管式反应器.
- 格式:ppt
- 大小:2.12 MB
- 文档页数:19
管式反应器结构、流程及仪表介绍全文共四篇示例,供您参考第一篇示例:管式反应器是一种常见的化工设备,用于在一定条件下进行化学反应。
它的结构、流程和仪表的设计及运用对于生产过程起着至关重要的作用。
下面我们将介绍一份关于管式反应器结构、流程及仪表方面的详细内容。
一、管式反应器的结构管式反应器通常由反应器主体、加热装置、搅拌装置和控制系统组成。
其中反应器主体是由管道、容器和支撑构件构成的,通常采用不锈钢或碳钢材料制造,以确保其具有良好的耐压性、耐腐蚀性和密封性能。
加热装置主要包括外部加热方式和内部加热方式,以确保反应物在适当的温度下进行化学反应。
搅拌装置则能够保证反应物在反应器内充分混合,使反应过程更加均匀。
控制系统则通过传感器、执行器和控制器来监控和调节反应器的各项参数,从而确保反应过程的安全、稳定和高效。
二、管式反应器的流程管式反应器的流程通常包括加料、反应、卸料和清洗等步骤。
需要将反应物通过管道加入反应器主体中,然后通过加热装置使反应物达到所需的温度。
在反应过程中,搅拌装置将反应物进行充分混合和反应,直至达到反应末态。
接着,对反应产物进行卸料处理和清洗反应器,清除残留物和污垢,为下一轮的生产做好准备。
三、管式反应器的仪表介绍管式反应器的仪表通常包括温度传感器、压力传感器、液位传感器、流量计和控制器等。
温度传感器用于实时监测反应器内部的温度变化,确保反应温度的稳定性。
压力传感器用于监测反应器内部的压力变化,保证反应过程的安全性。
液位传感器用于监测反应物的液位变化,确保反应器内反应物的稳定供应和控制。
流量计用于测量反应物的流量,控制反应物的进出流程。
控制器则根据传感器所得的数据来对反应器进行自动控制,以确保反应过程的精准性和稳定性。
总结:管式反应器作为一种重要的化工设备,在化学生产过程中扮演着不可替代的角色。
正确的结构设计、合理的操作流程以及精准的仪表控制,对于保证生产过程的安全、高效和稳定至关重要。
反应器结构及工作原理图解小7:这里给大家介绍一下常用的反应器设备,主要有以下类型:①管式反应器。
由长径比较大的空管或填充管构成,可用于实现气相反应和液相反应。
②釜式反应器。
由长径比较小的圆筒形容器构成,常装有机械搅拌或气流搅拌装置,可用于液相单相反应过程和液液相、气液相、气液固相等多相反应过程。
用于气液相反应过程的称为鼓泡搅拌釜(见鼓泡反应器);用于气液固相反应过程的称为搅拌釜式浆态反应器。
③有固体颗粒床层的反应器。
气体或(和)液体通过固定的或运动的固体颗粒床层以实现多相反应过程,包括固定床反应器、流化床反应器、移动床反应器、涓流床反应器等。
④塔式反应器。
用于实现气液相或液液相反应过程的塔式设备,包括填充塔、板式塔、鼓泡塔等(见彩图)。
一、管式反应器一种呈管状、长径比很大的连续操作反应器。
这种反应器可以很长,如丙烯二聚的反应器管长以公里计。
反应器的结构可以是单管,也可以是多管并联;可以是空管,如管式裂解炉,也可以是在管内填充颗粒状催化剂的填充管,以进行多相催化反应,如列管式固定床反应器。
通常,反应物流处于湍流状态时,空管的长径比大于50;填充段长与粒径之比大于100(气体)或200(液体),物料的流动可近似地视为平推流。
分类:1、水平管式反应器由无缝钢管与U 形管连接而成。
这种结构易于加工制造和检修。
高压反应管道的连接采用标准槽对焊钢法兰,可承受1600-10000kPa 压力。
如用透镜面钢法兰,承受压力可达10000-20000kPa 。
2、立管式反应器立管式反应器被应用于液相氨化反应、液相加氢反应、液相氧化反应等工艺中。
3、盘管式反应器将管式反应器做成盘管的形式,设备紧凑,节省空间。
但检修和清刷管道比较困难。
4、U形管式反应器U形管式反应器的管内设有多孔挡板或搅拌装置,以强化传热与传质过程。
U形管的直径大,物料停留时间增长,可应用于反应速率较慢的反应。
5、多管并联管式反应器多管并联结构的管式反应器一般用于气固相反应,例如气相氯化氢和乙炔在多管并联装有固相催化剂的反应器中反应制氯乙烯,气相氮和氢混合物在多管并联装有固相铁催化剂的反应器中合成氨。
管式反应器除了上一章的两类理想反应器,管式反应器也是一类理想反应器模型(活塞流模型)。
与间歇釜式反应器不同,全混流和活塞流模型用于流动过程。
根据上一章所学的知识,物料在反应器中的停留时间是决定化学反应转化程度和产物分布的一个重要因素。
全混流和活塞流模型均是根据特定的停留时间分布规律建立起来的(这部分内容将在下一章中详细阐述),是两种极端的情况,是分析许多问题的出发点,也是各种实际反应器设计的理论基础。
本章将涉及到如下的具体内容:活塞流模型的基本假定等温管式反应器设计与分析管式反应器与釜式反应器的性能比较循环管式反应器的分析计算管式反应器的变温操作第一节活塞流假定流体流动是非常复杂的物理现象,影响到系统的反应速率和转化程度。
一、流动状况对反应过程的影响1. 流动情况影响例1. (1)空管中, 图4.1 (a)(b) 内部各部分流体的停留时间不同,因此反应时间也不一样,反应速率和最终转化率也不一样第二节等温管式反应器的设计一、单一反应在管式反应器中进行的单一反应,取如图4.2所示的微元体(高为dZ)图 4.2 管式反应器示意图在定态条件下,由此得到或∴(4-4)∴(4-5)假设 =常数(=X Af下的值),则--釜式反应器的设计方程式(4-5)可以进一步变成:(间歇釜式的设计的方程为)注意:二者尽管形式上相同,但一个是反应时间t,一个空时τ(与所选择的进口状态有关)。
另外,间歇釜式反应器总是恒容的。
如果管式反应器也在恒容下进行,则有τ=t;否则,τ≠t。
对于式(4-4),设反应器的截面积为A,则有dV r=Ad Z,那么对于恒容过程 C A=C AO(1-X A)则时间变量转化为位置变量。
例4.1 例4.2 例4.3例4.4例4.5第三节管式与釜式反应器反应体积的比较在处理量、组成、T、XAf相同的条件下进行对比。
对于二级可逆反应,使用不同形式的理想反应器时所需要的反应体积如表4-1所示,即有(本章前面和上一章的例题给出的结果)一般来说,比较按正常动力学和反常动力学两种情况讨论:图 4.3 连续反应器反应体积的比较对于复杂反应,要同时考虑反应体积V和产物分布,后者更为重要。