圆中的计算——构造直角三角形转化三角函数
- 格式:pdf
- 大小:342.76 KB
- 文档页数:2
单位圆上三角函数值的计算三角函数是一门与数学有关的学科,也是数学中的一种重要思想工具。
在三角函数中,常常会涉及单位圆。
单位圆是一个半径为1的圆,其圆心位于坐标系原点处。
在单位圆上,我们可以用三角函数计算出各种角度的正弦、余弦、正切值等。
一、单位圆上的正弦和余弦我们先来看正弦和余弦。
在单位圆上,任意一点(x,y)都可以表示为(x,√(1-x²))或(√(1-y²),y)的形式。
因为单位圆的方程式为x²+y²=1,所以当我们知道了x或y的值,就能算出另外一个未知的值。
因为正弦和余弦都是关于y和x的函数,所以对于一个三角形ABC,如果我们知道了其内角B的度数,就可以根据三角函数计算出BC与AB的比值,也就是正弦值sin(B)和余弦值cos(B)。
在单位圆上,如果一个角的终边与x轴正方向之间的夹角为α,则该角的正弦函数值为sin(α),其余弦函数值为cos(α)。
因为半径为1,所以在单位圆上,正弦和余弦的取值范围都是[-1,1]。
当角度为0度时,终边就在x轴上,此时的正弦函数值和余弦函数值都为1。
当角度为90度时,终边就在y轴上,此时的正弦函数值为1,余弦函数值为0。
类似地,当角度为180度时,终边就在-x轴上,此时的正弦函数值和余弦函数值都为-1;当角度为270度时,终边就在-y轴上,此时的正弦函数值为-1,余弦函数值为0。
二、单位圆上的正切值类似于正弦和余弦函数,正切函数也是与单位圆有关的。
在单位圆上,如果一个角的终边与x轴正方向之间的夹角为α,则该角的正切函数值为tan(α)。
因为正切值的定义是一个比值,所以正切值没有像正弦或者余弦那样有固定的取值范围。
不过,在单位圆的第一象限和第三象限,正切值是正数,而在第二象限和第四象限,正切值是负数。
举个例子,假设终边角度为45度,则终边上的点为(√2/2,√2/2)。
这个点与x轴正方向之间的夹角为45度,所以其正切值为tan(45)=1。
与圆的有关计算一、选择题1. (山东东营,7,3分)如图,已知一块圆心角为270°的扇形铁皮,用它做一个圆锥形的烟囱帽(接缝忽略不计),圆锥底面圆的直径是60cm ,则这块扇形铁皮的半径是( ) A .40cm B .50cm C .60cm D .80cm【答案】A【逐步提示】本题考查弧长公式与圆锥侧面展开图,先计算圆锥的底面周长,再根据圆锥的底面周长等于扇形的弧长列出方程求解.【详细解答】解:圆锥的底面周长为:π×60=60πcm,所以扇形的弧长为60πcm.根据扇形的弧长公式可得27060180rππ=,解得r=40cm .故选A . 【解后反思】解答本题易出现两处错误:一是公式错误,如把弧长公式与扇形面积公式搞错搞混;二是把直径误以为半径.圆锥的侧面展开图为扇形,扇形的半径等于圆锥的母线长,扇形的弧长等于圆锥底面圆的周长,扇形的面积等于圆锥的侧面积.【关键词】弧长公式;圆锥的侧面展开图2. (山东东营,17,4分)如图,某数学兴趣小组将边长为5的正方形铁丝框ABCD 变形为以A 为圆心,AB 为半径的扇形(忽略铁丝的粗细),则所得的扇形ABD 的面积为__________.【答案】25【逐步提示】本题考查弧长公式及扇形面积公式,【详细解答】解:∵正方形的边长为5,∴弧BD 的弧长=10,∴S 扇形ABD =111052522lr =⨯⨯=.故答案为25.【解后反思】解答本题需掌握:(1)弧长公式:l=180n r π;扇形面积公式:S 扇形=2360n r π=12lr .【关键词】弧长公式;扇形面积公式 3. 4. .(山东临沂,10,3分)如图,AB 是⊙O 的切线,B 为切点,AC 经过点O ,与⊙O 分别相交于点D ,C.若∠ACB=30°,3 )(A )3 (B )6π(C )3-6π (D )3-6π 【答案】C【逐步提示】本题考查切线的性质及扇形面积公式的应用,连接OB ,先由切线的性质求出圆心角∠AOB 的度数,再分别计算△AOB 和扇形BOD 的面积,相减可得阴影部分面积.【详细解答】解:连接OB ,∵AB 是⊙O 的切线,B 为切点,∴∠ABO=90°.∵∠ACB=30°,∴∠AOB=60°.在Rt△AOB 中,OB=tan AB AOB ∠=1.∴S 阴影=S △AOB -S 扇形BOD =12·AB ·OB -2601360π⨯⨯=32-6π.故选择C .【解后反思】计算阴影部分的面积,通常情况下运用转化的思想,将不规则的图形、零散的几个图形面积转化为规则图形之间的和差关系和相对集中形成的规则图形面积. 【关键词】切线的性质;扇形面积公式5. ( 山东青岛,7,3分)如图,一扇形纸扇完全打开后,外侧两竹条和AC 的夹角为120°,AB 长为25cm ,贴纸部分的宽BD 为15cm ,若纸扇两面贴纸,则贴纸的面 积为( ).A . 175π cm 2B . 350πcm 2C .8003πcm 2 D . 150πcm 2 【答案】B【逐步提示】先由AB 和BD 的长求出AD 的长,再分别求出扇形BAC 和扇形DAE 的面积,然后根据“贴纸部分的面积等于扇形BAC 的面积减去扇形DAE 的面积”求解.【详细解答】解:∵AB =25cm ,BD =15cm ,∴AD =25-15=10cm ,∴S扇形BAC =2120251250=1803ππ⨯(cm 2),S 扇形DAE =212010200=1803ππ⨯(cm 2),∴贴纸部分的面积=125020035033πππ-=(cm 2),故选择B . 【解后反思】1.弧长公式:l =nπr 180 ,扇形面积公式:S =360n 2r π=12lr ,其中n 为扇形圆心角的度数,r 为扇形半径.2.扇环的面积等于两个扇形面积之差.【关键词】 扇形的面积计算6.( 山东泰安,5,3分)如图,是一圆锥的左视图,根据图中所标数据,圆锥侧面展开图的扇形圆心角的大小为( )A .90°B .120°C .135°D .150°【答案】B 【逐步提示】本题考查了三视图及圆锥侧面展开图的圆心角的计算,解决问题的关键是把图中的数据与圆锥结合起来.圆锥的主视图和左视图是一样的,数字“6”是底面直径,数字“62”是圆锥的高,由勾股定理可以求出圆锥的母线.然后利用扇形的弧长等于圆锥的底面周长即2180n Rl r ππ==,可以求得圆心角的度数. 【详细解答】解:圆锥的母线长=()226239+=,∵2180nR l r ππ==∴×923180n ππ⨯=,解得n =120°,故选择B . 【解后反思】了解圆锥的侧面展开图是扇形,扇形的弧长等于圆锥的底面周长,扇形的半径等于圆锥的母线.弄清楚这些关系才能正确解决问题.另外,左视图看到的两个量要清楚分别代表什么,不要把底面直径和周长混淆,导致解题错误.另外,对于涉及到圆锥的底面圆半径r 、母线长l 与圆锥侧面展开图的圆心角n 三个量之间的关系时,公式360r nl =的合理应用来得快捷得很,其推导过程如下:如图,由扇形ABC 的面积的两种表达形式可知,2123602n l l r ππ=⋅⋅,整理后即得360r nl =. 【关键词】 左视图;圆锥的侧面展开图. 7. (山东威海,16,3)如图,正方形ABCD 内接于⊙O ,其边长为4,则⊙O 的内接正三角形EFG 的边长为____________.O GFED C B A 第16题图【答案】6【逐步提示】先求得⊙O 的半径,再求得内接正三角形EFG 的边长。
反三角函数与三角函数的转化1. 引言在数学中,三角函数和反三角函数是基本的数学工具,它们在解决几何问题、物理问题和工程问题中起着至关重要的作用。
本文将详细解释反三角函数与三角函数之间的转化,包括函数的定义、用途和工作方式等。
2. 三角函数2.1 正弦函数(sine function)正弦函数是最基本的三角函数之一,它表示一个直角三角形中对边与斜边之比。
正弦函数通常用符号sin来表示。
正弦函数的定义域为实数集,值域为[-1, 1]。
正弦函数可以通过在单位圆上取一个点P(x, y),其中x为点P在x轴上的坐标,y为点P在y轴上的坐标,并且连接原点O和点P形成一个直线段OP。
那么正弦值sinθ就等于线段OP与单位圆上对应点A之间的垂直距离。
具体而言,sinθ = y。
正弦函数在几何学、物理学和信号处理等领域有广泛应用。
例如,在几何学中,我们可以使用正弦函数来计算任意三角形中的边长或角度。
2.2 余弦函数(cosine function)余弦函数是另一个基本的三角函数,它表示一个直角三角形中邻边与斜边之比。
余弦函数通常用符号cos来表示。
余弦函数的定义域为实数集,值域为[-1, 1]。
余弦函数可以通过在单位圆上取一个点P(x, y),其中x为点P在x轴上的坐标,y为点P在y轴上的坐标,并且连接原点O和点P形成一个直线段OP。
那么余弦值cosθ就等于线段OP与单位圆上对应点A之间的水平距离。
具体而言,cosθ = x。
余弦函数在几何学、物理学和信号处理等领域同样有广泛应用。
例如,在物理学中,我们可以使用余弦函数来计算物体在斜面上的摩擦力或加速度。
2.3 正切函数(tangent function)正切函数是三角函数中的又一个重要概念,它表示一个直角三角形中对边与邻边之比。
正切函数通常用符号tan来表示。
正切函数的定义域为实数集,但注意到当θ等于90°或270°时,正切无定义。
正切函数可以通过在单位圆上取一个点P(x, y),其中x为点P在x轴上的坐标,y为点P在y轴上的坐标,并且连接原点O和点P形成一个直线段OP。
三角函数和圆-CAL-FENGHAI.-(YICAI)-Company One1
课题三角函数和圆
一、知识回顾:
1、三角函数的定义:sinα=对边/斜边 cosα=邻边/斜边 tanα=对边/邻边
2、圆的有关性质。
3、圆中常见辅助线。
4、求三角函数的策略:构建直角三角形。
方法:①等角代换②做垂直构造直角三角形
圆中求三角函数的策略:①利用同弧所对的圆周角相等转换②利用直径所对的圆周角是直角或利用垂径定理构造构造直角三角形。
二、例题讲解:
分析:(1)圆中若有切线现,常把切点半径连。
(2)求BD的关键是求半径。
法一:利用(1)的结论找相似,二:作弦心距构造直角三角形用勾股定理。
(3)①等角转换②找直角三角形③做垂直用面积法④等角转换。
分析:(1)垂径定理(知二推三)(2)课本常变形考题先求CD。
根据∠B的正弦值巧设辅助未知数计算,再利用相似。
三、习题分析:
四、课后训练:
五、总结与反思:
1、遇线段的比,常常巧设辅助未知数,帮助理解各线段之间的数量关系。
2、求三角函数的策略:构建直角三角形。
方法:①等角代换②做垂直构造直角三角形。
27.6 正多边形与圆(作业)一、单选题1.(2019·上海江湾初级中学九年级三模)⊙O 是一个正n 边形的外接圆,若⊙O 的半径与这个正n 边形的边长相等,则n 的值为( )A .3B .4C .6D .8【答案】C【分析】根据题意可以求出这个正n 边形的中心角是60°,即可求出边数.【详解】⊙O 是一个正n 边形的外接圆,若⊙O 的半径与这个正n 边形的边长相等,则这个正n 边形的中心角是60°,360606¸°=on 的值为6,故选C【点睛】考查正多边形和圆,求出这个正多边形的中心角度数是解题的关键.2.(2020·上海)如果正十边形的边长为a ,那么它的半径是( )A .sin 36a°B .cos36a°C .2sin18a°D .2cos18a°【答案】C【分析】如图,画出图形,在直角三角形OAM 中,直接利用三角函数即可得到OA.【详解】如图,正十边形的中心角∠AOB=360°÷10=36°,AB=a∴∠AOM=∠BOM=18°,AM=MB=12a ;∴OA=AM sin OAM Ð=218a sin °故选C.【点睛】本题考查三角函数,能够画出图形,找到正确的三角函数关系是解题关键.3.(2020·上海九年级二模)如果一个正多边形的中心角等于72°,那么这个多边形的内角和为()A.360°B.540°C.720°D.900°【答案】B【分析】根据正多边形的中心角和为360°和正多边形的中心角相等,列式计算可求出这个多边形的边数,然后根据多边形的内角和公式(n-2)×180°可得出结果.【详解】解:根据题意可得,这个多边形的边数为:360÷72=5,∴这个多边形的内角和为:(5-2)×180°=540°.故选:B.【点睛】本题考查的是正多边形的中心角的有关计算以及多边形的内角和公式,掌握正多边形的中心角和为360°和正多边形的中心角相等是解题的关键.4.(2019·上海市嘉定区丰庄中学九年级二模)( )D.A.2B.4C.【答案】A【分析】设正六边形的中心是O,一边是AB,过O作OG⊥AB与G,在直角△OAG中,根据三角函数即可求得OA.【详解】如图,AOG=30°,在Rt△AOG中,OG÷2;∴OA=OG÷cos 30°故选A.【点睛】本题主要考查正多边形的计算问题,常用的思路是转化为直角三角形中边和角的计算.5.(2020·上海九年级专题练习)正六边形的半径与边心距之比为( )B1C2D.2A.1【答案】D【分析】边心距:是指正多边形的每条边到其外接圆的圆心的距离,正六边形的边长就等于其外接圆的半径...正多边形的边心距就是其内切圆的半径.【详解】∵正六边形的半径为R,∴边心距r,2D.∴R:r=1【点睛】本题主要考查了正多边形的半径与边心距之比,解决本题的关键是掌握边心距的求法.6.(2019·上海市嘉定区唐行九年制学校九年级二模)下列四个命题中,错误的是()A.所有的正多边形是轴对称图形,每条边的垂直平分线是它的对称轴B.所有的正多边形是中心对称图形,正多边形的中心是它的对称中心C.所有的正多边形每一个外角都等于正多边形的中心角D.所有的正多边形每一个内角都与正多边形的中心角互补【答案】B【分析】利用正多边形的性质、对称性、中心角的定义及中心角的性质作出判断即可.【详解】A 、正多边形是轴对称图形,每条边的垂直平分线是它的对称轴,正确,故此选项不符合题意;B 、正奇数多边形不是中心对称图形,错误,故此选项符合题意;C 、正多边形每一个外角都等于正多边形的中心角,正确,故此选项不符合题意;D 、正多边形每一个内角都与正多边形的中心角互补,正确,故此选项不符合题意.故选B .【点睛】本题考查了正多边形和圆的知识,解题的关键是正确的理解正多边形的有关的定义.7.(2019·上海市西南模范中学九年级二模)若一个正九边形的边长为a ,则这个正九边形的半径是( )A .cos 20a°B .sin 20a°C .2cos 20a°D .2sin 20a°【答案】D【分析】先根据题意画出图形,经过圆心O 作圆的内接正n 边形的一边AB 的垂线OC ,垂足是C .接OA ,则在直角△OAC 中,∠AOB=3609°.OC 是边心距,OA 即半径.根据三角函数即可求解.【详解】解答:如图所示,过O 作OC ⊥AB 于C ,则OC 即为正九边形的边心距,连接OA ,∵此多边形是正九边形,∴∠AOB=3609°=40°,OA=OB ,∴∠AOC=12∠AOB=12×40°=20°,∵AB=a ,∴AC=12a ,∴OA=sin AOCAC Ð=2sin20a °=2sin20a°.故选D .【点睛】本题考查了正多边形和圆,关键是构造直角三角形,利用圆内接正多边形的性质及直角三角形中三角函数的定义解答.8.(2020·上海九年级一模)如图,分别以等边三角形ABC 的三个顶点为圆心,以边长为半径画弧,得到的封闭图形是莱洛三角形,若AB=2,则莱洛三角形的面积(即阴影部分面积)为( )A .pB .p -C .2pD .2p -【答案】D 【分析】莱洛三角形的面积是由三块相同的扇形叠加而成,其面积=三块扇形的面积相加,再减去两个等边三角形的面积,分别求出即可.【详解】过A 作AD ⊥BC 于D ,∵△ABC 是等边三角形,∴AB=AC=BC=2,∠BAC=∠ABC=∠ACB=60°,∵AD ⊥BC ,∴BD=CD=1,∴△ABC 的面积为12BC•AD=122´,S扇形BAC =2602360p´=23p,∴莱洛三角形的面积S=3×23p﹣﹣,故选D.【点睛】本题考查了等边三角形的性质和扇形的面积计算,能根据图形得出莱洛三角形的面积=三块扇形的面积相加、再减去两个等边三角形的面积是解此题的关键.二、填空题9.(2019·上海交大附中九年级)如图,ABCDE是边长为1的正五边形,则它的内切圆与外接圆所围圆环的面积为________.【答案】4p【分析】假设圆心为O,正五边形的内切圆与AB的切点为F,连接OA、OF,设OA=R,OF=r,则根据切线定理、勾股定理及圆环的面积公式可直接求解.【详解】连接OA、OF,设OA=R,OF=r;Q AB与⊙O相切,五边形ABCDE是正五边形,AB=1,\90AFOÐ=°,AF=1122AB=\在Rt AFO △中,222AF AO FO =-即2221124R r æö=-=ç÷èø又Q ()22=S R r p -圆环,\1=4S p 圆环.故答案为4p .【点睛】本题主要考查正多边形与圆的关系,熟练掌握正多边形的性质及圆的性质是解题的关键.10.(2020·上海大学附属学校九年级三模)正五边形绕着它的中心至少旋转_______度,能与它本身重合.【答案】72【分析】如图(见解析),先根据正五边形的性质可得,正五边ABCDE 至少旋转的度数为AOB Ð的度数,再根据正五边形的性质求解即可得.【详解】如图,由题意可知,所求的问题为AOB Ð的度数由正五边形的性质得:AOB BOC COD DOE AOEÐ=Ð=Ð=Ð=Ð又360AOB BOC COD DOE AOE Ð+Ð+Ð+Ð+Ð=°Q 1360725AOB \Ð=´°=°故答案为:72.【点睛】本题考查了图形的旋转、正五边形的性质,理解题意,掌握正五边形的性质是解题关键.11.(2020·上海九年级二模)已知正三角形的边心距为1,那么它的边长为________.【答案】【分析】此题由题意做出图,做出边心距根据勾股定理求解即可.【详解】由题意作图,再作OP ⊥BC ,OP 的长即为边心距,即OP=1,由△ABC 是正三角形,∴∠ABC=60°,又∵OP 平分∠ABC ,则∠OBP=30°,∴OB=2OP ,由勾股定理知:,∴BC=,即边长为,故答案为【点睛】本题考查三角形外接圆与圆心的关系,中间用勾股定理解题是关键.12.(2020·上海九年级二模)如图,在正六边形ABCDEF 中,如果向量AB a =uuu r r ,AF b =uuu r r ,那么向量AD uuu r 用向量a r ,b r 表示为____.【答案】2a +r 2b r .【分析】如图,连接BE 交AD 于O .则AOB D 是等边三角形,OA OD =,根据三角形法则求出AO uuu r即可解决问题.【详解】如图,连接BE 交AD 于O .∵ABCDEF 是正六边形,∴△AOB 是等边三角形,AO =OD ,∴∠FAO =∠AOB =60°,OB =AB =AF ,∴AF ∥OB ,∴BO AF b ==uuu r uuu r r ,∵AO AB BO a b =+=+uuu r uuu r uuu r r r ,∵AD =2AO ,∴AD =uuu r 2a +r 2b r .故答案为:2a +r 2b r .【点睛】本题考查正多边形与圆,平面向量,等边三角形的判定和性质,平行线的判定和性质等知识,熟练掌握基本知识是解题的关键.三、解答题13.(2020·上海九年级一模)如图,在⊙O 中,AB 、CD 是两条弦,⊙O 的半径长为rcm,弧AB 的长度为1l cm,弧CD 的长度为2l cm(温馨提醒:弧的度数相等,弧的长度相等,弧相等,有联系也有区别) 当1l =2l 时,求证:AB=CD【分析】利用弧长公式得出圆心角相等,再利用圆心角,弧,弦之间的关系即可证明.【详解】解:令∠AOB=α,∠COD=β.∵1l =2l ,∴12180180r r ap bp =∵AB 和CD 在同圆中,r 1=r 2 ,∴α=β,∴AB=CD【点睛】本题主要考查弧长公式及圆心角,弧,弦之间的关系,掌握圆心角,弧,弦之间的关系是解题的关键.14.(2014·上海)如图,已知AD 既是△ABC 的中线,又是角平分线,请判断:(1)△ABC 的形状;(2)AD 是否过△ABC 外接圆的圆心O ,⊙O 是否是△ABC 的外接圆,并证明你的结论.试题分析:(1)过点D 作DE⊥AB于点E ,DF⊥AC于点F ,根据HL 定理可得出△BDE≌△CDF,进而得出结论;(2)根据等腰三角形三线合一的性质可知AD⊥BC,再由BD=CD ,可知AD 过圆心O ,故可得出结论.试题解析:(1)答:△ABC是等腰三角形.证明:过点D 作DE⊥AB于点E ,DF⊥AC于点F .∵AD是角平分线,∴DE=DF.又∵AD是△ABC的中线,∴BD=CD,在Rt△BDE与Rt△CDF中,,∴△BDE≌△CDF(HL).∴∠B=∠C,∴AB=AC,即△ABC是等腰三角形;(2)答:AD过△ABC的外接圆圆心O,⊙O是△ABC的外接圆.证明:∵AB=AC,AD是角平分线,∴AD⊥BC,又∵BD=CD,∴AD过圆心O.作边AB的中垂线交AD于点O,交AB于点M,则点O就是△ABC的外接圆圆心,∴⊙O是△ABC的外接圆.考点:1.三角形的外接圆与外心;2.全等三角形的判定与性质.。
圆中的基本图形和常见数学思想圆一直是初中阶段数学学习的一个难点,因为圆中知识点很多,综合性也很强。
而且中考中圆常常和四边形,三角形,甚至代数中的二次函数结合起来考察学生的能力。
所以学生遇到圆的综合题往往觉得相当吃力。
针对这种情况,笔者一直在考虑如何突破圆的教学难关,让学生对圆不再望而生畏,并且提高解题能力。
教师有必要把圆中涵盖的知识点融入到几个基本图形中,并教会学生在复杂的图形中提炼出基本图形。
另外一定要帮助学生进行解题方法的训练和总结。
让他们熟悉圆中常用的数学方法。
笔者归纳了以下几个方面的内容,概述如下。
1 圆中基本图形主要有这个图形中涵盖了:1、垂径定理及其推论;2、同弧所对的圆心角是圆周角的两倍;3、半径、弦心距、弓形高、弦长四者的关系;4、直径所对的圆周角是直角这个图形中涵盖了:1、圆的内接四边形的对角互补,外角等于内对角,2、相似关系;3、割线定理这个图形中涵盖了:1、弦切角等于所夹弧所对的圆周角,2、相似关系;3、切割线定理这个图形中涵盖了:1、三角形的外心是三角形三条垂直平分线的交点,并且到三角形三个顶点的距离相等2、同弧所对的圆心角是圆周角的两倍这个图形中涵盖了:1、从圆外引圆的两条切线,切线长相等。
2、三角形的内心是三角形三条角平分线的交点,并且到三角形三条边的距离相等3、三角形的面积和周长、内切圆半径三者的关系,4、三角形两条内角角平分线组成的夹角与第三个内角的关系这个图形中涵盖了:1、同弧所对的圆周角相等,2、相似关系,3、相交弦定理这个图形中涵盖了:1、直径所对的圆周角是直角,90度的圆周角所对的弦是直径2、相似关系,射影定理,3、直角三角形的外心在斜边的中点4、直角三角形的外接圆的半径等于斜边的一半这个图形中涵盖了:1、连心线垂直平分公共弦2、圆的对称性这个图形中涵盖了:等边三角形的内切圆半径、外接圆半径、等边三角形的边长三者的比例关系。
这个图形中涵盖了:正方形的内切圆半径、外接圆半径、正方形的边长三者的比例关系。
初中数学单位圆定义的三角函数公式单位圆定义在实际计算上没有大的价值;事实上对多数角它都依靠于直角三角形。
但是单位圆定义的确允许三角函数对全部正数和负数辐角都有定义,而不只是对于在 0 和π/2 弧度之间的角。
它也提供了一个图象,把全部重要的三角函数都包含了。
依据勾股定理,单位圆的等式是:图象中给出了用弧度度量的一些常见的角。
逆时针方向的度量是正角,而顺时针的度量是负角。
设一个过原点的线,同 * 轴正半部分得到一个角θ,并与单位圆相交。
这个交点的 * 和 y 坐标分别等于 cos θ和 sin θ。
图象中的三角形确保了这个公式;半径等于斜边且长度为1,所以有 sin θ = y/1 和 cos θ = */1。
单位圆可以被视为是通过转变邻边和对边的长度,但保持斜边等于 1的一种查看无限个三角形的方式。
上面的内容为大家带来的是单位圆定义三角函数,相信大家能仔细记忆了吧,接下来还有更多的公式大全营养餐等着同学们来吸取呢。
中学数学正方形定理公式关于正方形定理公式的内容精讲知识,盼望同学们很好的掌控下面的内容。
正方形定理公式正方形的特征:①正方形的四边相等;②正方形的四个角都是直角;③正方形的两条对角线相等,且相互垂直平分,每一条对角线平分一组对角;正方形的判定:①有一个角是直角的菱形是正方形;②有一组邻边相等的矩形是正方形。
盼望上面对正方形定理公式知识的讲解学习,同学们都能很好的掌控,相信同学们会取得很好的成果的哦。
中学数学平行四边形定理公式同学们仔细学习,下面是老师对数学中平行四边形定理公式的内容讲解。
平行四边形平行四边形的性质:①平行四边形的对边相等;②平行四边形的`对角相等;③平行四边形的对角线相互平分;平行四边形的判定:①两组对角分别相等的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③对角线相互平分的四边形是平行四边形;④一组对边平行且相等的四边形是平行四边形。
上面对数学中平行四边形定理公式知识的讲解学习,同学们都能很好的掌控了吧,相信同学们会从中学习的更好的哦。
弦长的十种计算技巧在圆中,弦长的计算是垂径定理的重要应用之一,常作垂直于弦的直径或半径。
但往往只须作出弦心距作为辅助线构成直角三角形,计算弦长。
题目:已知OA 、OB 为⊙O 的半径,OA ⊥OB ,弦AD 经过OB 的中点C ,⊙O 的半径为4cm ,求AD 之长。
一、作弦心距,构造直角三角形,计算弦长 解:如图1所示。
图1过点O 作OE ⊥AD 于点E ,则AD=2AE 。
在Rt △AOC 中,OA=4cm ,OC=12OB =2cm 。
由勾股定理得AC OA OC cm =+=2225,又1212455OA OC AC OE OE OA OC AC cm ···=⇒==, 在Rt △AEO 中,AE OA OE cm =-=22855, 故AD AE cm ==21655。
二、利用正切三角函数计算弦长 题目和图同上。
解:在Rt △AOC 中,tan ∠OAC OC OA ==12, 又在Rt △AEO 中,cot ∠OAE AEOEAE OE =⇒=·cot /tan ∠∠OAE OE OAC = ==2855OE cm 。
因此AD AE cm ==21655。
三、利用射影定理计算弦长解:如图1在Rt △AOC 中,OE ⊥AC ⇒=⇒==AO AE AC AE AO AC cm 22855·(由解一可知AC cm =25),因此AD AE cm ==21655。
四、利用相交弦定理计算弦长解:如图2,延长BCO 交AD ⋂于点F ,图2则CF OF OC cm CB OB cm =+===6122,, 依相交弦定理有BC CF AC CD BC CF AC AD AC AD BC CFACAC cm cm·····×=⇒=-⇒=+=+=()()2625251655五、利用切割线定理计算弦长 解:如图3,图3同解一作OE ⊥AD 于点E ,则AD=2AE 。
专题:圆中的计算——构造直角三角形转化三角函数
学习目标:能运用圆心角、圆周角的转换进行圆中的计算
教学过程 一、知识回顾
如图,在⊙O 中,⌒AB =⌒AC ,∠ACB=75°.
(1) (2) (3) (1)如图(1),∠ABC= ,∠A=
(2)如图(2),作直径CD ,连BD ,∠DBC= ,∠D= (3)如图(3),连AO 并延长交BC 于M ,连OC ,∠AMC= ,∠MOC= 思考:图(2),图(3)中,能用线段的比表示出sin ∠BAC 、cos ∠BAC 、tan ∠BAC 吗? 二、例题精练
1.如图,点E 在以AB 为直径的⊙O 上,点C 是⌒BE 的中点,连BE 交AC 于点F 。
若cos ∠CAE=4
5
,BF=15,求AC 的长。
2.如图,△ABC 内接于⊙O ,AB=AC ,CO 的延长线交AB 于点D. (1)求证:AO 平分∠BAC ;(2)若BC=6,sin ∠BAC=3
5,求AC 和CD 的长.
归纳:如何通过转换圆周角或圆心角转化三角函数呢?
A
三、课堂检测
1.如图,⊙O 的直径为5,△ABC 为⊙O 的内接三角形,AC =2√6,则tan ∠B=
2.如图,△ABC 内接于⊙O ,AB=AC ,若AB=4√3, cos ∠BAC=1
3,则BC=
3.如图,AB 为⊙O 的直径,CD 为⊙O 的弦,AB=10,cos ∠BAC=3
5
,∠BAD=30°,
则线段CD 的长是
四、巩固练习
1.如图,△ABC 内接于⊙O ,E 在⌒AC 上,⌒EC
=⌒AB ,AC=BC ,若AB=4,BE=6,求cos ∠EBC.
2.如图,△ABC 是⊙O 的内接三角形,AB=AC ,点P 是⌒AB
的中点,连接PA 、PB 、PC ,若sin ∠BPC=24
25,求tan ∠PAB.
A
E
A。