一直未能解决的“哥德巴赫猜想”的证明推进了一大步,现在国际上把陈景润的“1+2”称为“陈氏定理”.
13.侯氏定理:我国数学家侯振挺于1974年发表论文,在概率论的研究中提出了有极高应用价值的“Q过程惟一性准则的一个最小非负数解法”,震惊了国际数学界,被称为“侯氏定理”,他因此荣获了国际概率论研究卓越成就奖——“戴维逊奖”.
14.杨—张定理:从1965年到1977年,数学家杨乐与张广厚合作发表了有关函数论的重要论文近十篇,发现了“亏值”和“奇异方向”之间的联系,并完全解决了50年的悬案——奇异方向的分布问题,被国际数学界称为“杨—张定理”或“扬—张不等式”.。
难题”之一:P(多项式算法)问题对NP(非多项式算法)问题难题”之二:霍奇(Hodge)猜想难题”之三: 庞加莱(Poincare)猜想难题”之四:黎曼(Riemann)假设难题”之五:杨-米尔斯(Yang-Mills)存在性和质量缺口难题"之六:纳维叶-斯托克斯(Navier—Stokes)方程的存在性与光滑性难题"之七:贝赫(Birch)和斯维讷通-戴尔(Swinnerton—Dyer)猜想难题”之八:几何尺规作图问题难题”之九:哥德巴赫猜想难题"之十:四色猜想美国麻州的克雷(Clay)数学研究所于2000年5月24日在巴黎法兰西学院宣布了一件被媒体炒得火热的大事:对七个“千僖年数学难题”的每一个悬赏一百万美元.以下是这七个难题的简单介绍。
“千僖难题”之一:P(多项式算法)问题对NP(非多项式算法)问题在一个周六的晚上,你参加了一个盛大的晚会。
由于感到局促不安,你想知道这一大厅中是否有你已经认识的人.你的主人向你提议说,你一定认识那位正在甜点盘附近角落的女士罗丝。
不费一秒钟,你就能向那里扫视,并且发现你的主人是正确的.然而,如果没有这样的暗示,你就必须环顾整个大厅,一个个地审视每一个人,看是否有你认识的人。
生成问题的一个解通常比验证一个给定的解时间花费要多得多。
这是这种一般现象的一个例子。
与此类似的是,如果某人告诉你,数13,717,421可以写成两个较小的数的乘积,你可能不知道是否应该相信他,但是如果他告诉你它可以因子分解为3607乘上3803,那么你就可以用一个袖珍计算器容易验证这是对的.不管我们编写程序是否灵巧,判定一个答案是可以很快利用内部知识来验证,还是没有这样的提示而需要花费大量时间来求解,被看作逻辑和计算机科学中最突出的问题之一。
它是斯蒂文·考克(StephenCook)于1971年陈述的。
“千僖难题”之二:霍奇(Hodge)猜想二十世纪的数学家们发现了研究复杂对象的形状的强有力的办法。
世界近代三大数学难题之一————————————————————————————————作者:————————————————————————————————日期:世界近代三大数学难题之一。
哥德巴赫是德国一位中学教师,也是一位著名的数学家,生于1690年,172 5年当选为俄国彼得堡科学院院士。
1742年,哥德巴赫在教学中发现,每个不小于6的偶数都是两个素数(只能被和它本身整除的数)之和。
如6=3+3,12=5+7等等。
公元1742年6月7日哥德巴赫(Goldbach)写信给当时的大数学家欧拉(Euler),提出了以下的猜想:(a) 任何一个>=6之偶数,都可以表示成两个奇质数之和。
(b) 任何一个>=9之奇数,都可以表示成三个奇质数之和。
这就是着名的哥德巴赫猜想。
欧拉在6月30日给他的回信中说,他相信这个猜想是正确的,但他不能证明。
叙述如此简单的问题,连欧拉这样首屈一指的数学家都不能证明,这个猜想便引起了许多数学家的注意。
从费马提出这个猜想至今,许多数学家都不断努力想攻克它,但都没有成功。
当然曾经有人作了些具体的验证工作,例如: 6 = 3 + 3, 8 = 3 + 5, 10 = 5 + 5 = 3 + 7, 12 = 5 + 7, 14 = 7 + 7 = 3 + 11,16 = 5 + 11, 18 = 5 + 13, . . . . 等等。
有人对33×108以内且大过6之偶数一一进行验算,哥德巴赫猜想(a)都成立。
但验格的数学证明尚待数学家的努力。
从此,这道著名的数学难题引起了世界上成千上万数学家的注意。
200年过去了,没有人证明它。
哥德巴赫猜想由此成为数学皇冠上一颗可望不可及的"明珠"。
到了20世纪20年代,才有人开始向它靠近。
1920年、挪威数学家布爵用一种古老的筛选法证明,得出了一个结论:每一个比大的偶数都可以表示为(99)。
这种缩小包围圈的办法很管用,科学家们于是从(9十9)开始,逐步减少每个数里所含质数因子的个数,直到最后使每个数里都是一个质数为止,这样就证明了"哥德巴赫"。
陈氏定理
1966年,我国年轻的数学家陈景润,在经过多年潜心研究之后,成功地证明了"1+2",也就是"任何一个大偶数都可以表示成一个素数与另一个素因子不超过2个的数之和"。
这是迄今为止,这一研究领域最佳的成果,距摘取这颗"数学王冠上的明珠仅一步之遥,在世界数学界引起了轰动。
但这一小步却很难迈出。
“1+2”被誉为陈氏定理。
证明方法
哥德巴赫的问题可以推论出以下两个命题,只要证明以下两个命题,即证明了猜想:
(a) 任何一个>=6之偶数,都可以表示成两个奇质数之和。
(b) 任何一个>=9之奇数,都可以表示成三个奇质数之和。
这道著名的数学难题引起了世界上成千上万数学家的注意。
200年过去了,没有人证明它。
到了20世纪20年代,才有人开始向它靠近。
1920年,挪威数学家布爵用一种古老的筛选法证明,得出了一个结论:每一个比6大的偶数都可以表示为(9+9)。
这种缩小包围圈的办法很管用,科学家们于是从(9十9)开始,逐步减少每个数里所含质数因子的个数,直到最后使每个数里都是一个质数为止,这样就证明了“哥德巴赫猜想”。
陈景润证明的偶数哥猜公式内涵了下界大于一。
命r(N)为将偶数表为两个素数之和的表示个数,1978年,陈景润证明了:
r(N)≤《7.8∏{(p-1)/(p-2)}∏{1-1/{(p-1)^2}}{N/(LnN)^2}。
其中:第一个级数,参数的分子大于分母,得值为(大于一的分数)。
第二个级数的极限值为0.66...,其2倍数也大于一。
N/(lnN)约为N数包含的素数的个数:其中,(lnN)为N的自然对数,可转换为2{ln(√N)}。
由于N/(LnN)^2=(1/4){(√N)/Ln(√N)}^2~(1/4){π(√N)}^2. 其中的参数,依据素数定理;(√N)/Ln(√N)~π(√N)~N数的平方根数内素数个数. 陈景润证明的公式等效于{(大于一的数)·(N数的平方根数内素数个数的平方数/4)},只要偶数的平方根数内素数个数的平方数大于4,偶数哥猜就有大于一的解. 即:大于第2个素数的平方数的偶数,其偶数哥猜解数大于一。
命r(N)为将偶数表为两个素数之和的表示个数,数学家采用的求解公式:
r(N)≈2∏{(p-1)/(p-2)}∏{1-1/(p-1)^2}{N/(LnN)^2}。
已知:∏{(p-1)/(p-2)}≥1。
2∏{1-1/(p-1)^2}>1.32...。
N/(LnN)^2={[(√N)/Ln(√N)]^2}/4,[(√N)/Ln(√N)]≈偶数的平方根数内素数个数, 即:偶数大于内含2个素数的数的平方数时,偶数哥猜求解公式≈大于一的数的
连乘积,公式的解大于一。
数论书上介绍的哥德巴赫猜想求解公式,设r(N)为将偶数N表示为两个素数之和的表示法个数,有:r(N)≈2∏[(p-1)/(p-2)]∏[1-1/(P-1)^2]N/(lnN)^2,数学家已求出
2∏[(p-1)/(p-2)]∏[1-1/(P-1)^2]≥1.32。
数论书上介绍的素数个数求解方法,设π(N)为N内素数的个数,有两种求解公式:π(N)≈N/lnN。
π(N)≈N∏[(P-1)/P],知:1/lnN≈∏[(P-1)/P],P参数是不大于N的平方根数的素数,∏[f(P)]表示各个[P参数运算项]的连乘积。
N∏[(P-1)/P]=(√N)∏[(P-1)/P](√N)=(√N){(1/2)(2/3)(4/5)(6/7)(10/11)...[(P`-1)/P`][√N/1]}=(√N){( 2/2)(4/3)(6/5)(6/7)...[(√N)/P`]},得到的解大于√N。
由于:
(√N)∏[(p-1)/P]=(√N){(1/2)(2/3)(4/5)(6/7)(10/11)...[(P`-1)/P`]}={(2/2)(4/3)(6/5)(6/7)...[(√N)/P`]},得到的解大于一。
于是就确定了:N/(lnN)^2≈{(√N)∏[(P-1)/P]}的平方数,得到的解是比(大于一的数)还大的数。
数论书上介绍的哥德巴赫猜想求解公式的解是比(大于一的数)还大的数。
(公式(√N)∏[(P-1)/p]中的P的取值不是求N平方根数内的素数个数公式的p的取值,两公式差一个系数。
)
数学家采用的求解“将奇数表为三个素数之和的表示个数”的公式:命T(N)为奇数表为三个素数之和的表示个数, T(N)~(1/2)∏{1-1/(P-1)^2}∏{1+1/(P-1)^3}{(N^2)/(lnN)^3},前一
级数的参数是P整除N 。
后一级数的参数是P非整除N, 由
∏{{1+1/(P-1)^3}/{1-1/(P-1)^2}}=∏{1+[1/[(P-1)(P-2)]},原式转换条件,变换为下式:T(N)~(1/2)∏[1-1/(P-1)^2]∏{1+1/[(P-2)(P-1)]}{(N^2)/[(lnN)^3]}.前一级数参数成为全种类,已知趋近值(0.66..),后一级数只增不减。
公式等效于[(0.66..)/2](>1的分数)(N/LnN)(N数的平方根数内素数个数的平方数/4),它等效于(>0.33..)(N数内素数个数)(N数的平方根数内素数个数的平方数)/4, 得到了公式大于1的条件。
奇数大于9,公式解>(0.33*4)(2*2/4)>1,奇数的哥德巴赫猜想求解公式解大于一。