数学建模相关分析与回归分析
- 格式:ppt
- 大小:8.58 MB
- 文档页数:88
数学建模——线性回归分析实用精品教案一、教学内容本节课选自高中数学教材《数学建模》第四章“数据的拟合与回归”第二节“线性回归分析”。
详细内容包括:线性回归模型的建立,最小二乘法求解线性回归方程,线性回归方程的显著性检验,以及利用线性回归方程进行预测。
二、教学目标1. 理解线性回归分析的基本概念,掌握线性回归方程的建立方法。
2. 学会运用最小二乘法求解线性回归方程,并能解释线性回归方程的参数意义。
3. 能够对线性回归方程进行显著性检验,利用线性回归方程进行预测。
三、教学难点与重点教学难点:最小二乘法的推导和应用,线性回归方程的显著性检验。
教学重点:线性回归模型的建立,线性回归方程的求解及其应用。
四、教具与学具准备教具:多媒体课件,黑板,粉笔。
学具:计算器,草稿纸,直尺,铅笔。
五、教学过程1. 实践情景引入:展示一组关于身高和体重的数据,引导学生思考身高和体重之间的关系。
2. 例题讲解:(1)建立线性回归模型,引导学生根据散点图判断变量间的线性关系。
(2)利用最小二乘法求解线性回归方程,解释方程参数的意义。
(3)对线性回归方程进行显著性检验,判断方程的有效性。
3. 随堂练习:(1)给出另一组数据,让学生尝试建立线性回归模型并求解。
(2)对所求线性回归方程进行显著性检验,并利用方程进行预测。
六、板书设计1. 线性回归模型2. 最小二乘法3. 线性回归方程的显著性检验4. 线性回归方程的应用七、作业设计1. 作业题目:(1)根据给定的数据,建立线性回归模型,求解线性回归方程。
(2)对所求线性回归方程进行显著性检验,并利用方程预测某学生的体重。
2. 答案:(1)线性回归方程为:y = 0.8x + 50(2)显著性检验:F = 40.23,P < 0.01,说明线性回归方程具有显著性。
八、课后反思及拓展延伸1. 课后反思:本节课学生对线性回归分析的理解和应用能力得到了提升,但仍有个别学生对最小二乘法的推导和应用感到困难,需要在课后加强辅导。
现代统计学1.因子分析(Factor Analysis)因子分析的基本目的就是用少数几个因子去描述许多指标或因素之间的联系,即将相关比较密切的几个变量归在同一类中,每一类变量就成为一个因子(之所以称其为因子,是因为它是不可观测的,即不是具体的变量),以较少的几个因子反映原资料的大部分信息.运用这种研究技术,我们可以方便地找出影响消费者购买、消费以及满意度的主要因素是哪些,以及它们的影响力(权重)运用这种研究技术,我们还可以为市场细分做前期分析。
2.主成分分析主成分分析主要是作为一种探索性的技术,在分析者进行多元数据分析之前,用主成分分析来分析数据,让自己对数据有一个大致的了解是非常重要的.主成分分析一般很少单独使用:a,了解数据。
(screening the data),b,和cluster analysis一起使用,c,和判别分析一起使用,比如当变量很多,个案数不多,直接使用判别分析可能无解,这时候可以使用主成份发对变量简化。
(reduce dimensionality)d,在多元回归中,主成分分析可以帮助判断是否存在共线性(条件指数),还可以用来处理共线性。
主成分分析和因子分析的区别1、因子分析中是把变量表示成各因子的线性组合,而主成分分析中则是把主成分表示成个变量的线性组合。
2、主成分分析的重点在于解释个变量的总方差,而因子分析则把重点放在解释各变量之间的协方差。
3、主成分分析中不需要有假设(assumptions),因子分析则需要一些假设。
因子分析的假设包括:各个共同因子之间不相关,特殊因子(specific fact or)之间也不相关,共同因子和特殊因子之间也不相关.4、主成分分析中,当给定的协方差矩阵或者相关矩阵的特征值是唯一的时候,的主成分一般是独特的;而因子分析中因子不是独特的,可以旋转得到不同的因子。
5、在因子分析中,因子个数需要分析者指定(spss根据一定的条件自动设定,只要是特征值大于1的因子进入分析),而指定的因子数量不同而结果不同。
数学建模中的统计分析工具1. 比较——方差分析比较不同总体间均值有无显著差异.方差分析是处理试验数据的一种常用统计方法,其基本思想是:把指标数据的总变差(总离差平方和),分解为由所考察因素引起的变差(因素变差或组间离差平方和)和随机因素引起的变差(随机变差或组内离差平方和),然后通过比较这些变差来推断因素对指标影响是否显著.因为判定因素对指标影响是否显著时,是从指标的总变差入手,将之分解为由各因素引起的变差和随机波动引起的变差,所以称此类分析为方差分析.在方差分析中,影响指标的因素称为因子,因子的取值称为水平. 例如,考察学生性别对学习成绩的影响时,学习成绩是所考察的指标,性别是影响指标的因子,而性别的取值“男”和“女”是性别因子的水平.实质上,此处是要比较男生和女生学习成绩有无显著差异,属两组比较问题,是方差分析的特殊情况,一般的方差分析研究的是多组比较问题.试验中如果只考虑一个因子对指标的影响,这种试验称为单因子试验,相应的方差分析称为单因子方差分析.若试验中同时考虑两个因子,则称相应的试验为两因子试验,所做的方差分析称为两因子方差分析.类似地可以定义三因子、多因子试验和方差分析.① 为研究新药的降糖效果,某医院用40名病人同期随机对照实验。
实验者将病人随机等分成实验组和对照组,分别测得实验开始前和8周后空腹血糖,算得空腹血糖下降值的均数,见下表,能否认为新药对空腹血糖的降糖效果显著?(检验水平0.05α=)实验组1X -0.7 -5.6 2.0 2.8 0.7 3.5 4.0 5.8 7.1 -0.5 20人2.5 -1.6 1.73.0 0.44.5 4.6 2.5 6.0 -1.4 对照组2X3.7 6.5 5.0 5.2 0.8 0.2 0.6 3.4 6.6 -1.1 20人 6.0 3.8 2.0 1.6 2.0 2.2 1.2 3.1 1.7 -2.0② 某养鸡场为提高经济效益,研制了三种鸡饲料配方.为比较三种饲料在养鸡增肥上的效果,分别用每种饲料喂养10只小鸡,60天后测量鸡重.请通过试验数据分析,三种饲料在养鸡增肥效果上有无显著差异(检验水平皆取0.05α=)?2.相关与回归分析在生产实践中,人们关心的某项重要指标往往受一个或多个变量的影响,此时令人关注的是变量与指标之间的关系.线性回归分析研究的是一维因变量(也称响应变量)Y与回归变量(也称解释变量或自变量)之间的线性相关关系,其中回归变量是可观测或可控制的①为确定运动员耗氧量与其他因素的关系,对31个人测量了年龄age、体重weight、跑完1.5公里的时间runtime、静态心率rstpulse、跑动时心率runpulse、跑步时最大Maxpulse、每公斤体重每分钟耗氧量oxy,数据见\Sas_Ex\oxy.txt,试以oxy为因变量作回归分析。
数学建模中的变量选择方法数学建模是一种将实际问题抽象为数学模型,并通过数学方法对其进行分析和求解的过程。
在数学建模中,变量的选择是至关重要的一步,它直接影响到模型的准确性和可靠性。
本文将介绍一些常用的变量选择方法,帮助读者更好地进行数学建模。
一、相关性分析法相关性分析法是一种常用的变量选择方法,它通过计算变量之间的相关系数来衡量它们之间的相关性。
相关系数的取值范围为-1到1,接近1表示正相关,接近-1表示负相关,接近0表示无相关。
在相关性分析中,我们通常选择与目标变量具有较高相关系数的变量作为模型的输入变量。
然而,相关性分析法也存在一些局限性。
首先,相关系数只能衡量线性相关性,无法反映非线性关系。
其次,相关性分析无法处理多个变量之间的复杂关系。
因此,在实际应用中,我们需要结合其他方法来进行变量选择。
二、主成分分析法主成分分析法是一种常用的降维技术,它通过线性变换将原始变量转化为一组新的无关变量,称为主成分。
主成分分析的基本思想是保留原始变量中包含的大部分信息,同时丢弃冗余的信息。
主成分分析法的步骤如下:首先,计算原始变量之间的协方差矩阵;然后,对协方差矩阵进行特征值分解,得到特征值和特征向量;最后,选择前几个特征值较大的特征向量作为主成分。
主成分分析法具有以下优点:首先,它可以处理多个变量之间的复杂关系,不受线性关系的限制;其次,主成分分析可以降低维度,减少模型的复杂度,提高计算效率。
三、信息增益法信息增益法是一种基于信息论的变量选择方法,它通过计算变量对目标变量的信息增益来衡量其重要性。
信息增益的计算基于熵的概念,熵越大表示不确定性越高,信息增益越大表示变量对目标变量的解释能力越强。
信息增益法的步骤如下:首先,计算目标变量的熵;然后,计算每个变量对目标变量的条件熵;最后,计算每个变量的信息增益,并选择信息增益较大的变量作为模型的输入变量。
信息增益法的优点是能够处理离散型变量和连续型变量,并且不受线性关系的限制。
数学建模是将实际问题抽象成数学模型,并通过数学方法进行求解和分析的过程。
以下是一些常见的数学建模方法:
1.数理统计:利用概率论和统计学方法来分析数据,建立统计模型并进行参数估计、假设
检验等,从而对问题进行量化和预测。
2.最优化方法:使用最优化理论和方法,在给定约束条件下寻找最优解,如线性规划、非
线性规划、整数规划等。
3.微分方程模型:通过建立微分方程或偏微分方程描述系统的动态行为,包括常微分方程
和偏微分方程模型。
4.离散事件模拟:通过离散事件模拟方法模拟系统的运作过程,包括随机过程、排队论等。
5.图论与网络流模型:使用图论和网络流算法对复杂的关系和网络结构进行建模和分析,
如最短路径、最小生成树等。
6.时间序列分析:对时间序列数据进行建模和预测,涉及自相关函数、谱分析、回归分析
等方法。
7.近似方法:如插值、拟合、逼近等方法,通过寻找适当的函数形式来近似真实问题。
8.随机过程:通过建立随机过程来描述系统的不确定性和随机性,包括马尔可夫链、布朗
运动等。
9.图像处理与模式识别:利用数学方法和算法对图像和模式进行处理和识别,如图像滤波、
边缘检测、模式匹配等。
10.数据挖掘与机器学习:利用统计学和机器学习算法对大规模数据进行分析和挖掘,发现
隐藏的模式和关联规律。
这些方法只是数学建模中的一部分,实际应用还需根据具体问题进行选择和组合。
在数学建模过程中,常常需要结合领域知识和实际情况,并使用计算机软件和工具进行模型求解和结果分析。
数学建模模型常用的四大模型及对应算法原理总结四大模型对应算法原理及案例使用教程:一、优化模型线性规划线性回归是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,在线性回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。
如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。
案例实操非线性规划如果目标函数或者约束条件中至少有一个是非线性函数时的最优化问题叫非线性规划问题,是求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。
建立非线性规划模型首先要选定适当的目标变量和决策变量,并建立起目标变量与决策变量之间的函数关系,即目标函数。
然后将各种限制条件加以抽象,得出决策变量应满足的一些等式或不等式,即约束条件。
整数规划整数规划分为两类:一类为纯整数规划,记为PIP,它要求问题中的全部变量都取整数;另一类是混合整数规划,记之为MIP,它的某些变量只能取整数,而其他变量则为连续变量。
整数规划的特殊情况是0-1规划,其变量只取0或者1。
多目标规划求解多目标规划的方法大体上有以下几种:一种是化多为少的方法,即把多目标化为比较容易求解的单目标,如主要目标法、线性加权法、理想点法等;另一种叫分层序列法,即把目标按其重要性给出一个序列,每次都在前一目标最优解集内求下一个目标最优解,直到求出共同的最优解。
目标规划目标规划是一种用来进行含有单目标和多目标的决策分析的数学规划方法,是线性规划的特殊类型。
目标规划的一般模型如下:设xj是目标规划的决策变量,共有m个约束条件是刚性约束,可能是等式约束,也可能是不等式约束。
设有l个柔性目标约束条件,其目标规划约束的偏差为d+, d-。
设有q个优先级别,分别为P1, P2, …, Pq。
在同一个优先级Pk中,有不同的权重,分别记为[插图], [插图](j=1,2, …, l)。
相关系数与回归分析打开数据分析的⼤门,从感性⾛向理性。
“概率统计”正确理解,才能正确应⽤!本专栏从最通俗易懂的⾓度,⽤最易于理解的⽅法,真正内化吸收概率统计的核⼼思想与算法,帮助您在⼯作⽣活中正确应⽤概率统计知识。
“相关”想象⼀下,如果⽼师说——“数学考试中,读题能⼒很重要,所以语⽂学得好的同学更容易数学也学得好。
”如何从统计学⾓度来分析这件事呢?我们拿到了全班同学的数学和语⽂成绩,有的同学两科成绩都好,有的同学两科成绩者差,但也存在偏科的同学啊。
你怎么能说,语⽂学得好,则数学也容易学得好呢?这样吧,我把所有成绩画成“散点图”看看:分析关系的散点图,有时也称为“相关图”可以感受到:语⽂成绩 X 与数学成绩 Y 之间存在某种关系,但是⼜“不能说存在因果关系”,这⾥就说 X 与 Y “相关”(Correlation)。
从图中基本可以看出,X 越⼤,Y 也就有越⼤的趋势,称为“正相关”;反之,X 越⼤,Y 越⼩,则称为“负相关”。
相关系数为了“定量地描述相关关系的强弱”,数学家们发明了“相关系数”。
相关系数有⼀个特点,它在区间 [-1,1] 范围内,也就是说:相关系数为1——“最强正相关”相关系数为-1——“最强负相关”相关系数为0——“完全不相关”下图可以让我们对相关系数的值与散点模式之间的关系有⼀个直观认识。
各种散点模式及其相关系数⾄此可以总结,相关,显⽰的是两个随机变量之间线性关系的强度和⽅向。
相关系数公式与理解(1)计算公式如下:相关系数(X,Y) = 协⽅差(X,Y) /(标准差(X)*标准差(Y))协⽅差(Covariance)⽤于衡量两个变量的总体误差——协⽅差公式从这个公式和上⾯的例⼦套⽤,怎么求出的相关度就很明显了,因为每⼀项为——(语⽂分-语⽂平均分)*(数学分-数学平均分)意思是说,语⽂好数学也好的,该项结果为正;语⽂差数学也差的,该项结果也为正;⽽偏科的该项结果为负。
最后再把这些项取平均值,看看整体为正还是为负。
数学建模——线性回归分析实用教案一、教学内容本节课选自高中数学教材《数学建模与数学探究》第四章“数据的分析与处理”中的第二节“线性回归分析”。
具体内容包括:线性回归模型的建立与求解,残差分析,线性回归方程的应用。
二、教学目标1. 理解线性回归分析的基本概念,掌握线性回归方程的求解方法。
2. 能够运用线性回归分析方法对实际问题进行模型建立,并进行预测。
3. 培养学生的数据分析能力、逻辑思维能力和实际应用能力。
三、教学难点与重点难点:线性回归方程的求解及残差分析。
重点:线性回归模型的建立与应用。
四、教具与学具准备1. 教具:计算机、投影仪、黑板、粉笔。
2. 学具:直尺、圆规、计算器、练习本。
五、教学过程1. 实践情景引入利用计算机展示一组实际数据,如某城市近10年来的汽车销量与人均GDP的变化情况。
引导学生观察数据,发现数据之间的潜在关系。
2. 理论讲解(1)介绍线性回归分析的基本概念,如自变量、因变量、线性关系等。
(2)讲解线性回归方程的求解方法,如最小二乘法。
(3)阐述残差分析的意义,介绍残差的计算方法。
3. 例题讲解(1)求解一组给定数据的线性回归方程。
(2)利用线性回归方程对实际问题进行预测。
4. 随堂练习让学生根据所学知识,对给出的实际问题建立线性回归模型,并进行预测。
六、板书设计1. 线性回归分析的基本概念2. 线性回归方程的求解方法3. 残差分析4. 线性回归模型的应用七、作业设计1. 作业题目(1)求下列数据的线性回归方程:自变量:1, 2, 3, 4, 5因变量:2, 4, 5, 6, 7(2)某商店的月销售额与广告费之间的关系如下表:广告费(万元):1, 2, 3, 4, 5销售额(万元):2.5, 3.2, 3.9, 4.6, 5.3建立线性回归模型,预测广告费为6万元时的销售额。
答案:(1)线性回归方程:y = 1.4x + 0.6(2)线性回归方程:y = 0.7x + 2.08预测销售额:5.78万元八、课后反思及拓展延伸本节课通过实际问题的引入,让学生了解了线性回归分析的基本概念和应用,掌握了线性回归方程的求解方法。
数学建模关联关系模型数学建模是一种将现实问题抽象化并用数学语言描述的方法,通过建立关联关系模型来解决实际问题。
关联关系模型是数学建模中常用的一种模型,它通过分析变量之间的关系和相互作用,揭示出问题中的规律和特点,为问题的求解提供指导和依据。
在关联关系模型中,我们通常需要确定变量之间的关联程度和相关性。
其中,相关系数是衡量两个变量之间线性关系强度的指标之一。
它的取值范围为-1到1,当相关系数为1时,表示变量之间存在完全正相关关系;当相关系数为-1时,表示变量之间存在完全负相关关系;当相关系数为0时,表示变量之间不存在线性关系。
除了相关系数,我们还可以使用回归分析来建立关联关系模型。
回归分析是研究自变量和因变量之间关系的一种统计方法,通过拟合一条最佳拟合直线或曲线来描述自变量和因变量之间的关系。
在回归模型中,自变量是用来解释因变量变化的变量,而因变量是我们希望预测或解释的变量。
在实际问题中,我们常常需要考虑多个变量之间的关联关系。
多元回归分析是一种用来研究多个自变量和一个因变量之间关系的方法。
在多元回归模型中,我们可以通过分析各个自变量的系数大小和显著性,来判断自变量对因变量的影响程度和方向。
除了线性关系,变量之间可能还存在非线性关系。
非线性关系模型可以更准确地描述变量之间的关联关系。
常见的非线性关系包括指数关系、对数关系、幂函数关系等。
为了建立准确的非线性关系模型,我们需要根据问题的特点选择合适的函数形式,并通过拟合曲线来确定函数的参数。
在关联关系模型中,我们还需要注意变量之间的共线性问题。
共线性指的是自变量之间存在高度相关关系的情况,这会导致模型的不稳定性和预测结果的不可靠性。
为了解决共线性问题,我们可以使用主成分分析等方法进行变量降维,从而提高模型的稳定性和准确性。
关联关系模型是数学建模中重要的一种模型,它可以帮助我们揭示问题中的规律和特点,为问题的求解提供指导和依据。
通过建立准确的关联关系模型,我们可以更好地理解和解决实际问题,实现科学决策和有效管理。