三角函数及解直角三角形知识点总结
- 格式:doc
- 大小:28.50 KB
- 文档页数:6
初三中考数学常用知识点整理求学的三个条件是:多观察、多吃苦、多研究。
每一门科目都有自己的学习方法,但其实都是万变不离其中的,也是要记、要背、要讲练的。
下面是小编给大家整理的一些中考数学常用的知识点,希望对大家有所帮助。
中考数学常用知识点1.解直角三角形1.1.锐角三角函数锐角a的正弦、余弦和正切统称∠a的三角函数。
如果∠a是Rt△ABC的一个锐角,则有1.2.锐角三角函数的计算1.3.解直角三角形在直角三角形中,由已知的一些边、角,求出另一些边、角的过程,叫做解直角三角形。
2.直线与圆的位置关系2.1.直线与圆的位置关系当直线与圆有两个公共点时,叫做直线与圆相交;当直线与圆有公共点时,叫做直线与圆相切,公共点叫做切点;当直线与圆没有公共点时,叫做直线与圆相离。
直线与圆的位置关系有以下定理:直线与圆相切的判定定理:经过半径的外端并且垂直这条半径的直线是圆的切线。
圆的切线性质:经过切点的半径垂直于圆的切线。
2.2.切线长定理从圆外一点作圆的切线,通常我们把圆外这一点到切点间的线段的长叫做切线长。
切线长定理:过圆外一点所作的圆的两条切线长相等。
2.3.三角形的内切圆与三角形三边都相切的圆叫做三角形的内切圆,圆心叫做三角形的内心,三角形叫做圆的外切三角形。
三角形的内心是三角形的三条角平分线的交点。
3.三视图与表面展开图3.1.投影物体在光线的照射下,在某个平面内形成的影子叫做投影。
光线叫做投影线,投影所在的平面叫做投影面。
由平行的投射线所形成的投射叫做平行投影。
可以把太阳光线、探照灯的光线看成平行光线,它们所形成的投影就是平行投影。
3.2.简单几何体的三视图物体在正投影面上的正投影叫做主视图,在水平投影面上的正投影叫做俯视图,在侧投影面上的正投影叫做左视图。
主视图、左视图和俯视图合称三视图。
产生主视图的投影线方向也叫做主视方向。
九年级中考常用数学知识点圆重点①圆的重要性质;②直线与圆、圆与圆的位置关系;③与圆有关的角的定理;④与圆有关的比例线段定理。
解直角三角形初三下册第一章: 知识点总结:1. 解直角三角形:在直角三角形中,由已知元素求位置元素的过程,就是解直角三角形。
(1) 三边关系:222c b a (2) 锐角关系:∠A+∠B=90°; ( 3 ) 边角关系:正弦:锐角A 的对边与斜边的比叫做∠A 的正弦,记sinA ,即sinA =c a余弦:锐角A 的邻边与斜边的比叫做∠A 的余弦,记cosA ,即cosA=c b;正切:锐角A 的对边与邻边的比叫做∠A 的正切,记tanA ,即tanA=ba;特殊锐角的三角函数值① 同角三角函数的关系:平方关系:1cos sin 22 A A ; 商数关系:tanA=AAcos sin ②互余两角的三角函数关系:sinA=cosB; sinA=cos(90°-A) ; cosA=sin (90°-A ); tanA=cot(90°-A )2.实际问题仰角:进行高度测量时,在视线与水平线所成的角中,当视线在水平线上方时叫做仰角。
俯角:进行高度测量时,在视线与水平线所成的角中,当视线在水平线下方时叫做俯角。
坡度(坡比):坡面的铅垂高度和水平宽度的比叫做坡面的坡度,记作i=h:l。
坡角:坡面与水平面的夹角叫做坡角,记作a,即i=h:l=tana.方位角:从某点的正北方向沿顺时针方向旋转到目标方向所形成的角叫做方位角。
方向角:从正北方向或正南方向到目标方向形成的小雨90°的角叫做方向角。
典型例题:题型一:特殊三角函数值1、计算2sin30°-sin245°+cot60°的结果是()A、B、C、D、2、已知a=3,且(4tan 45°-b)2+=0,以a,b,c为边组成的三角形面积等于()A、6B、7C、8D、93、已知a为锐角,且sin(a-10°)=,则a等于()A、50°B、60°C、70°D、80°4、在△ABC中,∠C=90°,∠B=2∠A,则cosA等于()A、B、C、D、5、如图,如果∠A是等边三角形的一个内角,那么cosA的值等于()A、B、C、D、16、△ABC中,∠A、∠B都是锐角,且sinA=,cosB=,则△ABC的形状是()A、直角三角形B、钝角三角形C、锐角三角形D、不能确定7、计算:sin213°+cos213°+sin60°-tan30°.8、求下列各式的值:(1)a、b、c是△ABC的三边,且满足a2=(c+b)(c-b)和4c-5b=0,求cosA+cosB的值;(2)已知A为锐角,且tanA=,求sin2A+2sinAcosA+cos2A的值.题型二:解直角三角形1、如图,在△ABC中,∠C=90°,∠B=60°,D是AC上一点,DE⊥AB于E,且CD=2,DE=1,则BC的长为()A、2B、C、2D、42、等腰三角形的顶角为120°,腰长为2cm,则它的底边长为()A、cmB、cmC、2cmD、cm3、如图,梯形ABCD中,AD∥BC,∠B=45°,∠D=120°,AB=8cm,则DC的长为()A、cmB、cmC、cmD、8cm4、如图,在Rt△ABC中,∠ACB为90°,CD⊥AB,cos∠BCD=,BD=1,则边AB的长是()A、B、C、2 D、5、如图,将等腰直角三角形ABC绕点A逆时针旋转15°后得到△AB′C′,若AC=1,则图中阴影部分的面积为()A、B、C、D、6、在△ABC中,∠A=120°,AB=4,AC=2,则sinB的值是()A、B、C、D、7、如图,矩形ABCD中,对角线AC、BD相交于点0,∠AOB=60°,AB=5,则AD的长是()A、5B、5C、5D、108、如图,在菱形ABCD中,DE⊥AB,,BE=2,则tan∠DBE的值()A、B、2 C、D、9、如图,四边形ABCD和四边形BEFD都是矩形,且点C恰好在EF上.若AB=1,AD=2,则S△BCE为()A、1B、C、D、10、如图,在Rt△ABC中,∠A=90°,AB=AC=8,点E为AC的中点,点F在底边BC上,且FE⊥BE,则△CEF的面积是()A、16B、18C、6D、711、如图,在梯形ABCD中,∠A=∠B=90°,AB=,点E在AB上,∠AED=45°,DE=6,CE=7.求:AE的长及sin∠BCE的值.12、如图,直角梯形ABCD中,AD∥BC,∠A=90°,AB=AD=6,DE⊥DC交AB于E,DF平分∠EDC交BC 于F,连接EF.(1)证明:EF=CF;(2)当tan∠ADE=时,求EF的长.题型三:解直角三角形的应用1、如图,某市在“旧城改造”中计划在一块如图所示的三角形空地上种植某种草皮以美化环境,已知这种草皮每平方米a元,则购买这种草皮至少要()A、450a元B、225a元C、150a元D、300a元2、如图,AB是斜靠在墙上的长梯,D是梯上一点,梯脚B与墙脚的距离为1.6m(即BC的长),点D与墙的距离为1.4m(即DE的长),BD长为0.55m,则梯子的长为()A、4.50mB、4.40mC、4.00mD、3.85m3、如图,太阳光线与地面成60°角,一棵倾斜的大树AB与地面成30°角,这时测得大树在地面的影长BC为10m,则大树的长为()m.A、5B、10C、15D、204、如图,小明同学在东西走向的文一路A处,测得一处公共自行车租用服务点P在北偏东60°方向上,在A 处往东90米的B处,又测得该服务点P在北偏东30°方向上,则该服务点P到文一路的距离PC为()A、60米B、45米C、30米D、45米5、如图是某货站传送货物的平面示意图.为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°.已知原传送带AB长为4米.(1)求新传送带AC的长度;(2)如果需要在货物着地点C的左侧留出2米的通道,试判断距离B点4米的货物MNQP是否需要挪走,并说明理由.(说明:(1)(2)的计算结果精确到0.1米,参考数据:≈1.41,≈1.73,≈2.24,≈2.45)6、如图,河流的两岸PQ、MN互相平行,河岸PQ上有一排小树,已知相邻两树之间的距离CD=50米,某人在河岸MN的A处测得∠DAN=35°,然后沿河岸走了120米到达B处,测得∠CBN=70°.求河流的宽度CE(结果保留两个有效数字).(参考数据:sin35°≈0.57,cos35°≈0.82,tan35°≈0.70,sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)7、某市为缓解城市交通压力,决定修建人行天桥,原设计天桥的楼梯长AB=6m,∠ABC=45°,后考虑到安全因素,将楼梯脚B移到CB延长线上点D处,使∠ADC=30°(如图所示).(1)求调整后楼梯AD的长;(2)求BD的长.(结果保留根号)8、某河道上有一个半圆形的拱桥,河两岸筑有拦水堤坝.其半圆形桥洞的横截面如图所示.已知上、下桥的坡面线ME、NF与半圆相切,上、下桥斜面的坡度i=1:3.7,桥下水深=5米.水面宽度CD=24米.设半圆的圆心为O,直径AB在坡角顶点M、N的连线上.求从M点上坡、过桥、下坡到N点的最短路径长.(参考数据:π≈3,≈1.7,tan15°=)题型四:坡度坡角问题及仰角俯角问题1、如图,是一水库大坝横断面的一部分,坝高h=6m,迎水斜坡AB=10m,斜坡的坡角为α,则tanα的值为()A、B、C、D、2、如图,在平地上种植树木时,要求株距(相邻两树间的水平距离)为4m.如果在坡度为0.75的山坡上种树,也要求株距为4m,那么相邻两树间的坡面距离为()A、5mB、6mC、7mD、8m3、周末,身高都为1.6米的小芳、小丽来到溪江公园,准备用她们所学的知识测算南塔的高度.如图,小芳站在A处测得她看塔顶的仰角α为45°,小丽站在B处(A、B与塔的轴心共线)测得她看塔顶的仰角β为30°.她们又测出A、B两点的距离为30米.假设她们的眼睛离头顶都为10cm,则可计算出塔高约为(结果精确到0.01,参考数据:≈1.414,≈1.732)()A、36.21米B、37.71米C、40.98米D、42.48米4、一次数学活动中,小迪利用自己制作的测角器测量小山的高度CD.已知她的眼睛与地面的距离为1.6米,小迪在B处测量时,测角器中的∠AOP=60°(量角器零度线AC和铅垂线OP的夹角,如图);然后她向小山走50米到达点F处(点B,F,D在同一直线上),这时测角器中的∠EO′P′=45°,那么小山的高度CD约为()(注:数据≈1.732,≈1.414供计算时选用)A、68米B、70米C、121米D、123米5、如图,已知楼高AB为50m,铁塔基与楼房房基间的水平距离BD为50m,塔高DC为m,下列结论中,正确的是()A、由楼顶望塔顶仰角为60°;B、由楼顶望塔基俯角为60°;C、由楼顶望塔顶仰角为30°;D、由楼顶望塔基俯角为30°6、已知小芳站在层高为2.5米的六层楼的屋顶上来估计旁边一支烟囱的高度,当小芳以俯角∠COB=45°向下看时,刚好可以看到烟囱的底部,当小芳以仰角∠AOB=30°向上看时,刚好可以看到烟囱的顶部,若小芳的身高为1.5米,请你估计烟囱的高度(=1.414,=1.732结果保留三个有效数字)()A、22.1米B、26.0米C、27.9米D、32.8米7、如图,小明在大楼30米高(即PH=30米)的窗口P处进行观测,测得山坡上A处的俯角为15°,山脚B 处的俯角为60°,巳知该山坡的坡度i(即tan∠ABC)为1:,点P,H,B,C,A在同一个平面上,点H、B、C在同一条直线上,且PH丄HC.(1)山坡坡角(即∠ABC)的度数等于多少度;(2)求A、B两点间的距离(结果精确到0.1米,参考数据:≈1.732).8、如图,某校综合实践活动小组的同学欲测量公园内一棵树DE的高度.他们在这棵树正前方一座楼亭前的台阶上A点处测得树顶端D的仰角为30°,朝着这棵树的方向走到台阶下的点C处,测得树顶端D的仰角为60°.已知A点的高度AB为2米,台阶AC的坡度为(即AB:BC=),且B、C、E三点在同一条直线上.请根据以上条件求出树DE的高度(测倾器的高度忽略不计).题型五:方向角问题1、如图,已知一渔船上的渔民在A处看见灯塔M在北偏东60°方向,这艘渔船以28海里/时的速度向正东方向航行,半小时后到达B处,在B处看见灯塔M在北偏东15°方向,此时灯塔M与渔船的距离是()A、7海里B、14海里C、7海里D、14海里2、在一次夏令营活动中,小霞同学从营地A点出发,要到距离A点10千米的C地去,先沿北偏东70°方向走了8千米到达B地,然后再从B地走了6千米到达目的地C,此时小霞在B地的()A、北偏东20°方向上B、北偏西20°方向上C、北偏西30°方向上D、北偏西40°方向上3、如图,小亮家到学校有两条路,一条沿北偏东45°方向可直达学校前门,另一条从小明家一直往东,到商店处向正北走100米,到学校后门;若两条路程相等,学校南北走向,学校后门在小明家北偏东67.5°处,学校前门到后门的距离是()A、100米B、米C、米D、米4、综合实践课上,小明所在小组要测量护城河的宽度.如图所示是护城河的一段,两岸ABCD,河岸AB上有一排大树,相邻两棵大树之间的距离均为10米.小明先用测角仪在河岸CD的M处测得∠α=36°,然后沿河岸走50米到达N点,测得∠β=72°.请你根据这些数据帮小明他们算出河宽FR(结果保留两位有效数字)(参考数据:sin36°≈0.59,cos36°≈0.81,tan36°≈0.73,sin72°≈0.95,cos72°≈0.31,tan72°≈3.08)5、如图,自来水厂A和村庄B在小河l的两侧,现要在A,B间铺设一知输水管道.为了搞好工程预算,需测算出A,B间的距离.一小船在点P处测得A在正北方向,B位于南偏东24.5°方向,前行1200m,到达点Q处,测得A位于北偏东49°方向,B位于南偏西41°方向.(1)线段BQ与PQ是否相等?请说明理由;(2)求A,B间的距离.(参考数据cos41°=0.75).6、如图所示,一艘轮船以30海里/小时的速度向正北方向航行,在A处得灯塔C在北偏西30°方向,轮船航行2小时后到达B处,在B处时测得灯塔C在北偏西45°方向.当轮船到达灯塔C的正东方向的D处时,求此时轮船与灯塔C的距离.(结果精确到0.1海里,参考数据≈1.41,≈1.73).7如图,港口B在港口A的西北方向,上午8时,一艘轮船从港口A出发,以15海里∕时的速度向正北方向航行,同时一艘快艇从港口B出发也向正北方向航行,上午10时轮船到达D处,同时快艇到达C处,测得C 处在D处得北偏西30°的方向上,且C、D两地相距100海里,求快艇每小时航行多少海里?(结果精确到0.1海里∕时,参考数据≈1.41,≈1.73)8、(2010•陕西)在一次测量活动中,同学们要测量某公园的码头A与他正东方向的亭子B之间的距离,如图他们选择了与码头A、亭子B在同一水平面上的点P在点P处测得码头A位于点P北偏西方向30°方向,亭子B位于点P北偏东43°方向;又测得P与码头A之间的距离为200米,请你运用以上数据求出A与B的距离.练习作业:1、在Rt△ABC中,∠C=90°,∠B=35°,AB=7,则BC的长为()A、7sin35°B、C、7cos35°D、7tan35°2、Rt△ABC中,∠C=90°,a、b、c分别是∠A、∠B、∠C的对边.那么c等于()A、acos A+bsin BB、asin A+bsin BC、D、3、如图AD⊥CD,AB=13,BC=12,CD=3,AD=4,则sinB=()A、B、C、D、4、如图,已知一坡面的坡度i=1:,则坡角α为()A、15°B、20°C、30°D、45°5、如图所示,CD是平面镜,光线从A点出发经CD上的E点反射后到达B点,若入射角为α,AC⊥CD,BD⊥CD,垂足分别为C,D,且AC=3,BD=6,CD=11,则tanα的值是()A、B、C、D、6、如图,沿AC方向开山修路,为了加快施工进度,要在小山的另一边同时施工,从AC上的一点B,取∠ABD=145°,BD=500米,∠D=55度.要使A,C,E成一直线.那么开挖点E离点D的距离是()A、500sin55°米B、500cos55°米C、500tan55°米D、500cot55°米7、如图,在矩形ABCD中,DE⊥AC于E,设∠ADE=α,且cosα=,AB=4,则AD的长为()A、3 B、C、D、8、如图,在梯形ABCD中,AD∥BC,AB=CD=AD,BD⊥CD.(1)求sin∠DBC的值;(2)若BC长度为4cm,求梯形ABCD的面积.9、路边路灯的灯柱BC垂直于地面,灯杆BA的长为2米,灯杆与灯柱BC成120°角,锥形灯罩的轴线AD 与灯杆AB垂直,且灯罩轴线AD正好通过道路路面的中心线(D在中心线上).已知点C与点D之间的距离为12米,求灯柱BC的高.(结果保留根号)10、如图,为了测量某建筑物CD的高度,先在地面上用测角仪自A处测得建筑物顶部的仰角是30°,然后在水平地面上向建筑物前进了100m,此时自B处测得建筑物顶部的仰角是45°.已知测角仪的高度是1.5m,请你计算出该建筑物的高度.(取=1.732,结果精确到1m).11、如图,某船由西向东航行,在点A测得小岛O在北偏东60°,船航行了10海里后到达点B,这时测得小岛O在北偏东45°,船继续航行到点C时,测得小岛O恰好在船的正北方,求此时船到小岛的距离.。
完整版)解直角三角形知识点总结解直角三角形直角三角形的性质:直角三角形有以下几个性质:1.直角三角形的两个锐角互余,即∠A+∠B=90°,因为∠C=90°。
2.在直角三角形中,30°角所对的直角边等于斜边的一半,即BD=AB/2=DC。
这是因为∠A=30°,∠C=90°,根据正弦定理得到BD=AB/2,根据余弦定理得到BD=DC。
3.直角三角形斜边上的中线等于斜边的一半,即CD=AB/2.这是因为D为AB的中点,且∠ACB=90°。
4.勾股定理:a²+b²=c²,其中c为斜边,a、b为直角边。
5.射影定理:在直角三角形中,斜边上的高线是两直角边在斜边上的射影的比例中项,每条直角边是它们在斜边上的射影和斜边的比例中项。
这是因为CD⊥AB,根据相似三角形的性质得到CD²=AD×BD,同时根据勾股定理得到AC²=AD×AB,BC²=BD×AB,因此CD²=AC²-AD²=BC²-BD²。
锐角三角函数的概念:在直角三角形中,锐角A的正弦、余弦、正切、余切分别为sinA、cosA、XXX、cotA,它们的定义如下:sinA=a/c,cosA=b/c,tanA=a/b,cotA=b/a。
锐角三角函数的取值范围是:-1≤sinα≤1,-1≤cosα≤1,tanα≥0,cotα≥0.锐角三角函数之间的关系:1.平方关系:sin²A+cos²A=1.2.倒数关系:tanA×tan(90°-A)=1.3.弦切关系:XXX,XXX。
4.互余关系:sinA=cos(90°-A),cosA=sin(90°-A),tanA=cot(90°-A),cotA=tan(90°-A)。
完整解直角三角形的知识点总结直角三角形是一个重要的几何概念,由于其特殊的性质和应用广泛的场景,掌握直角三角形的知识对于学习几何学和解决实际问题非常重要。
下面是对直角三角形的完整解的知识点总结,包括定义、性质、定理、求解方法等。
一、定义:直角三角形是一个有一个内角为90°的三角形。
直角三角形中的两条边与含有直角的角度有特殊的关系。
二、性质:1.直角三角形中,长边被称为斜边,与直角相对的两条边分别被称为直角边。
2.直角三角形的两个直角边构成直角,斜边是直角的对边。
3.直角三角形的斜边是直角边中最长的边。
三、三角函数:1. 正弦函数(sine):表示一个角的对边与斜边之比。
sinA = a / c。
2. 余弦函数(cosine):表示一个角的临边与斜边之比。
cosA = b / c。
3. 正切函数(tangent):表示一个角的对边与临边之比。
tanA = a / b。
4. 余切函数(cotangent):表示一个角的临边与对边之比。
cotA =b / a。
5. 割函数(secant):表示一个角的斜边与临边之比。
secA = c / b。
6. 余割函数(cosecant):表示一个角的斜边与对边之比。
cscA =c / a。
四、勾股定理:1. 勾股定理(Pythagorean theorem):直角三角形中,斜边的平方等于两个直角边平方和的和。
a^2 + b^2 = c^22.勾股定理的逆定理:如果一个三角形的三条边满足a^2+b^2=c^2,那么这个三角形是直角三角形。
五、特殊直角三角形:1.45°-45°-90°直角三角形:其两个直角边长度相等,斜边长度为直角边长度的√2倍。
2.30°-60°-90°直角三角形:其两个直角边长度之比为1:√3,斜边长度为直角边长度的2倍。
六、解直角三角形的方法:1.已知两边长度,求解第三边:根据勾股定理,利用已知的两条直角边的长度求解斜边的长度。
解直角三角形的知识点总结直角三角形是指其中一个角度为90度的三角形。
解直角三角形需要掌握一些关键知识点,包括勾股定理、三角函数和特殊角度的计算方法。
本文将围绕这些知识进行总结,并提供实例说明。
一、勾股定理勾股定理是解直角三角形中最基本的定理之一,用于计算三角形的边长关系。
根据勾股定理,直角三角形的两个直角边的平方和等于斜边的平方。
表达公式为:c² = a² + b²。
其中,c代表斜边的长度,a和b分别代表两个直角边的长度。
例如,已知一个直角三角形的直角边a=3,b=4,我们可以使用勾股定理计算斜边c的长度:c² = 3² + 4² = 9 + 16 = 25。
因此,c的长度为5。
二、三角函数解直角三角形还要运用三角函数的概念和公式。
三角函数主要包括正弦(sin)、余弦(cos)和正切(tan)三种常见函数。
1. 正弦函数:在直角三角形中,正弦函数的定义为:sinθ = 对边/斜边。
其中,θ代表角度,对边指垂直于斜边的边长,斜边即斜边的长度。
例如,对于一个直角三角形,已知θ=30度,斜边长度为6,我们可以使用正弦函数计算对边的长度:sin30度 = 对边/6。
求解可得对边长度为3。
2. 余弦函数:余弦函数的定义为:cosθ = 临边/斜边。
临边指与角度θ相邻的边的长度。
继续以θ=30度的直角三角形为例,已知斜边长度为6,我们可以使用余弦函数计算临边的长度:cos30度 = 临边/6。
求解可得临边长度为√(6²-3²) = 3√3。
3. 正切函数:正切函数的定义为:tanθ = 对边/临边。
同样以θ=30度的直角三角形为例,已知对边为3,临边为3√3,我们可以使用正切函数计算斜边的长度:tan30度 = 3/(3√3)。
求解可得斜边长度为√3。
三、特殊角度的计算方法解直角三角形时,经常会遇到一些特殊角度,如30度、45度和60度。
锐角三角函数知识点总结1、勾股定理:直角三角形两直角边a 、b 的平方和等于斜边c 的平方。
2、如下图,在Rt △ABC 中,∠C 为直角,则∠A 的锐角三角函数为(∠A 可换成∠B):3、任意锐角的正弦值等于它的余角的余弦值;任意锐角的余弦值等于它的余角的正弦值。
4、任意锐角的正切值等于它的余角的余切值;任意锐角的余切值等于它的余角的正切值。
5、0°、30°、45°、60°、90°特殊角的三角函数值(重要)6 当0°≤α≤90°时,sin α随α的增大而增大,cos α随α的增大而减小。
7、正切、余切的增减性: 当0°<α<90°时,tan α随α的增大而增大,cot α随α的增大而减小。
1、解直角三角形的定义:已知边和角(两个,其中必有一边)→所有未知的边和角。
依据:①边的关系:222c b a =+;②角的关系:A+B=90°;③边角关系:三角函数A90B 90∠-︒=∠︒=∠+∠得由B A 对边邻边 A90B 90∠-︒=∠︒=∠+∠得由B A的定义。
(注意:尽量避免使用中间数据和除法)2、应用举例:(1)仰角:视线在水平线上方的角;俯角:视线在水平线下方的角。
仰角铅垂线水平线视线视线俯角(2)坡面的铅直高度h 和水平宽度l 的比叫做坡度(坡比)。
用字母i 表示,即h i l=。
坡度一般写成1:m 的形式,如1:5i =等。
把坡面与水平面的夹角记作α(叫做坡角),那么tan hi lα==。
3、从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角。
如图3,OA 、OB 、OC 、OD 的方向角分别是:45°、135°、225°。
4、指北或指南方向线与目标方向 线所成的小于90°的水平角,叫做方向角。
如图4,OA 、OB 、OC 、OD 的方向角分别是:北偏东30°(东北方向) , 南偏东45°(东南方向),南偏西60°(西南方向), 北偏西60°(西北方向)。
九上数学解直角三角形知识点
九年级数学解直角三角形知识点主要包括:
1. 锐角三角函数:在直角三角形中,锐角的正弦、余弦和正切值可以通过三角函数的定义直接计算。
例如,在直角三角形ABC中,如果∠C=90°,那么sinA=BC/AB,cosA=AC/AB,tanA=BC/AC。
2. 余角三角函数关系:当两个角互为余角时,它们的三角函数值之间存在一定的关系。
例如,如果∠A+∠B=90°,那么sinA=cosB,cosA=sinB,tanA=cotB,cotA=tanB。
3. 同角三角函数关系:三角函数之间还存在着一些恒等式,例如
sin2A+cos2A=1,tanA·cotA=1。
4. 函数的增减性:在锐角的条件下,正弦和正切函数随着角度的增大而增大,而余弦和余切函数随着角度的增大而减小。
5. 特殊角的三角函数值:对于一些特殊角度(如0°、30°、45°、60°和90°),其三角函数值是已知的。
这些值需要熟练记忆。
6. 解直角三角形:在直角三角形中,已知一些边的长度或者角度,可以通过三角函数来求解其他未知的边或角度。
以上是九年级数学解直角三角形的主要知识点。
在学习时,除了理解每个知识点的含义和计算方法外,还需要通过大量的练习来加深理解和提高解题能力。
解直角三角形直角三角形是指其中一个内角为90度的三角形。
解直角三角形,就是通过已知的信息,求取直角三角形的各边长或者角度的过程。
下面将介绍两种解直角三角形的常用方法:勾股定理和三角函数。
一、勾股定理勾股定理是解直角三角形最基本的方法之一。
它表明,直角三角形的斜边长度的平方等于另外两边长度的平方之和。
设直角三角形的两个边长分别为a和b,斜边长为c,则有勾股定理的表达式为:c² = a² + b²利用勾股定理可以解决以下两种问题:1. 已知两条边的长度,求解第三条边的长度:若直角三角形的两条边分别为3cm和4cm,求解斜边的长度c。
根据勾股定理的表达式可得:c² = 3² + 4²c² = 9 + 16c² = 25c = √25c = 5所以,斜边的长度为5cm。
2. 已知一条边的长度和斜边的长度,求解另一条边的长度:若直角三角形的斜边长度为5cm,一条边的长度为3cm,求解另一条边的长度b。
根据勾股定理的表达式可得:5² = 3² + b²25 = 9 + b²16 = b²b = √16b = 4所以,另一条边的长度为4cm。
二、三角函数除了勾股定理外,三角函数也是解直角三角形的重要方法。
在直角三角形中,正弦、余弦和正切是最常用的三角函数。
下面以解决两个常见的问题为例介绍三角函数的运用。
1. 已知一条边的长度和夹角,求解另一条边的长度:若直角三角形的一条边长为6cm,夹角为30°,求解另一条边的长度a。
根据正弦函数的定义可得:sin(30°) = a / 6a = 6 * sin(30°)a ≈ 3所以,另一条边的长度约为3cm。
2. 已知两条边的长度,求解夹角的大小:若直角三角形的两条边分别为4cm和7cm,求解夹角θ。
根据正弦函数的定义可得:sin(θ) = 4 / 7θ = arcsin(4 / 7)通过计算可得,θ约为42.48°。
《三角函数及解直角三角形》知识点总结Ⅰ、本章知识结构框图:1、正弦、余弦、正切、余切的概念在是三角形ABC中,∠C=90°,(1)锐角A的对边与斜边的比叫做∠A的正弦,记作sinA。
即sinA=∠A的对边=a斜边c(2)锐角A的邻边与斜边的比叫做∠A的余弦,记作cosA。
即cosA=∠A的邻边=b】斜边c(3)锐角A的对边与邻边的比叫做∠A的正切,记作tanA。
即tanA=∠A的对边=a∠A的邻边b(4)锐角A的邻边与对边的比叫做∠A的余切,记作cotA。
即cotA=∠A的邻边=b∠A的对边a锐角A的正弦、余弦、正切、余切都叫做∠A的三角函数。
注意:(1)正弦、余弦、正切、余切都是在直角三角形中给出的,要避免应用时对任意的三角形随便套用定义;@(2)sinA不是sin与A的乘积,是三角形函数记号,是一个整体。
“sinA”表示一个比值,其他三个三角函数记号也是一样的;(3)锐角三角函数值与三角形三边长短无关,只与锐角的大小有关。
2、同角的三角函数之间的关系(1)平方关系:sin²α+cos²α=1α为锐角,即同一锐角的正弦和余弦的平方和等于1;(2)倒数关系:tanα·cotα=1α为锐角,即同一锐角的正切与余切的积为1,互为倒数;(3)商的关系:tanα=,cotα=,;α为锐角,即同一锐角的正弦与余弦的商等于正切,同一锐角的余弦与正弦的商等于余切。
注意:(1)这些关系式都是恒等式,正反均可运用,同时还要注意它们的变形,如:︳sinA︳=1-︳cos²A︳,︳cosA︳=1-sin²A;(2)sin²α是(sinα)²的简写,读作“sinα”的平方;不能将sin²α写成sinα²,前者是α的正弦值的平方,后者表示α²的正弦值。
特殊角有0°、30°、45°、60°、90°,它们的三角函数值如下表:注意:记忆特殊角的三角函数值,可用下述方法:0°、30°、45°、60°、90°的正弦值分别是它们的余弦值分别是¥30°、45°、60°的正切值分别是它们的余切值分别是若∠A+∠B=90°则sinA=cos(90°-A)=cosB任意锐角的正弦值等于它的余角的余弦值cosA=sin(90°-A)=sinB任意锐角的余弦值等于它的余角的正弦值tanA=cot(90°-A)=cotB任意锐角的正切值等于它的余角的余切值cotA=tan(90°-A)=tanB任意锐角的余切值等于它的余角的正切值用计算器求已知锐角的三角函数值和由三角函数值求对应的锐角是必须掌握的。
初三数学:《解直角三角形》知识点总结知识点在不断更新的同时也需要及时的归纳总结,才能更好的掌握,接下来精品学习网初中频道给大家整理解直角三角形知识点整理,供大家参考阅读。
1解直角三角形一、锐角三角函数(一)、锐角三角函数定义在直角三角形ABC中,C=900,设BC=a,CA=b,AB=c,锐角A的四个三角函数是:(1)正弦定义:在直角三角形中ABC,锐角A的对边与斜边的比叫做角A的正弦,记作sinA,即sin A=ca,(2)余弦的定义:在直角三角行ABC,锐角A的邻边与斜边的比叫做角A的余弦,记作cosA,即cos A=cb,(3)正切的定义:在直角三角形ABC中,锐角A的对边与邻边的比叫做角A的正切,记作tanA,即tan A=ba,(4)锐角A的邻边与对边的比叫做A的余切,记作cotA即aAAAb的对边的邻边cot锐角A的正弦、余弦,正切、余切都叫做角A的锐角三角函数。
这种对锐角三角函数的定义方法,有两个前提条件:(1)锐角A必须在直角三角形中,且(2)在直角三角形ABC中,每条边均用所对角的相应的小写字母表示。
否则,不存在上述关系2注意:锐角三角函数的定义应明确(1)ca,cb,ba,ab四个比值的大小同△ABC的三边的大小无关,只与锐角的大小有关,即当锐角A取固定值时,它的四个三角函数也是固定的;(2)sinA不是sinA的乘积,它是一个比值,是三角函数记号,是一个整体,其他三个三角函数记号也是一样;(3)利用三角函数定义可推导出三角函数的性质,如同角三角函数关系,互余两角的三角函数关系、特殊角的三角函数值等;(二)、同角三角函数的关系(1)平方关系:122sinCOS(2)倒数关系:tana cota=1(3)商数关系:sincoscot,cossintan注意:(1)这些关系式都是恒等式,正反均可运用,同事还要注意它们的变形公式。
(2)sinsin22是的简写,读作“sin的平方”,不能将22sin 写成sin前者是a的正弦值的平方,后者无意义;(3)这里应充分理解“同角”二字,上述关系式成立的前提是所涉及的角必须相同,如1cottan,1223030cossin22,而1cossin22就不一定成立。
《三角函数及解直角三角形》知识点总结
Ⅰ、本章知识结构框图:
1、正弦、余弦、正切、余切的概念
在是三角形ABC中,∠C=90°,
(1)锐角A的对边与斜边的比叫做∠A的正弦,记作sinA。
即sinA=∠A的对边=a
斜边c
(2)锐角A的邻边与斜边的比叫做∠A的余弦,记作cosA。
即cosA=∠A的邻边=b
斜边c
(3)锐角A的对边与邻边的比叫做∠A的正切,记作tanA。
即tanA=∠A的对边=a
∠A的邻边b
(4)锐角A的邻边与对边的比叫做∠A的余切,记作cotA。
即cotA=∠A的邻边=b
∠A的对边a
锐角A的正弦、余弦、正切、余切都叫做∠A的三角函数。
注意:(1)正弦、余弦、正切、余切都是在直角三角形中给出的,要避免应用时对任意的三角形随便套用定义;
(2)sinA不是sin与A的乘积,是三角形函数记号,是一个整体。
“sinA”表示一个比值,其他三个三角函数记号也是
一样的;
(3)锐角三角函数值与三角形三边长短无关,只与锐角的大小有关。
2、同角的三角函数之间的关系
(1)平方关系:sin²α+cos²α=1α为锐角,即同一锐角的
正弦和余弦的平方和等于1;
(2)倒数关系:tanα·cotα=1α为锐角,即同一锐角的正
切与余切的积为1,互为倒数;
(3)商的关系:tanα=,
cotα=,
α为锐角,即同一锐角的正弦与余弦的商等于正切,同一锐角的余弦与正弦的商等于余切。
注意:(1)这些关系式都是恒等式,正反均可运用,同时还要注意它们的变形,
如:︳sinA︳=1-︳cos²A︳,︳cosA︳=1-sin²A;
(2)sin²α是(sinα)²的简写,读作“sinα”的平方;
不能将sin²α写成sinα²,前者是α的正弦值的平方,
后者表示α²的正弦值。
3、特殊角的三角函数值
特殊角有0°、30°、45°、60°、90°,它们的三角函数值如下表:
注意:
记忆特殊角的三角函数值,可用下述方法:
0°、30°、45°、60°、90°的正弦值分别是
它们的余弦值分别是
30°、45°、60°的正切值分别是
它们的余切值分别是
4、互为余角的三角函数之间的关系(诱导公式)
若∠A+∠B=90°则
sinA=cos(90°-A)=cosB任意锐角的正弦值等于它的余角的余弦值
cosA=sin(90°-A)=sinB任意锐角的余弦值等于它的余角的正弦值
tanA=cot(90°-A)=cotB任意锐角的正切值等于它的余角的余切值
cotA=tan(90°-A)=tanB任意锐角的余切值等于它的余角的正切值
5、用计算器计算三角函数值
用计算器求已知锐角的三角函数值和由三角函数值求对应的锐角是必须掌握的。
6、三角函数值的变换范围及规律
(1)当0°<α<90°时,
sinα、tanα随着α的增大(或减小)而增大(或减小),
cosα、cotα随着α的增大(或减小)而减小(或增大);
(2)当0°≤α≤90°时,0≤sinα≤1,0≤cosα≤1。
7、直角三角形的边角关系
(1)三边之间的关系:a²+b²=c²(勾股定理);
(2)锐角之间的关系:∠A+∠B=90°;
(3)边角之间的关系:sinA=,cosA=,tanA=,cotA=。
8、解直角三角形的概念及基本类型
(1)概念:在直角三角形中,用除直角外的已知元素,求出所有未知元素的过程,叫做解直角三角形。
注意:在直角三角形中,除直角外,一共有5个元素,即3条边和2
个锐角。
(2)解直角三角形的两种基本类型————①已知两边长;
②已知一锐角和一边。
注意:已知两锐角不能解直角三角形。
9、解直角三角形的方法
“有斜(斜边)用弦(正弦、余弦),无斜用切(正切、余切,宁乘毋除,取原避中),”这几句话的意思是:当已知或求解中有斜边时,就用正弦或余弦,无斜边时,就用正切或余切;当所求的元素既可用乘法又可用除法时,则用乘法,不用除法;既可以由已知数据又可由中间数据求解时,则用已知数据,尽量避免用中间数据。
10、解非直角三角形的方法
对于非直角三角形,往往要通过作辅助线构造直角三角形来解,作辅助线的一般思路是:
(1)作垂线构成直角三角形;
(2)利用图形本身的性质,如等腰三角形顶角平分线垂直于底边。
11、解直角三角形的实际应用的步骤
(1)审题
①分析题意,理解实际问题的意义,看懂题目给出的示意图或自己画出的示意图,找出要解的直角三角形;
②把实际问题中的数量关系,转移到直角三角形的各元素上,找出已知元素和未知元素;
③根据已知元素和未知元素之间的关系,选择合适的三角函数关系式。
(2)解题————注意精确度
(3)答——————注意答的完整及注明单位
Ⅲ、本章数学思想方法:
数形结合思想:此部分内容经常用到数形结合思想,对于每一个题都可结合图形分析,会更清楚简捷。
数与形相结合,是问题清晰,思路简捷有条
理,是几何知识中最常用的思想方法之一,也是最应该坚持实施的
方法。
从特殊到一般的归纳总结法:锐角三角函数中包含了特殊角的三角函数值,对于
三角函数之间的关系和转化,都可从特殊角开始。
转化思想:把直角三角形的线段比,转化为三角函数值或面积的比。
数学的建模思想:解直角三角形的实际应用,即将实际问题“数学化”,构建直角三角形来解决问题。