2020年重庆市双福育才中学中考数学第二次模拟测试试卷(解析版)
- 格式:doc
- 大小:1.51 MB
- 文档页数:32
重庆市2020年初三第二次模拟考试数学试题一.选择题(满分48分,每小题4分)1.我国是最早使用负数的国家,东汉初,在我国著名的数学书九章算术中,明确提出了“正负术”如果盈利2000元记作“元”,那么亏损3000元记作A. 元B. 3000元C. 5000元D. 元2.下列交通标志是中心对称图形的为()A. B. C. D.3.下列调查中,最合适采用全面调查(普查)方式的是()A. 对重庆市民知晓“中国梦”内涵情况的调查B. 对2018年元旦节磁器口游客量情况的调查C. 对全国中小学生身高情况的调查D. 对全班同学参加“反邪教”知识问答情况的调查4.如图,将一些形状相同的小五角星按图中所规放,据此规律,第10个图形有()个五角星.A. 120B. 121C. 99D. 1005.如图,在中,点在边上,的延长线交于点,下列结论错误的是( )A. B. C. D.6.如图,M是菱形ABCD的边AB中点,MO=5cm,则菱形ABCD的周长为()A. 5 cmB. 10 cmC. 20 cmD. 40 cm7.下列各式中,与是同类二次根式的是( )A. B. C. D.8.按如图所示的运算程序,能使运算输出的结果为7的是()A. x=﹣2,y=3B. x=﹣2,y=﹣3C. x=8,y=﹣3D. x=﹣8,y=39.如图,)O中,CD是切线,切点是D,直线CO交)O于B,A,)A=20°,则)C的度数是()A. 25°B. 65°C. 50°D. 75°10.如图,某底面为圆形的古塔剖面和山坡的剖面在同一平面上,古塔EF(F为塔底的中心)与地面BD垂直,古塔的底面直径CD=8米,BC=10米,斜坡AB=26米,斜坡坡面AB 的坡度i=5:12,在坡脚的点A处测得古塔顶端点E的仰角)GAE=47°,则古塔EF的高度约()(参考数据:sin47°≈0.73,cos47°≈0.68,tan47°≈1.07)A. 27.74米B. 30.66米C. 35.51米D. 40.66米11.如图,已知双曲线y=)k)0)经过直角三角形OAB斜边OB的中点D,且与直角边AB 相交于点C.若点B的坐标为(4)6),则)AOC的面积为()A. 3B. 6C. 9D. 1212.使得关于x的不等式组有解,且使分式方程有非负整数解的所有的m的和是()A. ﹣1B. 2C. ﹣7D. 0二.填空题(满分24分,每小题4分)13.计算:cos230°+|1﹣|﹣2sin45°+(π﹣3.14)0=________.14.如图,在)ACB中,AB=3,现将)ACB绕点A逆时针旋转60°得到)AC1B1,此时A、C、B1三点正好在同一直线上,则阴影部分的面积为_.15.同时抛掷两枚质地均匀的硬币,则两枚硬币全部正面向上的概率是.16.已知在)ABC中,AB=AC.(1)若)A=36º,在)ABC中画一条线段,能得到2个等腰三角形(不包括...)ABC),这2个等腰三角形的顶角的度数分别是_____;(2)若)A≠36º,当)A=_____时,在等腰)ABC中画一条线段,能得到2个等腰三角形(不包括...)ABC).(写出两个答案即可)17.A、B两地之间的路程为2480米,甲、乙两人分别从A、B两地出发,相向而行,已知甲先出发4分钟后,乙才出发,他们两人在A、B之间的C地相遇,相遇后,甲立即返回A地,乙继续向A地前行甲到达A地时停止行走,乙到达A地时也停止行走,在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程y(米)与甲出发的时间x (分钟)之间的关系如图所示,则乙到达A地时,甲与A地相距的路程是___米.18.如图,小华买了一盒福娃和一枚奥运徽章,已知一盒福娃的价格比一枚奥运徽章的价格贵120元,则一盒福娃价格是____元.三.解答题(共7小题,满分70分,每小题10分)19.化简:)1) )2)20.如图,在)ABC中,AB=AC,CD平分)ACB交AB于点D,AE)DC交BC的延长线于点E,已知)E=38°,求)BAC的度数.21.某校八年级两个班,各选派10名学生参加学校举行的“美丽绍兴乡土风情知识”大赛预赛各参赛选手的成绩如下:八(1)班:88,91,92,93,93,93,94,98,98,100;八(2)班:89,93,93,93,95,96,96,98,98,99.通过整理,得到数据分析表如下:(1)求表中m、n的值;(2)依据数据分析表,有同学说:“最高分在(1)班,(1)班的成绩比(2)班好”,但也有同学说(2)班的成绩更好请您写出两条支持八(2)班成绩好的理由.22.已知抛物线y=ax2+bx+3与y轴的交点为A,点A与点B关于抛物线的对称轴对称,二次函数y=ax2+bx+3的y与x的部分对应值如下表:(1)抛物线的对称轴是_________ .点A(______,____),B(_____,_____);(2)求二次函数y=ax2+bx+3的解析式;(3)已知点M(m,n)在抛物线y=ax2+bx+3上,设)BAM的面积为S,求S与m的函数关系式、画出函数图象.并利用函数图象说明S是否存在最大值,为什么?23.鲜丰水果店计划用元/盒的进价购进一款水果礼盒以备销售.据调查,当该种水果礼盒的售价为元/盒时,月销量为盒,每盒售价每增长元,月销量就相应减少盒,若使水果礼盒的月销量不低于盒,每盒售价应不高于多少元?在实际销售时,由于天气和运输的原因,每盒水果礼盒的进价提高了,而每盒水果礼盒的售价比(1)中最高售价减少了,月销量比(1)中最低月销量盒增加了,结果该月水果店销售该水果礼盒的利润达到了元,求的值.24.已知,)ABC为等边三角形,点D为直线BC上一动点(点D不与B、C重合).以AD为边作菱形ADEF,使)DAF=60°,连接CF.)如图1,当点D在边BC上时,求证:)ADB=)AFC;)请直接判断结论)AFC=)ACB+)DAC是否成立;)如图2,当点D在边BC的延长线上时,其他条件不变,结论)AFC=)ACB+)DAC是否成立?请写出)AFC、)ACB、)DAC之间存在的数量关系,并写出证明过程;)如图3,当点D在边CB的延长线上时,且点A、F分别在直线BC的异侧,其他条件不变,请补全图形,并直接写出)AFC、)ACB、)DAC之间存在的等量关系.25.关于x的方程(2m+1)x2+4mx+2m﹣3=0有两个不相等的实数根.(1)求m取值范围;(2)是否存在实数m,使方程的两个实数根的倒数之和等于﹣1?若存在,求出m的值;的若不存在,说明理由.四.解答题(共1小题,满分8分,每小题8分)26.如图,抛物线y=x2+bx+c与x轴交于点A和B(3,0),与y轴交于点C(0,3).(1)求抛物线的解析式;(2)若点M是抛物线上在x轴下方的动点,过M作MN)y轴交直线BC于点N,求线段MN的最大值;(3)E是抛物线对称轴上一点,F是抛物线上一点,是否存在以A,B,E,F为顶点的四边形是平行四边形?若存在,请直接写出点F的坐标;若不存在,请说明理由.重庆市2020年初三第二次模拟考试数学试题答案一.选择题(满分48分,每小题4分)1.我国是最早使用负数的国家,东汉初,在我国著名的数学书九章算术中,明确提出了“正负术”如果盈利2000元记作“元”,那么亏损3000元记作A. 元B. 3000元C. 5000元D.元【答案】A如果盈利2000元记作“元”,那么亏损3000元记作“元”,故选A.2.下列交通标志是中心对称图形的为()A. B. C. D.【答案】C解:A、属于轴对称图形,不是中心对称的图形,不合题意;B、是中心对称的图形,但不是交通标志,不符合题意;C、属于轴对称图形,属于中心对称的图形,符合题意;D、不是中心对称的图形,不合题意.故选:C.3.下列调查中,最合适采用全面调查(普查)方式的是()A. 对重庆市民知晓“中国梦”内涵情况的调查B. 对2018年元旦节磁器口游客量情况的调查C. 对全国中小学生身高情况的调查D. 对全班同学参加“反邪教”知识问答情况的调查【答案】DA. 调查范围广适合抽样调查,故A不符合题意;B. 调查具有破坏性适合抽样调查,故B不符合题意;C. 调查范围广适合抽样调查,故C不符合题意;D. 适合普查,故D符合题意;故选:D.4.如图,将一些形状相同的小五角星按图中所规放,据此规律,第10个图形有()个五角星.A. 120B. 121C. 99D. 100【答案】A第1个图形中小五角星的个数为3;第2个图形中小五角星的个数为8;第3个图形中小五角星的个数为15;第4个图形中小五角星的个数为24;则知第n个图形中小五角星的个数为n(n+1)+n.故第10个图形中小五角星的个数为10×11+10=120个,故选:A.5.如图,在中,点在边上,的延长线交于点,下列结论错误的是( )A. B. C. D.【答案】B)四边形ABCD是平行四边形,)AD=BC,AD)BC,AB)CD,A、)BC)AD,))FEC))F AD,),)AD=BC,),正确,故本选项不符合题意;B、)BC)AD,))FEC))F AD,),)AD=BC,),)错误,故本选项符合题意;C、)BC)AD,))FEC))F AD,),)AD=BC,),正确,故本选项不符合题意;D、)AB)CD,))AEB))FEC,),正确,故本选项不符合题意;故选:B.6.如图,M是菱形ABCD的边AB中点,MO=5cm,则菱形ABCD的周长为()A. 5 cmB. 10 cmC. 20 cmD. 40 cm 【答案】D)菱形的对角线互相垂直平分,又直角三角形斜边上的中线等于斜边的一半,)根据三角形中位线定理可得:BC=2OM=10)则菱形ABCD的周长为40cm.故选D.7.下列各式中,与是同类二次根式的是( )A. B. C. D.【答案】A解:A、=2与是同类二次根式,故本选项正确;B、=2与不是同类二次根式,故本选项错误;C、=2与不是同类二次根式,故本选项错误;D、=3与不是同类二次根式,故本选项错误;故选:A.8.按如图所示的运算程序,能使运算输出的结果为7的是()A. x=﹣2,y=3B. x=﹣2,y=﹣3C. x=8,y=﹣3D. x=﹣8,y=3【答案】CA、当x=﹣2,y=3时,原式=﹣4+9=5,不符合题意;B、当x=﹣2,y=﹣3时,原式=﹣4+9=5,不符合题意;C、当x=8,y=﹣3时,原式=16﹣9=7,符合题意;D、当x=﹣8,y=3时,原式=﹣16+9=﹣7,不符合题意.故选:C.9.如图,)O中,CD是切线,切点是D,直线CO交)O于B,A,)A=20°,则)C的度数是()A. 25°B. 65°C. 50°D. 75°【答案】C连接OD,)CD是)O的切线,))ODC=90°,)COD=2)A=40°,))C=90°-40°=50°,故选C.10.如图,某底面为圆形的古塔剖面和山坡的剖面在同一平面上,古塔EF(F为塔底的中心)与地面BD垂直,古塔的底面直径CD=8米,BC=10米,斜坡AB=26米,斜坡坡面AB 的坡度i=5:12,在坡脚的点A处测得古塔顶端点E的仰角)GAE=47°,则古塔EF的高度约()(参考数据:sin47°≈0.73,cos47°≈0.68,tan47°≈1.07)A. 27.74米B. 30.66米C. 35.51米D. 40.66米【答案】B如图,延长EF交AG于点H,则EH)AG,作BP)AG于点P,由i =5:12可设BP =5x ,则AP =12x ,由BP 2+AP 2=AB 2可得(5x )2+(12x )2=262,解得:x =2(负值舍去),则FH =BP =10,AP =24,)CF =4,BC =10,)HP =BF =14,)AH =38,则EH =AH tan)GAE =38×tan47°≈40.66,)EF =EH ﹣FH =4066﹣10=30.66(米),故选:B .11.如图,已知双曲线y=)k)0)经过直角三角形OAB 斜边OB 的中点D ,且与直角边AB 相交于点C .若点B 的坐标为(4)6),则)AOC 的面积为( )A. 3B. 6C. 9D. 12【答案】A )点B 的坐标为(4,6),..【2020年中考数学——精品提分卷】)点D的坐标为(2,3),把(2,3)代入y=得,k=6,)故选A.12.使得关于x的不等式组有解,且使分式方程有非负整数解的所有的m的和是()A. ﹣1B. 2C. ﹣7D. 0【答案】C)关于x的不等式组有解,)1﹣2m>m﹣2,解得m<1,由得x=,)分式方程有非负整数解,)x=是非负整数,)m<1,)m=﹣5,﹣2,)﹣5﹣2=﹣7,故选:C.二.填空题(满分24分,每小题4分)13.计算:cos230°+|1﹣|﹣2sin45°+(π﹣3.14)0=________.【答案】原式故答案为:.14.如图,在)ACB中,AB=3,现将)ACB绕点A逆时针旋转60°得到)AC1B1,此时A、C、B1三点正好在同一直线上,则阴影部分的面积为_.【答案】π.由旋转得:)B1AB=60°,)S)ABC=S)AB1C1,由此可得S阴影=S扇形ABB1==.故答案为:π.15.同时抛掷两枚质地均匀的硬币,则两枚硬币全部正面向上的概率是.【答案】.画树状图为:共有4种等可能的结果数,其中两枚硬币全部正面向上的结果数为1,所以两枚硬币全部正面向上的概率=.故答案为:.16.已知在)ABC中,AB=AC.(1)若)A=36º,在)ABC中画一条线段,能得到2个等腰三角形(不包括...)ABC),这2个等腰三角形的顶角的度数分别是_____;(2)若)A≠36º,当)A=_____时,在等腰)ABC中画一条线段,能得到2个等腰三角形(不包括...)ABC).(写出两个答案即可)【答案】(1). (1)36°,108°;(2). (2),90°,108°.(1)如图1所示))AB=AC))A=36°))当AE=BE)则)A=)ABE=36°)则)AEB=108°)则)EBC=36°))这2个等腰三角形的顶角度数分别是36°和108°)故答案为:36°,108°))2)如图1))AB=AC)))ABC=)C))AD=BD)))ABD=)A)))BDC=2)A))BC=DC)))DBC=)CDB=2)A)))C=)ABC=3)A)))A+)ABC+)C=180°)))A+3)A+3)A=180°))7)A=180°))A=)如图2)AB=AC))ABD和)ADC都是等腰三角形))BAC=45°+45°=90°)如图3)AB=AC))ABD和)ADC都是等腰三角形))BAC=36°+72°=108°)故答案为:或90°或108°)17.A、B两地之间的路程为2480米,甲、乙两人分别从A、B两地出发,相向而行,已知甲先出发4分钟后,乙才出发,他们两人在A、B之间的C地相遇,相遇后,甲立即返回A地,乙继续向A地前行甲到达A地时停止行走,乙到达A地时也停止行走,在整个行走过程中,甲、乙两人均保持各自的速度匀速行走,甲、乙两人相距的路程y(米)与甲出发的时间x (分钟)之间的关系如图所示,则乙到达A地时,甲与A地相距的路程是___米.【答案】300.甲的速度为(2480﹣2240)÷4=60(米/分钟),乙的速度为(2240﹣840)÷(14﹣4)﹣60=80(米/分钟),甲、乙相遇的时间为4+2240÷(60+80)=20(分钟),A、C两地之间距离为60×20=1200(米),乙到达A地时,甲与A地相距的路程为1200﹣1200÷80×60=300(米).的故答案为:300.18.如图,小华买了一盒福娃和一枚奥运徽章,已知一盒福娃的价格比一枚奥运徽章的价格贵120元,则一盒福娃价格是____元.【答案】145.设一盒福娃价格是x元,则x+x﹣120=170,解得:x=145.则一盒福娃价格是145元.故答案为:145.三.解答题(共7小题,满分70分,每小题10分)19.化简:)1) )2)【答案】(1);(2).(1)原式=.=.原式====.20.如图,在)ABC中,AB=AC,CD平分)ACB交AB于点D,AE)DC交BC的延长线于点E,已知)E=38°,求)BAC的度数.【答案】)BAC=28°.)CD平分)ACB,))BCD=)ACB,)AE)DC,))BCD=)E=38°,))ACB=2×38°=76°,)AB=AC,))B=)ACB=76°,))BAC=180°﹣)B﹣)ACB=28°.21.某校八年级两个班,各选派10名学生参加学校举行的“美丽绍兴乡土风情知识”大赛预赛各参赛选手的成绩如下:八(1)班:88,91,92,93,93,93,94,98,98,100;八(2)班:89,93,93,93,95,96,96,98,98,99.通过整理,得到数据分析表如下:(1)求表中m、n的值;(2)依据数据分析表,有同学说:“最高分在(1)班,(1)班的成绩比(2)班好”,但也有同学说(2)班的成绩更好请您写出两条支持八(2)班成绩好的理由.【答案】(1)八(1)班的平均分94;八(2)班的中位数95.5;(2)支持八(2)班成绩好.理由见解析.(1)八(1)班的平均分m=×(88+91+92+93+93+93+94+98+98+100)=94;八(2)班的中位数n==95.5;(2)八(2)班的平均分高于八(1)班;八(2)班的成绩集中在中上游,故支持八(2)班成绩好.22.已知抛物线y=ax2+bx+3与y轴的交点为A,点A与点B关于抛物线的对称轴对称,二次函数y=ax2+bx+3的y与x的部分对应值如下表:(1)抛物线的对称轴是_________ .点A(______,____),B(_____,_____);(2)求二次函数y=ax2+bx+3的解析式;(3)已知点M(m,n)在抛物线y=ax2+bx+3上,设)BAM的面积为S,求S与m的函数关系式、画出函数图象.并利用函数图象说明S是否存在最大值,为什么?【答案】(1)x=2,A(0,3),B(4,3);(2)y=x2-4x+3;(3)S=,S不存在最大值,从图象可知:当m<0或m>4时,S 的值可以无限大.【答案】(1)根据当x=1和3时,y=0,得出抛物线的对称轴是:直线x=2,)抛物线y=ax2+bx+3与y轴的交点为A,)x=0时,y=3,则点A(0,3),故B(4,3);(2)图象过(1,0),(3,0),设抛物线为y=a(x-1)(x-3),把(0,3)代入可得:3=a(0-1)(0-3),解得:a=1,故二次函数y=ax2+bx+3的解析式为:y=(x-1)(x-3)=x2-4x+3;(3)如图1,)AB)x轴,AB=4,当0<m<4时,点M到AB的距离为3-n,)S)ABM=(3-n)×4=6-2n,又)n=m2-4m+3,S1=-2m2+8m,)当m<0或m>4时,点M到直线AB的距离为n-3,S2=×4(n-3)=2n-6,而n=m2-4m+3,S2=2m2-8m,S=,故函数图象如图2(x轴上方部分)所示,S不存在最大值,从图象可知:当m<0或m>4时,S的值可以无限大23.鲜丰水果店计划用元/盒的进价购进一款水果礼盒以备销售.据调查,当该种水果礼盒的售价为元/盒时,月销量为盒,每盒售价每增长元,月销量就相应减少盒,若使水果礼盒的月销量不低于盒,每盒售价应不高于多少元?在实际销售时,由于天气和运输的原因,每盒水果礼盒的进价提高了,而每盒水果礼盒的售价比(1)中最高售价减少了,月销量比(1)中最低月销量盒增加了,结果该月水果店销售该水果礼盒的利润达到了元,求的值.【答案】(1)若使水果礼盒的月销量不低于盒,每盒售价应不高于元;(2)的值为.解:设每盒售价元.依题意得:解得:答:若使水果礼盒的月销量不低于盒,每盒售价应不高于元依题意:令:化简:解得:(舍),答:的值为.【点睛】考查一元二次方程的应用,一元一次不等式的应用,读懂题目,找出题目中的等量关系或不等关系是解题的关键.24.已知,)ABC为等边三角形,点D为直线BC上一动点(点D不与B、C重合).以AD为边作菱形ADEF,使)DAF=60°,连接CF.)如图1,当点D在边BC上时,求证:)ADB=)AFC;)请直接判断结论)AFC=)ACB+)DAC是否成立;)如图2,当点D在边BC的延长线上时,其他条件不变,结论)AFC=)ACB+)DAC是否成立?请写出)AFC、)ACB、)DAC之间存在的数量关系,并写出证明过程;)如图3,当点D在边CB的延长线上时,且点A、F分别在直线BC的异侧,其他条件不变,请补全图形,并直接写出)AFC、)ACB、)DAC之间存在的等量关系.【答案】))证明:))ABC为等边三角形,)AB=AC,)BAC=60°))DAF=60°))BAC=)DAF))BAD=)CAF)四边形ADEF是菱形,)AD=AF))ABD))ACF))ADB=)AFC)结论:)AFC=)ACB+)DAC成立.)结论)AFC=)ACB+)DAC不成立.)AFC、,)ACB、)DAC之间的等量关系是)AFC=)ACB-)DAC(或这个等式的正确变式)证明:))ABC为等边三角形)AB=AC)BAC=60°))BAC=)DAF))BAD=)CA F)四边形ADEF是菱形)AD=AF.))ABD))ACF))ADC=)AFC又))ACB=)ADC+)DAC,))AFC=)ACB-)DA C)补全图形如下图)AFC、)ACB、)DAC之间的等量关系是)AFC=2)ACB-)DAC(或)AFC+)DAC+)ACB=180°以及这两个等式的正确变式).【解析】(1)此题只需由AB=AC,AD=AF,)BAD=)CAF,按照SAS判断两三角形全等得出)ADB=)AFC;(2)此题应先判断得出正确的等量关系,然后再根据)ABD))ACF即可证明;(3)此题只需补全图形后由图形即可得出)AFC、)ACB、)DAC之间存在的等量关系.25.关于x的方程(2m+1)x2+4mx+2m﹣3=0有两个不相等的实数根.(1)求m取值范围;(2)是否存在实数m,使方程的两个实数根的倒数之和等于﹣1?若存在,求出m的值;的若不存在,说明理由.【答案】(1)m>﹣且m≠﹣;(2)不存在.理由见解析.(1))方程有2个不相等的实数根,))>0,即16m2﹣4×(2m+1)(2m﹣3)>0,解得:m>,又2m+1≠0,)m≠,)m>且m≠;(2))x1+x2=、x1x2=,)=,由=﹣1可得=﹣1,解得:m=,),)不存在.四.解答题(共1小题,满分8分,每小题8分)26.如图,抛物线y=x2+bx+c与x轴交于点A和B(3,0),与y轴交于点C(0,3).(1)求抛物线的解析式;(2)若点M是抛物线上在x轴下方的动点,过M作MN)y轴交直线BC于点N,求线段MN的最大值;(3)E是抛物线对称轴上一点,F是抛物线上一点,是否存在以A,B,E,F为顶点的四边形是平行四边形?若存在,请直接写出点F的坐标;若不存在,请说明理由.【答案】(1) y=x2﹣4x+3;(2);(3)见解析.(1)将点B(3,0)、C(0,3)代入抛物线y=x2+bx+c中,得:,解得:,故抛物线的解析式为y=x2﹣4x+3;(2)设点M的坐标为(m,m2﹣4m+3),设直线BC的解析式为y=kx+3,把点B(3,0)代入y=kx+3中,得:0=3k+3,解得:k=﹣1,)直线BC的解析式为y=﹣x+3,)MN)y轴,)点N的坐标为(m,﹣m+3),)抛物线的解析式为y=x2﹣4x+3=(x﹣2)2﹣1,)抛物线的对称轴为x=2,)点(1,0)在抛物线的图象上,)1<m<3.)线段MN=﹣m+3﹣(m2﹣4m+3)=﹣m2+3m=﹣(m﹣)2+,)当m=时,线段MN取最大值,最大值为;(3)存在.点F的坐标为(2,﹣1)或(0,3)或(4,3).当以AB为对角线,如图1,)四边形AFBE为平行四边形,EA=EB,)四边形AFBE为菱形,)点F也在对称轴上,即F点为抛物线的顶点,)F点坐标为(2,﹣1);当以AB为边时,如图2,【2020年中考数学——精品提分卷】第 2 页 / 共 31 页 )四边形AFBE 平行四边形,)EF =AB =2,即F 2E =2,F 1E =2,)F 1的横坐标为0,F 2的横坐标为4,对于y =x 2﹣4x+3,当x =0时,y =3;当x =4时,y =16﹣16+3=3,)F 点坐标为(0,3)或(4,3),综上所述,F 点坐标为(2,﹣1)或(0,3)或(4,3).。
重庆市中考数学二诊试卷一、选择题:(本大题12个小题,每小题4分,共48分)在每小题的下面,只有一个答案是正确的.1.5的绝对值是()A.5 B.﹣5 C.±5 D.2.下列运算正确的是()A.a2+2a3=3a5 B.﹣3a+2a=﹣a C.(3a3)2=6a6D.a8÷a2=a43.如图,直线a、b被直线c所截,下列条件不能保证a、b平行的是()A.∠1=∠2 B.∠2=∠3 C.∠3=∠4 D.∠1+∠4=180°4.x取下列各数中的哪个数时,二次根式没有意义()A.B.2 C.1 D.05.在等腰△ABC中,AB=AC,其周长为16cm,则AB边的取值范围是()A.1cm<AB<4cm B.3cm<AB<6cm C.4cm<AB<8cm D.5cm<AB<10cm 6.在Rt△ABC中,∠C=90°,若,则sinB的值得是()A.B.C.D.7.五箱苹果的质量(单位:kg)分别为:19,20,21,22,19,则这五箱苹果质量的众数和中位数分别为()A.21和19 B.20和19 C.19和19 D.19和228.已知点A(﹣3,7)在抛物线y=x2+4x+10上,则点A关于抛物线对称轴的对称点坐标为()A.(0,7)B.(﹣1,7)C.(﹣2,7)D.(﹣3,7)9.如图,已知A、B、C在⊙O上,∠A=∠B=19°,则∠AOB的度数是()A.68°B.66°C.78°D.76°10.在物理实验课上,小明用弹簧称将铁块A悬于盛有水的水槽中,然后匀速向上提起(不考虑水的阻力),直至铁块完全露出水面一定高度,则下图能反映弹簧称的读数y(单位N)与铁块被提起的高度x(单位cm)之间的函数关系的大致图象是()A.B.C.D.11.如图是一组有规律的图案,第1个图案由1个▲组成,第2个图案由4个▲组成,第3个图案由7个▲组成,第4个图案由10个▲组成,…,则第7个图案▲的个数为()A.16 B.17 C.18 D.1912.如图,矩形ABCD中,AB=3,BC=4,动点P从B点出发,在BC上移动至点C停止.记PA=x,点D到直线PA的距离为y,则y关于x的函数解析式是()A.y=12x B.C.D.二、填空题:(本大题6个小题,每小题4分,共24分)13.计算:= .14.方程的解是.15.如图,将Rt△ABC绕直角顶点顺时针旋转90°,得到△A′B′C,连接AA′,∠1=26°,则∠B的度数是.16.如图,在△ABC中,AB=AC,∠A=120°,BC=2,⊙A与BC相切于点D,且交AB,AC于M,N两点,则图中阴影部分的面积是(保留π).17.从﹣4、3、5这三个数中,随机抽取一个数,记为a,那么,使关于x的方程x2+4x+a=0有解,且使关于x的一次函数y=2x+a的图象与x轴、y轴围成的三角形面积恰好为4的概率.18.如图,已知,正方形ABCD的边长为1,点E、F分别在AC、DC上,若EC=BC,EF⊥BE,BF 与EC交于G,则BG与GF的乘积为.三、解答题:(本大题2个小题,每小题7分,共14分)19.计算:.20.如图,矩形ABCD的对角线AC、BD相交于点O,过点O作OE⊥AC交AD于E,若AB=6,AD=8,求sin∠OEA的值.四、解答题(本大题4个小题,每小题10分,共40分)21.先化简,再求值:(﹣)÷,其中,a是方程x2+3x+1=0的根.22.为了增强学生环保意识,我区举办了首届“环保知识大赛”,经选拔后有30名学生参加决赛,这30,名学生同事解答50个选择题,若每正确一个选择题得2分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:组别成绩x分频数(人数)第1组50≤x<60 3第2组60≤x<70 8第3组70≤x<80 13第4组80≤x<90 a第5组90≤x<100 2(1)求表中a的值;(2)请把频数分布直方图补充完整;(3)若测试成绩不低于80分为优秀,则本次测试的优秀率是多少?(4)第4组的同学将抽出3名对第一组3名同学进行“一帮一”辅导,则第4组的小宇与小强能同时抽到的概率是多少?23.在“红五月”读书活动中,社区计划筹资15000元购买科普书籍和文艺刊物.(1)计划购买文艺刊物的资金不少于购买科普书籍资金的2倍,那么最少用多少资金购买文艺刊物?(2)经初步了解,有150户居民自愿参与集资,那么平均每户需集资100元,经筹委会进一步宣传,自愿参加的户数在150户的基础上增加了a%(其中a>50),如果每户平均集资在100元的基础上减少a%,那么实际筹资将比计划筹资多3000元,求a的值.24.如图,已知,∠BAC=90°,AB=AC,BD是∠ABC的平分线,且CE⊥BD交BD延长线于点E.(1)若AD=1,求DC;(2)求证:BD=2CE.五、解答题(本大题2个小题,各12分,共24分)每小题必须给出必要的演算过程或推理步骤.25.如图,矩形ABC0位于直角坐标平面,O为原点,A、C分别在坐标轴上,B的坐标为(8,6),线段BC上有一动点P,已知点D在第一象限.(1)D是直线y=2x+6上一点,若△APD是等腰直角三角形,求点D的坐标;(2)D是直线y=2x﹣6上一点,若△APD是等腰直角三角形.求点D的坐标.26.如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,﹣3)点,点P是直线BC下方的抛物线上一动点.(1)求这个二次函数的表达式.(2)连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC 的最大面积.重庆市中考数学二诊试卷参考答案与试题解析一、选择题:(本大题12个小题,每小题4分,共48分)在每小题的下面,只有一个答案是正确的.1.5的绝对值是()A.5 B.﹣5 C.±5 D.【考点】绝对值.【分析】根据绝对值的定义,可直接得出5的绝对值.【解答】解:|5|=5,故选:A.【点评】本题考查了绝对值的定义,是中考的常见题型,比较简单,熟记绝对值的定义是解决本题的关键.2.下列运算正确的是()A.a2+2a3=3a5 B.﹣3a+2a=﹣a C.(3a3)2=6a6D.a8÷a2=a4【考点】同底数幂的除法;合并同类项;幂的乘方与积的乘方.【分析】根据同底数幂的除法,积的乘方,合并同类项,即可解答.【解答】解:A.a2与2a3不是同类项,不能合并,故错误;B.﹣3a+2a=﹣a,正确;C.(3a3)2=9a6,故错误;D.a8÷a2=a6,故错误;故选:B.【点评】本题考查同底数幂的除法,积的乘方,合并同类项,解决本题的关键是熟记同底数幂的除法,积的乘方,合并同类项的定义.3.如图,直线a、b被直线c所截,下列条件不能保证a、b平行的是()A.∠1=∠2 B.∠2=∠3 C.∠3=∠4 D.∠1+∠4=180°【考点】平行线的判定.【分析】分别根据同位角相等两直线平行、内错角相等两直线平行、同旁内角互补两直线平行进行判断即可.【解答】解:A、由∠1=∠2,得到a∥b,所以A选项正确;B、由∠2=∠3,得到a∥b,所以B选项正确;C、由∠3=∠4,无法判断a与b的关系所以C选项错误;D、由∠1=∠3,∠3+∠4=180°,得到a∥b,所以D选项正确.故选C.【点评】本题考查了平行线的判定定理:同位角相等两直线平行、内错角相等两直线平行、同旁内角互补两直线平行.也考查了对顶角相等的性质.4.x取下列各数中的哪个数时,二次根式没有意义()A.B.2 C.1 D.0【考点】二次根式有意义的条件.【分析】先根据二次根式有意义的条件列出关于x的不等式,求出x的取值范围即可.【解答】解:∵二次根式没有意义,∴x﹣1<0,解得x<1.故选D.【点评】本题考查的是二次根式有意义的条件,熟知二次根式具有非负性是解答此题的关键.5.在等腰△ABC中,AB=AC,其周长为16cm,则AB边的取值范围是()A.1cm<AB<4cm B.3cm<AB<6cm C.4cm<AB<8cm D.5cm<AB<10cm【考点】等腰三角形的性质;三角形三边关系.【分析】设AB=AC=x,则BC=16﹣2x,根据三角形的三边关系即可得出结论.【解答】解:∵在等腰△ABC中,AB=AC,其周长为16cm,∴设AB=AC=x cm,则BC=(16﹣2x)cm,∴,解得4cm<x<8cm.故选:C.【点评】本题考查的是等腰三角形的性质、解一元一次不等式组,熟知等腰三角形的两腰相等是解答此题的关键.6.在Rt△ABC中,∠C=90°,若,则sinB的值得是()A.B.C.D.【考点】同角三角函数的关系.【分析】根据sin2B+cos2B=1和即可求出答案.【解答】解:∵sin2B+cos2B=1,,∴sin2B=1﹣()2=,∵∠B为锐角,∴sinB=,故选A.【点评】本题考查了同角三角函数的关系的应用,能知道sin2B+cos2B=1是解此题的关键,难度适中.7.五箱苹果的质量(单位:kg)分别为:19,20,21,22,19,则这五箱苹果质量的众数和中位数分别为()A.21和19 B.20和19 C.19和19 D.19和22【考点】众数;中位数.【分析】找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.【解答】解:从小到大排列此数据为:19、19、20、21、22,数据19出现了2次最多,所以19为众数;20处在第3位是中位数.所以本题这组数据的众数是19,中位数是20.故选B.【点评】本题属于基础题,考查了确定一组数据的中位数和众数的能力.要明确定义,一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.8.已知点A(﹣3,7)在抛物线y=x2+4x+10上,则点A关于抛物线对称轴的对称点坐标为()A.(0,7)B.(﹣1,7)C.(﹣2,7)D.(﹣3,7)【考点】二次函数图象上点的坐标特征.【分析】先求出对称轴,再根据二次函数的对称性求解.【解答】解:对称轴为直线x=﹣=﹣2,设点A关于抛物线对称轴的对称点坐标为(x,7),则=﹣2,解得x=﹣1,所以,对称点为(﹣1,7).故选B.【点评】本题考查了二次函数图象上点的坐标特征,主要利用了二次函数的对称轴,先确定出对称轴解析式是解题的关键.9.如图,已知A、B、C在⊙O上,∠A=∠B=19°,则∠AOB的度数是()A.68°B.66°C.78°D.76°【考点】圆周角定理.【分析】利用圆周角定理可知∠AOB=2∠C,根据三角形的内角和定理得出∠AOB=∠OAC+∠OBC=2×19=38°,从而求得∠AOB=76°.【解答】解:连接AB,如图,∵∠OAB+∠OBA+∠AOB=180°,∠OAB+∠OBA+∠OAC+∠OBC+∠C=180°∴∠AOB=∠OAC+∠OBC+∠C,∴∠C=∠AOB,∴∠AOB=∠OAC+∠OBC=2×19=38°,∴∠AOB=76°.故选D.【点评】本题主要考查圆周角定理,掌握在同圆或等圆中同弧所对的圆周角是圆心角的一半是解题的关键.10.在物理实验课上,小明用弹簧称将铁块A悬于盛有水的水槽中,然后匀速向上提起(不考虑水的阻力),直至铁块完全露出水面一定高度,则下图能反映弹簧称的读数y(单位N)与铁块被提起的高度x(单位cm)之间的函数关系的大致图象是()A.B.C.D.【考点】函数的图象.【专题】压轴题.【分析】露出水面前读数y不变,出水面后y逐渐增大,离开水面后y不变.【解答】解:因为小明用弹簧称将铁块A悬于盛有水的水槽中,然后匀速向上提起,直至铁块完全露出水面一定高度.则露出水面前读数y不变,出水面后y逐渐增大,离开水面后y不变.故选:C.【点评】本题考查函数值随时间的变化问题.注意分析y随x的变化而变化的趋势,而不一定要通过求解析式来解决.11.如图是一组有规律的图案,第1个图案由1个▲组成,第2个图案由4个▲组成,第3个图案由7个▲组成,第4个图案由10个▲组成,…,则第7个图案▲的个数为()A.16 B.17 C.18 D.19【考点】规律型:图形的变化类.【分析】仔细观察图形可知:第一个图形有1个三角形;第二个图形有3×2﹣3+1=4个三角形;第三个图形有3×3﹣3+1=7个三角形;第四个图形有3×4﹣3+1=10个三角形;…第n个图形有3n﹣3+1=3n﹣2个三角形;进一步代入求得答案即可.【解答】解:观察发现:第一个图形有1个三角形;第二个图形有3×2﹣3+1=4个三角形;第三个图形有3×3﹣3+1=7个三角形;第四个图形有3×4﹣3+1=10个三角形;…第n个图形有3n﹣3+1=3n﹣2个三角形;则第7个图案中▲的个数为3×7﹣2=19.故选D.【点评】此题考查图形的变化规律,从简单情形入手,找到一般规律,利用规律,解决问题.12.如图,矩形ABCD中,AB=3,BC=4,动点P从B点出发,在BC上移动至点C停止.记PA=x,点D到直线PA的距离为y,则y关于x的函数解析式是()A.y=12x B.C.D.【考点】相似三角形的判定与性质;函数关系式.【专题】动点型.【分析】根据两直线平行,内错角相等可得∠DAE=∠APB,再根据两组角对应相等的两个三角形相似求出△ABP和△DEA相似,根据相似三角形对应边成比例可得=,然后整理即可得到y 与x的关系式.【解答】解:矩形ABCD中,AD∥BC,∴∠DAE=∠APB,∵∠B=∠AED=90°,∴△ABP∽△DEA,∴=,∴=,∴y=.故选B.【点评】本题考查了矩形的性质,主要利用了相似三角形的判定与性质,勾股定理,求出相似三角形并根据相似三角形对应边成比例列出比例式是解题的关键.二、填空题:(本大题6个小题,每小题4分,共24分)13.计算:= .【考点】二次根式的乘除法.【专题】计算题.【分析】根据二次根式的乘法,先把被开方数相乘,再化简即可.【解答】解:原式==,故答案为:.【点评】本题考查了二次根式的乘除法,是基础知识比较简单,要识记.14.方程的解是x=1 .【考点】解分式方程.【专题】计算题.【分析】观察方程可得最简公分母是:2(x+1),两边同时乘最简公分母可把分式方程化为整式方程来解答.【解答】解:方程两边同乘以2(x+1),得2x=x+1,解得x=1.经检验:x=1是原方程的解.故答案为:x=1.【点评】(1)解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.(2)解分式方程一定注意要验根.15.如图,将Rt△ABC绕直角顶点顺时针旋转90°,得到△A′B′C,连接AA′,∠1=26°,则∠B的度数是71°.【考点】旋转的性质.【分析】根据旋转的性质可得AC=A′C,然后判断出△ACA′是等腰直角三角形,根据等腰直角三角形的性质可得∠CAA′=45°,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠A′B′C,然后根据旋转的性质可得∠B=∠A′B′C.【解答】解:∵Rt△ABC绕直角顶点C顺时针旋转90°得到△A′B′C,∴AC=A′C,∴△ACA′是等腰直角三角形,∴∠CAA′=45°,∴∠A′B′C=∠1+∠CAA′=26°+45°=71°,由旋转的性质得∠B=∠A′B′C=71°.故答案为:71°.【点评】本题考查了旋转的性质,等腰直角三角形的判定与性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并准确识图是解题的关键.16.如图,在△ABC中,AB=AC,∠A=120°,BC=2,⊙A与BC相切于点D,且交AB,AC于M,N两点,则图中阴影部分的面积是(保留π).【考点】扇形面积的计算;勾股定理;切线的性质.【专题】压轴题.【分析】我们只要根据勾股定理求出AD的长度,再用三角形的面积减去扇形的面积即可.【解答】解:连接AD,∵⊙A与BC相切于点D,AB=AC,∠A=120°,∴∠ABD=∠ACD=30°,AD⊥BC,∴AB=2AD,由勾股定理知BD2+AD2=AB2,即+AD2=(2AD)2解得AD=1,△ABC的面积=2×1÷2=,扇形MAN得面积=π×12×=,所以阴影部分的面积=.【点评】解此题的关键是求出圆的半径,即三角形的高,再相减即可.17.从﹣4、3、5这三个数中,随机抽取一个数,记为a,那么,使关于x的方程x2+4x+a=0有解,且使关于x的一次函数y=2x+a的图象与x轴、y轴围成的三角形面积恰好为4的概率.【考点】概率公式;根的判别式;一次函数图象上点的坐标特征.【分析】由关于x的一次函数y=2x+a的图象与x轴、y轴围成的三角形面积恰好为4,可求得a 的值,由关于x的方程x2+4x+a=0有解,可求得a的取值范围,继而求得答案.【解答】解:∵一次函数y=2x+a与x轴、y轴的交点分别为:(﹣,0),(0,a),∴|﹣|×|a|×=4,解得:a=±4,∵当△=16﹣4a≥0,即a≤4时,关于x的方程x2+4x+a=0有解,∴使关于x的方程x2+4x+a=0有解,且使关于x的一次函数y=2x+a的图象与x轴、y轴围成的三角形面积恰好为4的概率为:.故答案为:.【点评】此题考查了概率公式的应用以及根的判别式与一次函数的性质.用到的知识点为:概率=所求情况数与总情况数之比.18.如图,已知,正方形ABCD的边长为1,点E、F分别在AC、DC上,若EC=BC,EF⊥BE,BF 与EC交于G,则BG与GF的乘积为.【考点】正方形的性质;全等三角形的判定与性质;相似三角形的判定与性质.【分析】连接DE,根据等腰三角形得出∠DEF=45°,再利用三角形全等得出EF=BE,进而得出△EGF~△BGC,利用相似三角形的性质得出BG•GF=EG•GC,进而得出GC=AE=,EG=1﹣GC=2﹣,即可得出两者乘积.【解答】解:连接DE,如图:∵四边形ABCD是正方形,∴∠BCA=∠DCA=45°,BC=DC=1,∵EC=BC,∴∠CBE=∠BEC=67.5°,∵EF⊥BE,∴∠CEF=22.5°,∵EC=BC=DC,∴∠DEF=45°,∠EDC=67.5°,∴△EFD是等腰三角形,∴ED=EF,∵△BEC和△DEC是等腰三角形,且BC=CE=CD,∴BE=ED,∴BE=EF,∴△BEF是等腰直角三角形,∴∠GBC=∠EBC﹣∠EBF=67.5°﹣45°=22.5°=∠CEF,∵∠EGF=∠BGC,∴△EGF∽△BGC,∴BG•GF=EG•GC,∵CE=AB=CB=1,∴AE=,∴EG=EC﹣GC=2﹣,∴EG•GC=,∴BG•GF=.故答案为:.【点评】此题考查正方形的性质,关键是利用全等三角形和相似三角形的判定和性质分析解答.三、解答题:(本大题2个小题,每小题7分,共14分)19.计算:.【考点】实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.【专题】计算题.【分析】原式第一项利用零指数幂法则计算,第二项利用立方根定义计算,第三项利用负整数指数幂法则计算,最后一项利用特殊角的三角函数值计算即可得到结果.【解答】解:原式=1+2﹣(﹣2)+2×=1+2+2+=5+.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.20.如图,矩形ABCD的对角线AC、BD相交于点O,过点O作OE⊥AC交AD于E,若AB=6,AD=8,求sin∠OEA的值.【考点】解直角三角形;矩形的性质.【专题】应用题.【分析】连接EC,由四边形ABCD为矩形,得到对角线互相平分,即O为AC中点,再由OE垂直AC,得到OE垂直平分AC,即AE=CE,在直角三角形EDC中,设EC=AE=x,利用勾股定理列出关于x的方程,求出方程的解得到EC的长,即为AE的长,利用勾股定理求出AC的长,进而求出OA的长,在直角三角形AOE中,利用锐角三角函数定义即可求出sin∠OEA的值.【解答】解:连接EC,∵四边形ABCD为矩形,∴OA=OC,∠ABC=90°,利用勾股定理得:AC==10,即OA=5,∵OE⊥AC,∴AE=CE,在Rt△EDC中,设EC=AE=x,则有ED=AD﹣AE=8﹣x,DC=AB=6,根据勾股定理得:x2=(8﹣x)2+62,解得:x=,∴AE=,在Rt△AOE中,sin∠OEA==.【点评】此题属于解直角三角形题型,涉及的知识有:矩形的性质,勾股定理,线段垂直平分线定理,以及锐角三角函数定义,熟练掌握勾股定理是解本题的关键.四、解答题(本大题4个小题,每小题10分,共40分)21.先化简,再求值:(﹣)÷,其中,a是方程x2+3x+1=0的根.【考点】分式的化简求值;一元二次方程的解.【专题】计算题.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,将a代入方程求出a2+3a的值,代入计算即可求出值.【解答】解:原式=[+]÷=(+)•=•=,∵a是方程x2+3x+1=0的根,∴a2+3a=﹣1,则原式=﹣.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.22.为了增强学生环保意识,我区举办了首届“环保知识大赛”,经选拔后有30名学生参加决赛,这30,名学生同事解答50个选择题,若每正确一个选择题得2分,根据测试成绩绘制出部分频数分布表和部分频数分布直方图如图表:组别成绩x分频数(人数)第1组50≤x<60 3第2组60≤x<70 8第3组70≤x<80 13第4组80≤x<90 a第5组90≤x<100 2(1)求表中a的值;(2)请把频数分布直方图补充完整;(3)若测试成绩不低于80分为优秀,则本次测试的优秀率是多少?(4)第4组的同学将抽出3名对第一组3名同学进行“一帮一”辅导,则第4组的小宇与小强能同时抽到的概率是多少?【考点】频数(率)分布直方图;频数(率)分布表;列表法与树状图法.【分析】(1)用总人数减去第1、2、3、5组的人数,即可求出a的值;(2)根据(1)得出的a的值,补全统计图;(3)用成绩不低于80分的频数除以总数,即可得出本次测试的优秀率;(4)用A表示小宇,B表示小强,C、D表示其他两名同学,画出树状图,再根据概率公式列式计算即可.【解答】解:(1)表中a的值是:a=30﹣3﹣8﹣13﹣2=4;(2)根据题意画图如下:(3)本次测试的优秀率是=0.20=20%.答:本次测试的优秀率是20%;(4)用A表示小宇,B表示小强,C、D表示其他两名同学,根据题意画树状图如下:共有24种情况,小宇与小强能同时抽到的情况有12种,则小宇与小强能同时抽到的概率为=.【点评】本题考查了频数分布直方图,频数分布表和概率,利用统计图表获取信息时,必须认真观察、分析、研究统计图表,才能作出正确的判断和解决问题,概率=所求情况数与总情况数之比.23.在“红五月”读书活动中,社区计划筹资15000元购买科普书籍和文艺刊物.(1)计划购买文艺刊物的资金不少于购买科普书籍资金的2倍,那么最少用多少资金购买文艺刊物?(2)经初步了解,有150户居民自愿参与集资,那么平均每户需集资100元,经筹委会进一步宣传,自愿参加的户数在150户的基础上增加了a%(其中a>50),如果每户平均集资在100元的基础上减少a%,那么实际筹资将比计划筹资多3000元,求a的值.【考点】一元二次方程的应用;一元一次不等式的应用.【分析】(1)设用x元购买文艺刊物,则用(15000﹣x)元购买科普书籍,根据购买文艺刊物的资金不少于购买科普书籍资金的2倍列出不等式,解不等式即可;(2)根据实际筹资将比计划筹资多3000元建立方程,解方程即可.【解答】解:(1)设用x元购买文艺刊物,则用(15000﹣x)元购买科普书籍,根据题意得x≥2(15000﹣x),解得x≥10000.答:最少用10000元购买文艺刊物;(2)由题意得150(1+a%)×100(1﹣a%)=15000+3000,解得a1=100,a2=50(不合题意舍去).答:a的值为100.【点评】本题考查了一元二次方程与一元一次不等式的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的关系,列出方程或不等式,再求解.24.如图,已知,∠BAC=90°,AB=AC,BD是∠ABC的平分线,且CE⊥BD交BD延长线于点E.(1)若AD=1,求DC;(2)求证:BD=2CE.【考点】全等三角形的判定与性质;等腰直角三角形.【分析】(1过点D作DH⊥BC于H,根据已知条件,∠BAC=90°,AB=AC,BD是∠ABC的平分线,得到DH=AD,在等腰直角三角形CDH中,求得CD;(2)延长CE、BA相交于点F.可以证明Rt△ABD≌Rt△ACF,再证明△BCE≌△BFE得到CE=EF,就可以得出结论.【解答】解:(1)如图1,过点D作DH⊥BC于H,∵AB=AC,∠BAC=90°,∴∠BCA=45°,∴DH=CH,∵BD是∠ABC的平分线,∴DH=AD=1,∴CD=;(2)如图2,延长CE、BA相交于点F,∵∠EBF+∠F=90°,∠ACF+∠F=90°,∴∠EBF=∠ACF,在△ABD和△ACF中∴△ABD≌△ACF(ASA),∴BD=CF,在△BCE和△BFE中,∴△BCE≌△BFE(ASA),∴CE=EF,∴BD=2CE.【点评】本题主要考查了角平分线性质,全等三角形判定和性质,能够想到延长CE、BA相交于点F,构造全等三角形是解决本题的关键.五、解答题(本大题2个小题,各12分,共24分)每小题必须给出必要的演算过程或推理步骤.25.如图,矩形ABC0位于直角坐标平面,O为原点,A、C分别在坐标轴上,B的坐标为(8,6),线段BC上有一动点P,已知点D在第一象限.(1)D是直线y=2x+6上一点,若△APD是等腰直角三角形,求点D的坐标;(2)D是直线y=2x﹣6上一点,若△APD是等腰直角三角形.求点D的坐标.【考点】一次函数综合题.【分析】(1)根据题意可知只有PA=AD,作DE⊥y轴于E点,作PF⊥y轴于F点,可证明△ADE≌△PAF,可求得OE,代入直线解析式可求得D点坐标;(2)可分为当∠ADP=90°,D在AB上方和下方,当∠APD=90°时三种情况,设PC=m,可分别表示出点D的坐标,再代入直线y=2x﹣6,可求得D点坐标.【解答】解;(1)如图1所示,作DE⊥y轴于E点,作PF⊥y轴于F点,可得∠DEA=∠AFP=90°,根据题意可知当△APD为等腰直角三角形时,只有∠DAP=90°满足条件,∴AD=AP,∠DAP=90°,∴∠EAD+∠DAB=90°,∠DAB+∠BAP=90°,∴∠EAD=∠BAP,∵AB∥PF,∴∠BAP=∠FPA,∴∠EAD=∠FPA,在△ADE和△PAF中,,∴△ADE≌△PAF(AAS),∴AE=PF=8,OE=OA+AE=14,设点D的横坐标为x,由14=2x+6,得x=4,∴点D的坐标是(4,14);(2)由点D在直线y=2x﹣6上,可设PC=m,如图2所示,当∠ADP=90°时,AD=PD,易得D点坐标(4,2);如图3所示,当∠APD=90°时,AP=PD,设点P的坐标为(8,m),则D点坐标为(14﹣m,m+8),由m+8=2(14﹣m)﹣6,得m=,∴D点坐标(,);如图4所示,当∠ADP=90°时,AD=PD时,同理可求得D点坐标(,),D点坐标分别为(4,2)或(,)或(,).【点评】本题主要考查一次函数综合应用,涉及矩形的性质、全等三角形的判定和性质、等腰直角三角形的性质及分类讨论思想等知识点.在(1)中求得D点的坐标是解题的关键,在(2)中确定出点D可能的位置是解题的关键.本题所考查内容较为基础,难度不大.26.如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,﹣3)点,点P是直线BC下方的抛物线上一动点.(1)求这个二次函数的表达式.(2)连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.(3)当点P运动到什么位置时,四边形ABPC的面积最大?求出此时P点的坐标和四边形ABPC 的最大面积.【考点】二次函数综合题.【专题】压轴题.【分析】(1)将B、C的坐标代入抛物线的解析式中即可求得待定系数的值;(2)由于菱形的对角线互相垂直平分,若四边形POP′C为菱形,那么P点必在OC的垂直平分线上,据此可求出P点的纵坐标,代入抛物线的解析式中即可求出P点的坐标;(3)由于△ABC的面积为定值,当四边形ABPC的面积最大时,△BPC的面积最大;过P作y 轴的平行线,交直线BC于Q,交x轴于F,易求得直线BC的解析式,可设出P点的横坐标,然后根据抛物线和直线BC的解析式求出Q、P的纵坐标,即可得到PQ的长,以PQ为底,B点横坐标的绝对值为高即可求得△BPC的面积,由此可得到关于四边形ACPB的面积与P点横坐标的函数关系式,根据函数的性质即可求出四边形ABPC的最大面积及对应的P点坐标.【解答】解:(1)将B、C两点的坐标代入得,解得:;所以二次函数的表达式为:y=x2﹣2x﹣3(2)存在点P,使四边形POP′C为菱形;设P点坐标为(x,x2﹣2x﹣3),PP′交CO于E若四边形POP′C是菱形,则有PC=PO;连接PP′,则PE⊥CO于E,∵C(0,﹣3),∴CO=3,又∵OE=EC,∴OE=EC=∴y=;∴x2﹣2x﹣3=解得x1=,x2=(不合题意,舍去),∴P点的坐标为(,)(3)过点P作y轴的平行线与BC交于点Q,与OB交于点F,设P(x,x2﹣2x﹣3),设直线BC 的解析式为:y=kx+d,则,解得:∴直线BC的解析式为y=x﹣3,则Q点的坐标为(x,x﹣3);当0=x2﹣2x﹣3,解得:x1=﹣1,x2=3,∴AO=1,AB=4,S四边形ABPC=S△ABC +S△BPQ+S△CPQ=AB•OC+QP•BF+QP•OF==当时,四边形ABPC的面积最大此时P点的坐标为,四边形ABPC的面积的最大值为.【点评】此题考查了二次函数解析式的确定、菱形的判定和性质以及图形面积的求法等知识,当所求图形不规则时通常要将其转换为其他规则图形面积的和差关系来求解.。
2020年中考数学第二次模拟测试试卷一、选择题1.下列各数中,属于无理数的是()A.B.0C.D.2.下列运算正确的是()A.﹣4﹣3=﹣1B.5×(﹣1)2=﹣1C.x2•x4=x8D.+=3 3.不等式﹣x+2>3x的解为()A.x>﹣B.x<C.x>﹣2D.x<24.已知A(﹣3,2)关于x轴对称点为A',则点A'的坐标为()A.(3,2)B.(2,﹣3)C.(3,﹣2)D.(﹣3,﹣2)5.若5y﹣x=7时,则代数式3﹣2x+10y的值为()A.17B.11C.﹣11D.106.规定用符号[x]表示一个实数的整数部分,例如[3.87]=3,[]=1,按此规定[(﹣)]=()A.1B.2C.3D.47.如图,菱形ABCD中,过顶点C作CE⊥BC交对角线BD于E点,已知∠A=134°,则∠BEC的大小为()A.23°B.28°C.62°D.67°8.按如图的程序计算,若开始输入x的值为正整数,最后输出的结果为22,则开始输入的x值可以为()A.1B.2C.3D.49.如图所示,已知AC为⊙O的直径,直线PA为圆的一条切线,在圆周上有一点B,且使得BC=OC,连接AB,则∠BAP的大小为()A.30°B.50°C.60°D.70°10.如图,小明为了测量大楼AB的高度,他从点C出发,沿着斜坡面CD走52米到点D 处,测得大楼顶部点A的仰角为37°,大楼底部点B的俯角为45°,已知斜坡CD的坡度为i=1:2.4.大楼AB的高度约为()(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)A.32米B.35米C.36米D.40米11.若关于x的不等式组无解,且关于y的方程+=1的解为正数,则符合题意的整数a有()个.A.1个B.2个C.3个D.4个12.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=4,将△ABC绕点C逆时针旋转得到△A′B′C,且B′恰好落在AB上,M是BC的中点,N是A′B′的中点,连接MN,则C到MN的距离是()A.B.C.D.二、填空题13.计算:﹣2sin45°+(﹣1)0=.14.国家发改委2月7日紧急下达第二批中央预算内投资2亿元人民币,专项补助承担重症感染患者救治任务的湖北多家医院重症治疗病区建设,其中数据2亿用科学记数法表示为元.15.如果任意选择一对有序整数(m,n),其中|m|≤1,|n|≤2,每一对这样的有序整数被选择的可能性是相等的,那么关于x的方程x2+nx+m=0有两个相等实数根的概率是.16.如图,四边形ABCD的顶点都在坐标轴上,若AB∥CD,△AOB与△COD面积分别为8和18,若双曲线y=恰好经过BC的中点E,则k的值为.17.小刚从家出发匀速步行去学校上学.几分钟后发现忘带数学作业,于是掉头原速返回并立即打电话给爸爸,挂断电话后爸爸立即匀速跑步去追小刚,同时小刚以原速的两倍匀速跑步回家,爸爸追上小刚后以原速的倍原路步行回家.由于时间关系小明拿到作业后同样以之前跑步的速度赶往学校,并在从家出发后23分钟到校(小刚被爸爸追上时交流时间忽略不计).两人之间相距的路程y(米)与小刚从家出发到学校的步行时间x (分钟)之间的函数关系如图所示,则小刚家到学校的路程为米.18.如图,在边长为1的菱形ABCD中,∠ABC=60°,将△ABD沿射线BD的方向平移得到△A'B'D',分别连接A'C,A'D,B'C,则A'C+B'C的最小值为.三、解答题19.计算:(1)(3x﹣y)2+(3x+y)(3x﹣y)(2)解方程:=20.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=4,以BC为直径的半圆O 交斜边AB于点D.(1)证明:AD=3BD;(2)求弧BD的长度;(3)求阴影部分的面积.21.钟南山院士谈到防护新型冠状病毒肺炎时说:“我们需要重视防护,但也不必恐慌,尽量少去人员密集的场所,出门戴口罩,在室内注意通风,勤洗手,多运动,少熬夜.”某社区为了加强社区居民对新型冠状病毒肺炎防护知识的了解,通过微信群宣传新型冠状病毒肺炎的防护知识,并鼓励社区居民在线参与作答《2020年新型冠状病毒防治全国统一考试(全国卷)》试卷,社区管理员随机从甲、乙两个小区各抽取20名人员的答卷成绩,并对他们的成绩(单位:分)进行统计、分析,过程如下:收集数据甲小区:85 80 95 100 90 95 85 65 75 85 90 90 70 90 100 80 80 90 95 75乙小区:80 60 80 95 65 100 90 85 85 80 95 75 80 9070 80 95 75 100 90整理数据成绩x(分)60≤x≤7070<x≤8080<x≤9090<x≤100甲小区25a b乙小区3755分析数据统计量平均数中位数众数甲小区85.7587.5c乙小区83.5d80应用数据(1)填空:a=,b=,c=,d=;(2)若甲小区共有800人参与答卷,请估计甲小区成绩大于90分的人数;(3)社区管理员看完统计数据,认为甲小区对新型冠状病毒肺炎防护知识掌握更好,请你写出社区管理员的理由.22.小明根据学习函数的经验,对函数y=+1的图象与性质进行了探究.下面是小明的探究过程,请补充完整:(1)函数y=+1的自变量x的取值范围是;(2)如表列出了y与x的几组对应值,请写出m,n的值:m=,n=;x…﹣﹣1﹣023…y…m0﹣1n2…(3)在如图所示的平面直角坐标系中,描全上表中以各对对应值为坐标的点,并画出该函数的图象.(4)结合函数的图象,解决问题:①写出该函数的一条性质:.②当函数值+1>时,x的取值范围是:.23.每年的3月15日是“国际消费者权益日”,许多家居商城都会利用这个契机进行打折促销活动,甲卖家的A商品成本为600元,在标价1000元的基础上打8折销售(1)现在甲卖家欲继续降价吸引买主,问最多降价多少元,才能使利润率不低于20%?(2)据媒体爆料,有一些卖家先提高商品价格后再降价促销,存在欺诈行为,乙卖家也销售A商品,其成本、标价与甲卖家一致,以前每周可售出50件,现乙卖家先将标价提高2m%,再大幅降价24m元,使得A商品在3月15日那一天卖出的数量就比原来一周卖出的数量增加了m%后,这样一天的利润达到了20000元,求m的值24.如图1,抛物线y=ax2+2ax+c(a≠0)与x轴交于点A,B(1,0)两点,与y轴交于点C,且OA=OC.(1)求抛物线的解析式;(2)点D是抛物线顶点,求△ACD的面积;(3)如图2,射线AE交抛物线于点E,交y轴的负半轴于点F(点F在线段AE上),点P是直线AE下方抛物线上的一点,S△ABE=,求△APE面积的最大值和此动点P 的坐标.25.我们已经知道一些特殊的勾股数,如三个连续正整数中的勾股数:3、4、5;三个连续的偶数中的勾股数6、8、10;事实上,勾股数的正整数倍仍然是勾股数.(1)另外利用一些构成勾股数的公式也可以写出许多勾股数,毕达哥拉斯学派提出的公式:a=2n+1,b=2n2+2n,c=2n2+2n+1(n为正整数)是一组勾股数,请证明满足以上公式的a、b、c的数是一组勾股数.(2)然而,世界上第一次给出的勾股数公式,收集在我国古代的著名数学著作《九章算术》中,书中提到:当a=(m2﹣n2),b=mn,c=(m2+n2)(m、n为正整数,m>n时,a、b、c构成一组勾股数;利用上述结论,解决如下问题:已知某直角三角形的边长满足上述勾股数,其中一边长为37,且n=5,求该直角三角形另两边的长.26.【初步探索】(1)如图1:在四边形ABC中,AB=AD,∠B=∠ADC=90°,E、F分别是BC、CD 上的点,且EF=BE+FD,探究图中∠BAE、∠FAD、∠EAF之间的数量关系.小王同学探究此问题的方法是:延长FD到点G,使DG=BE.连接AG,先证明△ABE ≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是;【灵活运用】(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E、F分别是BC、CD上的点,且EF=BE+FD,上述结论是否仍然成立,并说明理由;【拓展延伸】(3)如图3,已知在四边形ABCD中,∠ABC+∠ADC=180°AB=AD,若点E在CB 的延长线上,点F在CD的延长线上,如图3所示,仍然满足EF=BE+FD,请写出∠EAF与∠DAB的数量关系,并给出证明过程.参考答案一、选择题:(12个小题,每小题2分,共24分.在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的)1.下列各数中,属于无理数的是()A.B.0C.D.【分析】根据无理数是无限不循环小数,可得答案.解:是无理数.故选:C.2.下列运算正确的是()A.﹣4﹣3=﹣1B.5×(﹣1)2=﹣1C.x2•x4=x8D.+=3【分析】直接利用实数运算法则以及同底数幂的乘法运算法则分别化简得出答案.解:A、﹣4﹣3=﹣7,故此选项错误;B、5×(﹣1)2=5,故此选项错误;C、x2•x4=x6,故此选项错误;D、+=+2=3,故此选项正确.故选:D.3.不等式﹣x+2>3x的解为()A.x>﹣B.x<C.x>﹣2D.x<2【分析】根据不等式的性质:先移项,再合并同类项,系数化1即可求得不等式的解集.解:不等式移项得,﹣x﹣3x>﹣2,合并同类项得,﹣4x>﹣2系数化1得,x<;故选:B.4.已知A(﹣3,2)关于x轴对称点为A',则点A'的坐标为()A.(3,2)B.(2,﹣3)C.(3,﹣2)D.(﹣3,﹣2)【分析】直接利用关于x轴对称点的性质,横坐标相同,纵坐标互为相反数进而得出答案.解:∵A(﹣3,2)关于x轴对称点为A',∴点A'的坐标为:(﹣3,﹣2).故选:D.5.若5y﹣x=7时,则代数式3﹣2x+10y的值为()A.17B.11C.﹣11D.10【分析】根据5y﹣x=7,可以求得代数式3﹣2x+10y的值.解:∵5y﹣x=7,∴3﹣2x+10y=3﹣2(x﹣5y)=3+2(5y﹣x)=3+2×7=3+14=17,故选:A.6.规定用符号[x]表示一个实数的整数部分,例如[3.87]=3,[]=1,按此规定[(﹣)]=()A.1B.2C.3D.4【分析】根据题意得出6<2<7,进而利用[x]表示一个实数的整数部分,即可得出答案.解:[(﹣)]=[2﹣4]∵6<2<7,∴2<2﹣4<3∴[(﹣)]=2.故选:B.7.如图,菱形ABCD中,过顶点C作CE⊥BC交对角线BD于E点,已知∠A=134°,则∠BEC的大小为()A.23°B.28°C.62°D.67°【分析】根据菱形的性质和三角形的内角和解答即可.解:∵菱形ABCD,∠A=134°,∴∠ABC=180°﹣134°=46°,∴∠DBC=,∵CE⊥BC,∴∠BEC=90°﹣23°=67°,故选:D.8.按如图的程序计算,若开始输入x的值为正整数,最后输出的结果为22,则开始输入的x值可以为()A.1B.2C.3D.4【分析】由3x+1=22,解得x=7,即开始输入的x为7,最后输出的结果为22;当开始输入的x值满足3x+1=7,最后输出的结果也为22,可解得x=2,符合题意.解:当输入一个正整数,一次输出22时,3x+1=22,解得:x=7;当输入一个正整数,两次后输出22时,3x+1=7,解得:x=2,故选:B.9.如图所示,已知AC为⊙O的直径,直线PA为圆的一条切线,在圆周上有一点B,且使得BC=OC,连接AB,则∠BAP的大小为()A.30°B.50°C.60°D.70°【分析】连接OB,根据等边三角形的性质得到∠BOC=60°,根据圆周角定理得到∠BAC=30°,根据切线的性质得到∠CAP=90°,结合图形计算,得到答案.解:连接OB,∵BC=OC,OB=OC,∴OB=OC=BC,∴△OBC为等边三角形,∴∠BOC=60°,由圆周角定理得,∠BAC=∠BOC=30°,∵直线PA为圆的一条切线,AC为⊙O的直径,∴∠CAP=90°,∴∠BAP=90°﹣30°=60°,故选:C.10.如图,小明为了测量大楼AB的高度,他从点C出发,沿着斜坡面CD走52米到点D 处,测得大楼顶部点A的仰角为37°,大楼底部点B的俯角为45°,已知斜坡CD的坡度为i=1:2.4.大楼AB的高度约为()(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)A.32米B.35米C.36米D.40米【分析】作DE⊥AB于E,作DF⊥BC于F,y由CD的坡度为i=1:2.4,CD=52米,得到=1:2.4,求出BE、AE即可解决问题;解:作DE⊥AB于E,作DF⊥BC于F,∵CD的坡度为i=1:2.4,CD=52米,∴=1:2.4,∴=52,∴DF=20(米);∴BE=DF=20(米),∵∠BDE=45°,∴DE=BE=40m,在Rt△ADE中,∠ADE=37°,∴AE=tan37°•20=15(米)∴AB=AE+BE=35(米).故选:B.11.若关于x的不等式组无解,且关于y的方程+=1的解为正数,则符合题意的整数a有()个.A.1个B.2个C.3个D.4个【分析】根据不等式组无解确定出a的范围,表示出分式方程的解,由分式方程的解为正数求出整数a的值即可.解:不等式整理得:,由不等式组无解,得到a+3>1,解得:a>﹣2,分式方程去分母得:2﹣y﹣a=y﹣2,解得:y=,由分式方程的解为正数,得到>0且≠2,解得:a<4,且a≠0,∴﹣2<a<4,且a≠0,a为整数,则符合题意整数a的值为﹣1,1,2,3,共4个,故选:D.12.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=4,将△ABC绕点C逆时针旋转得到△A′B′C,且B′恰好落在AB上,M是BC的中点,N是A′B′的中点,连接MN,则C到MN的距离是()A.B.C.D.【分析】如图,作CH⊥MN于H,连接NC,作MJ⊥NC交NC的延长线于J.解直角三角形求出MN,利用面积法求出CH即可.解:如图,作CH⊥MN于H,连接NC,作MJ⊥NC交NC的延长线于J.∵∠ACB=90°,BC=4,∠A=30°,∴AB=A′B′=2BC=8,∠B=60°.∵CB=CB′,∴△CBB′是等边三角形,∴∠BCB′=60°,∵BN=NA′,∴CN=NB′=A′B′=4,∵∠CB′N=60°,∴△CNB′是等边三角形,∴∠NCB′=60°,∴∠BCN=120°,在Rt△CMJ中,∵∠J=90°,MC=2,∠MCJ=60°,∴CJ=MC=,MJ=CJ=3,∴MN===2,∵•NC•MJ=•MN•CH,∴CH=,故选:A.二、填空题:(6个小题,每小题4分,共24分)13.计算:﹣2sin45°+(﹣1)0=+1.【分析】直接利用零指数幂的性质以及二次根式的性质、特殊角的三角函数值分别化简得出答案.解:原式=2﹣2×+1=2﹣+1=+1.故答案为:+1.14.国家发改委2月7日紧急下达第二批中央预算内投资2亿元人民币,专项补助承担重症感染患者救治任务的湖北多家医院重症治疗病区建设,其中数据2亿用科学记数法表示为2×108元.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.解:2亿=200000000=2×108.故答案为:2×108.15.如果任意选择一对有序整数(m,n),其中|m|≤1,|n|≤2,每一对这样的有序整数被选择的可能性是相等的,那么关于x的方程x2+nx+m=0有两个相等实数根的概率是.【分析】首先确定m,n的值,推出有序整数对(m,n)共有:3×5=15(种),由方程x2+nx+m=0有两个相等实数根,则需△=n2﹣4m=0,有(0,0),(1,2),(1﹣2)三种可能,由此可以求出方程x2+nx+m=0有两个相等实数根的概率.解:∵|m|≤1,|n|≤2,∴m=0,±1,n=0,±1,±2,∴有序整数(m,n)共有3×5=15(种),∵方程x2+nx+m=0有两个相等实数根,则需:△=n2﹣4m=0,有(0,0),(1,2),(1﹣2)三种可能,∴关于x的方程x2+nx+m=0有两个相等实数根的概率是=.故答案为.16.如图,四边形ABCD的顶点都在坐标轴上,若AB∥CD,△AOB与△COD面积分别为8和18,若双曲线y=恰好经过BC的中点E,则k的值为6.【分析】由平行线的性质得∠OAB=∠OCD,∠OBA=∠ODC,两个对应角相等证明△OAB∽△OCD,其性质得,再根据三角形的面积公式,等式的性质求出m=,线段的中点,反比例函数的性质求出k的值为6.解:如图所示:∵AB∥CD,∴∠OAB=∠OCD,∠OBA=∠ODC,∴△OAB∽△OCD,∴,若=m,由OB=m•OD,OA=m•OC,又∵,,∴=,又∵S△OAB=8,S△OCD=18,∴,解得:m=或m=(舍去),设点A、B的坐标分别为(a,0),(b,0),∵,∴点C的坐标为(),又∵点E是线段BC的中点,∴点E的坐标为(),又∵点E在反比例函数上,∴=﹣=,故答案为6.17.小刚从家出发匀速步行去学校上学.几分钟后发现忘带数学作业,于是掉头原速返回并立即打电话给爸爸,挂断电话后爸爸立即匀速跑步去追小刚,同时小刚以原速的两倍匀速跑步回家,爸爸追上小刚后以原速的倍原路步行回家.由于时间关系小明拿到作业后同样以之前跑步的速度赶往学校,并在从家出发后23分钟到校(小刚被爸爸追上时交流时间忽略不计).两人之间相距的路程y(米)与小刚从家出发到学校的步行时间x (分钟)之间的函数关系如图所示,则小刚家到学校的路程为2960米.【分析】根据题意和函数图象可以求得小刚后来的速度,然后根据函数图象中的数据可以求得小刚家到学校的路程.解:由图可知,小刚和爸爸相遇后,到小刚爸爸回到家用时17﹣15=2(分钟),∵爸爸追上小刚后以原速的倍原路步行回家,∴小刚打完电话到与爸爸相遇用的时间为1分钟,∵由于时间关系小明拿到作业后同样以之前跑步的速度赶往学校,∴小刚和爸爸相遇之后跑步的1分和爸爸2分钟走的路程是720米,∴小刚后来的速度为:1040﹣720=320(米/分钟)则小刚家到学校的路程为:1040+(23﹣17)×320=1040+6×320=1040+1920=2960(米),故答案为:2960.18.如图,在边长为1的菱形ABCD中,∠ABC=60°,将△ABD沿射线BD的方向平移得到△A'B'D',分别连接A'C,A'D,B'C,则A'C+B'C的最小值为.【分析】根据菱形的性质得到AB=1,∠ABD=30°,根据平移的性质得到A′B′=AB=1,A′B′∥AB,推出四边形A′B′CD是平行四边形,得到A′D=B′C,于是得到A'C+B'C的最小值=A′C+A′D的最小值,根据平移的性质得到点A′在过点A 且平行于BD的定直线上,作点D关于定直线的对称点E,连接CE交定直线于A′,则CE的长度即为A'C+B'C的最小值,求得DE=CD,得到∠E=∠DCE=30°,于是得到结论.解:∵在边长为1的菱形ABCD中,∠ABC=60°,∴AB=CD=1,∠ABD=30°,∵将△ABD沿射线BD的方向平移得到△A'B'D',∴A′B′=AB=1,A′B′∥AB,∵四边形ABCD是菱形,∴AB=CD,AB∥CD,∴∠BAD=120°,∴A′B′=CD,A′B′∥CD,∴四边形A′B′CD是平行四边形,∴A′D=B′C,∴A'C+B'C的最小值=A′C+A′D的最小值,∵点A′在过点A且平行于BD的定直线上,∴作点D关于定直线的对称点E,连接CE交定直线于A′,则CE的长度即为A'C+B'C的最小值,∵∠A′AD=∠ADB=30°,AD=1,∴∠ADE=60°,DH=EH=AD=,∴DE=1,∴DE=CD,∵∠CDE=∠EDB′+∠CDB=90°+30°=120°,∴∠E=∠DCE=30°,∴CE=2×CD=.故答案为:.三、解答题。
2020年重庆市中考二模试卷数学试卷一、选择题(本大题共12小题,共48分)1.下列四个数中是无理数的是()A. 3B. 3πC. 3.14159D. √92.图中立体图形的俯视图是()A. B. C. D.3.下列运算正确的是()A. a2+a3=a5B. (2a3)2=2a6C. a3⋅a4=a12D. a5÷a3=a24.下列命题,是真命题的是()A. 菱形的对角线相等B. 若|a|=|b|,那么a=bC. 同位角一定相等D. 函数y=1的自变量的取值范围是x≠−1x+15.如图是一组有规律的图案,第1个图案由4个▲组成,第2个图案由7个▲组成,第3个图案由10个▲组成,第4个图案由13个▲组成,…,则第10个图案由()个▲组成.A. 30B. 31C. 32D. 336.估计√9×√1+√12的运算结果应在哪两个连续自然数之间()3A. 5和6B. 6和7C. 7和8D. 8和97.已知二次函数y=x2−4x+m的图象与x轴交于A、B两点,且点A的坐标为(1,0),则线段AB的长为()A. 1B. 2C. 3D. 48.如图,在菱形ABCD中,E是AB边上一点,若AE:AD=1:3,则S△AEF:S△CDF=()A. 1:2B. 1:3C. 1:4D. 1:99.如图,点A、B、C、D在⊙O上,∠AOC=120°,点B是弧AC的中点,则∠D的度数是()A. 60°B. 35°C. 30.5°D. 30°10.某商店将定价为3元的商品,按下列方式优惠销售:若购买不超过5件,按原价付款;若一次性购买5件以上,超过部分打八折.小聪有27元钱想购买该种商品,那么最多可以购买多少件呢?若设小聪可以购买该种商品x件,则根据题意,可列不等式为()A. 3×5+3×0.8x ≤27B. 3×5+3×0.8x ≥27C. 3×5+3×0.8(x −5)≤27D. 3×5+3×0.8(x −5)≥2711. 钓鱼是一项特别锻炼心性的运动,如图,小南在江边垂钓,河堤AB 的坡度为1:2.4,AB 长为3.9米,钓竿AC 与水平线的夹角是60°,其长为4.5米,若钓竿AC 与钓鱼线CD 的夹角也是60°,则浮漂D 与河堤下端B 之间的距离约为( )米.(参考数据:√3≈1.732)A. 1.732B. 1.754C. 1.766D. 1.82312. 若数a 使关于x 的不等式组{x−52+1≤x+135x −2a >2x +a至少有3个整数解,且使关于y 的分式方程a−3y−1−21−y =2有非负整数解,则满足条件的所有整数a 的和是( )A. 14B. 15C. 23D. 24二、填空题(本大题共6小题,共24分)13. 截至2019年4月份,全国参加汉语考试的人数约为3500万,将3500万用科学记数法表示为______.14. 在如图所示的电路中,随机闭合开关S 1,S 2,S 3中的两个,能让灯泡L 1发光的概率是______. 15. 如图,在△ABC 中,D 为BC 的中点,以D 为圆心,以BD 长为半径画弧交AC 于点E ,若∠A =50°,∠B =110°,BC =3,则扇形BDE 的面积为______.第15题图 第16题图 第17题图 16. 如图,△ABC 为边长是5的等边三角形,点E 在AC 边上,点F 在AB 边上,将△AFE 沿EF 对折,使点A 正好落在BC 边的点D 处,且ED ⊥BC ,则CE 的长是______. 17. 小明和小亮分别从A 、B 两地同时相向而行,并以各自的速度匀速行驶,途中会经过奶茶店C ,小明先到达奶茶店C ,并在C 地休息了一小时,然后按原速度前往B 地,小亮从B 地直达A 地,结果还是小明先到达目的地,如图是小明和小亮两人之间的距离y(千米)与小亮出发时间x(时)的函数的图象,请问当小明到达B 地时,小亮距离A 地______千米.18. 某厂家以A 、B 两种原料,利用不同的工艺手法生产出了甲、乙两种袋装产品,其中,甲产品每袋含1.5千克A 原料、1.5千克B 原料;乙产品每袋含2千克A 原料、1千克B 原料.甲、乙两种产品每袋的成本价分别为袋中两种原料的成本价之和.若甲产品每袋售价72元,则利润率为20%.某节庆日,厂家准备生产若干袋甲产品和乙产品,甲产品和乙产品的数量和不超过100袋,会计在核算成本的时候把A 原料和B 原料的单价看反了,后面发现如果不看反,那么实际成本比核算时的成本少500元,那么厂家在生产甲乙两种产品时实际成本最多为______元.三、计算题(本大题共1小题,共10分)19. 已知函数y =y 1+y 2,其中y 1与x 成反比例,y 2与x −2成正比例,函数的自变量x的取值范围是x ≥12,且当x =1或x =4时,y 的值均为32.请对该函数及其图象进行如下探究:(1)解析式探究:根据给定的条件,可以确定出该函数的解析式为:______. (2)函数图象探究:(3)结合画出的函数图象,解决问题:①当x =34,214,8时,函数值分别为y 1,y 2,y 3,则y 1,y 2,y 3的大小关系为:______;(用“<”或“=”表示)②若直线y =k 与该函数图象有两个交点,则k 的取值范围是______,此时,x 的取值范围是______.四、解答题(本大题共7小题,共68分)20. (1)(2a −b)2+(a +b)(a −b);(2)(4x+5x−1+x +1)÷x 2+2xx−1.21.如图所示,△ABC中,AB=AC,AD平分∠BAC,点G是BA延长线上一点,点F是AC上一点,AG=AF,连接GF并延长交BC于E.(1)若AB=8,BC=6,求AD的长;(2)求证:GE⊥BC.22.4月23日世界读书日之际,习近平总书记提倡和鼓励大家多读书、读好书.在接受俄罗斯电视台专访时,总书记说:“读书可以让人保持思想活力,让人得到智慧启发,让人滋养浩然之气.”为响应号召,建设书香校园,某初级中学对本校初一、初二两个年级的学生进行了课外阅读知识水平检测.为了解情况,现从两个年级抽样调查了部分学生的检测成绩,过程如下【收集数据】从初一、初二年级分别随机抽取了20名学生的水平检测分数,数据如下初一年88604491718897637291级81928585953191897786初二年77828588768769936684级90886788919668975988【整理数据】按如下分段整理样本数据:分段0≤x<6060≤x<7070≤x<8080≤x<9090≤x≤100年级初一年级22376初二年级1a2b5统计量平均数中位数众数方差年级初一年级78.85c91291.53初二年级81.9586d115.25【得出结论】(1)根据统计,表格中a、b、c、d的值分别是______、______、______、______.(2)若该校初一、初二年级的学生人数分别为1000人和1200人,则估计这次考试成绩90分以上的人数为______.(3)可以推断出(填“初一”或“初二”)学生的课外阅读整体水平较高,理由为______.23.某公司销售两种椅子,普通椅子价格是每把180元,实木椅子的价格是每把400元.(1)该公司在2019年第一月销售了两种椅子共900把,销售总金额达到了272000元,求两种椅了各销售了多少把?(2)第二月正好赶上市里开展家具展销活动,公司决定将普通椅子每把降30元后销售,实木椅子每把降价2a%(a>0)后销售,在展销活动的第一周,该公司的普通a%:实木椅子的销售量比第一椅子销售量比上一月全月普通椅子的销售量多了103月全月实木椅子的销售量多了a%,这一周两种椅子的总销售金额达到了251000元,求a的值.24.如图,在平行四边形ABCD中,AE⊥BD于E.(1)若BC=BD,tan∠ABE=3,DE=16,求BC的长.(2)若∠DBC=45°,对角线AC、BD交于点O,F为AE上一点,且AF=2EO,求证:CF=√2CD.25.我们已经知道一些特殊的勾股数,如三连续正整数中的勾股数:3、4、5;三个连续的偶数中的勾股数6、8、10;事实上,勾股数的正整数倍仍然是勾股数.(1)另外利用一些构成勾股数的公式也可以写出许多勾股数,毕达哥拉斯学派提出的公式:a=2n+1,b=2n2+2n,c=2n2+2n+1(n为正整数)是一组勾股数,请证明满足以上公式的a、b、c的数是一组勾股数.(2)然而,世界上第一次给出的勾股数公式,收集在我国古代的着名数学着作《九章算术》中,书中提到:当a=12(m2−n2),b=mn,c=12(m2+n2)(m、n为正整数,m>n时,a、b、c构成一组勾股数;利用上述结论,解决如下问题:已知某直角三角形的边长满足上述勾股数,其中一边长为37,且n=5,求该直角三角形另两边的长.26.如图1,在平面直角坐标系中,抛物线y=−√32x2+2√3x−√3与x轴交于A、B 两点(点A在点B的左侧),与y轴交于点C,顶点为D,对称轴与x轴交于点E,直线CE交抛物线于点F(异于点C),直线CD交x轴交于点G.(1)如图1,求直线CE的解析式和顶点D的坐标;(2)如图1,点P为直线CF上方抛物线上一点,连接PC、PF,当△PCF的面积最大时,点M是过P垂直于x轴的直线l上一点,点N是抛物线对称轴上一点,求FM+ MN+NO的最小值;(3)如图2,过点D作DI⊥DG交x轴于点I,将△GDI沿射线GB方向平移至△G′D′I′处,将△G′D′I′绕点D′逆时针旋转α(0<α<180°),当旋转到一定度数时,点G′会与点I重合,记旋转过程中的△G′D′I′为△G″D′I″,若在整个旋转过程中,直线G″I″分别交x轴和直线GD′于点K、L两点,是否存在这样的K、L,使△GKL为以∠LGK 为底角的等腰三角形?若存在,求此时GL的长.答案和解析1.【答案】B【解析】解:A、3是有理数;B、3π是无理数;C、3.14159是有限小数,属于有理数;D.√9=3是有理数;故选:B.无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,3π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.【答案】B【解析】解:根据图形可得俯视图为:故选:B.根据几何体的三视图,即可解答.本题考查了几何体的三视图,解决本题的关键是画物体的三视图的口诀为:主、俯:长对正;主、左:高平齐;俯、左:宽相等.3.【答案】D【解析】解:A、a2+a3,无法计算,故此选项错误;B、(2a3)2=4a6,故此选项错误;C、a3⋅a4=a7,故此选项错误;D、a5÷a3=a2,故此选项正确.故选:D.直接利用合并同类项法则以及同底数幂的乘除运算法则分别化简得出答案.此题主要考查了合并同类项以及同底数幂的乘除运算,正确化简各数是解题关键.4.【答案】D【解析】解:A、菱形的对角线垂直,是假命题;B、若|a|=|b|,那么a=b或a=−b,是假命题;C、两直线平行,同位角相等,是假命题;D、函数y=1的自变量的取值范围是x≠−1,是真命题;x+1故选:D.根据菱形的性质、绝对值、同位角和函数进行判断即可.此题主要考查了命题与定理,正确把握相关定义是解题关键.5.【答案】B【解析】解:观察发现:第一个图形有3×2−3+1=4个三角形;第二个图形有3×3−3+1=7个三角形;第一个图形有3×4−3+1=10个三角形;…第n个图形有3(n+1)−3+1=3n+1个三角形;当n=10时,3n+1=3×10+1=31,故选B.故选:B.仔细观察图形,结合三角形每条边上的三角形的个数与图形的序列数之间的关系发现图形的变化规律,利用发现的规律求解即可.考查了规律型:图形的变化类,本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.6.【答案】A【解析】解:√9×√13+√12=3×√33+2√3=3√3,∵5<3√3<6,∴√9×√13+√12的运算结果应在5和6两个连续自然数之间,故选:A.先把各二次根式化为最简二次根式,再进行计算.本题考查的是二次根式的混合运算,在进行此类运算时一般先把二次根式化为最简二次根式的形式后再运算.最后估计无理数的大小.7.【答案】B【解析】解:将点A(1,0)代入y=x2−4x+m,得到m=3,∵y=x2−4x+3与x轴交于A、B两点,∴x2−4x+3=0有两个不等的实数根,解得,x1=1,x2=3,∵A(1,0),∴B(3,0),∴AB=3−1=2故选:B.将点A(1,0)代入y=x2−4x+m,求出m的值,然后解方程方程得出点B的坐标,根据数轴上两点间的距离公式即可求出AB的长.本题考查一元二次函数与一元二次方程的关系;熟练掌握二次函数与一元二次方程的关系是解题关键.8.【答案】D【解析】解:∵四边形ABCD是菱形,∴AB=BC=CD=AD,AB//CD,∵AE:AD=1:3,∴AE:CD=1:3,∵AE//CD,∴△AEF∽△CDF,∴S△AEFS△CDF =(AECD)2=19,故选:D.利用相似三角形的性质即可解决问题.本题考查相似三角形的判定和性质,菱形的性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.9.【答案】D【解析】解:连接OB,∵点B是AC⏜的中点,∴∠AOB=12∠AOC=60°,由圆周角定理得,∠D=12∠AOB=30°,故选:D.根据圆心角、弧、弦的关系定理得到∠AOB=12∠AOC,再根据圆周角定理解答.本题考查的是圆心角、弧、弦的关系定理、圆周角定理,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.10.【答案】C【解析】解:设小聪可以购买该种商品x件,根据题意得:3×5+3×0.8(x−5)≤27.故选:C.设小聪可以购买该种商品x件,根据总价=3×5+3×0.8×超出5件的部分结合总价不超过27元,即可得出关于x的一元一次不等式,此题得解.本题考查了由实际问题抽象出一元一次不等式,根据各数量之间的关系,正确列出一元一次不等式是解题的关键.11.【答案】C【解析】解:如图,延长CA交DB延长线与点E,过点A作AF⊥BE于点F,则∠CED=60°,∵AB的坡比为1:2.4,∴AFBF =12.4=512,则设AF=5x,BF=12x,∵AB=3.9米,∴在直角△ABF中,由勾股定理知,3.92=25x2+ 144x2.解得x=310.∴AF=5x=32,BF=12x=185∴EF=AFtan60∘=32√3=√32,AE=AFsin60∘=32√32=√3∵∠C=∠CED=60°,∴△CDE是等边三角形,∵AC=4.5米,∴DE=CE=AC+AE=4.5+√3(米),则BD=DE−EF−BF=4.5+√3−√32−185≈1.766(米),答:浮漂D与河堤下端B之间的距离为1.766米.故选:C.延长CA交DB延长线与点E,过点A作AF⊥BE于点F,利用正切的概念求出AE、EF、BF,判断△CDE为等边三角形,求出DE,计算即可.本题考查的是解直角三角形的应用−坡度坡角问题,掌握坡度坡角的概念、熟记锐角三角函数的定义是解题的关键.12.【答案】A【解析】解:解不等式x−52+1≤x+13,得:x≤11,解不等式5x−2a>2x+a,得:x>a,∵不等式组至少有3个整数解,∴a<9;分式方程两边乘以y−1,得:a−3+2=2(y−1),解得:y=a+12,∵分式方程有非负整数解,∴a取−1,1,3,5,7,9,11,……∵a<9,且y≠1,∴a只能取−1,3,5,7,则所有整数a的和为−1+3+5+7=14,故选:A.先解不等式组,根据不等式组至少有3个整数解,得出a>−1,再解分式方程,根据分式方程有非负整数解,得到a≤4且a≠1,进而得到满足条件的整数a的和.此题考查了分式方程的解,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.本题考查了分式方程的解,利用不等式的解集及方程的解得出a的值是解题关键.13.【答案】3.5×107【解析】解:将3500万用科学记数法表示为3.5×107.故答案为:3.5×107.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.【答案】13【解析】解:画树状图为:共有6种等可能的结果数,其中能让灯泡L1发光的结果数为2,所以能让灯泡L1发光的概率=26=13.故答案为13.画树状图展示所有6种等可能的结果数,找出让灯泡L1发光的结果数,然后根据概率公式求解.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.15.【答案】π4【解析】解:∵∠A=50°,∠B=110°,∴∠C=20°,∵BD=DC=1.5,DE=DB,∴DE=DC=1.5,∴∠DEC=∠C=20°,∴∠BDE=40°,∴扇形BDE的面积=40π×1.52360=π4,故答案为:π4.根据三角形内角和定理求出∠C,根据三角形的外角的性质求出∠BDE,根据扇形面积公式计算.本题考查的是扇形面积计算,三角形内角和定理,等腰三角形的性质,掌握扇形面积公式是解题的关键.16.【答案】20−10√3【解析】解:∵将△AFE沿EF对折,使点A正好落在BC边的点D处∴AE=ED在Rt△EDC中,∠C=60°,ED⊥BC∴ED=√32EC∴CE+ED=(1+√32)EC=5∴CE=20−10√3故答案为:20−10√3根据轴对称的性质可得AE=ED,在Rt△EDC中,利用60度角求得ED=√32EC,列出方程EC+ED=(1+√32)EC=5,解方程即可求解.本题考查翻折变换,等边三角形的性质,熟练运用折叠的性质是本题的关键.17.【答案】90【解析】【分析】本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答.根据题意和函数图象中的数据可以分别求得小明和小亮的速度,从而可以计算出当小明到达B地时,小亮距离A地的距离.【解答】解:设小明的速度为akm/ℎ,小亮的速度为bkm/ℎ, {2ba =3.5−2.5(3.5−2)b +(3.5−2.5)a =210, 解得,{a =120b =60,当小明到达B 地时,小亮距离A 地的距离是:120×(3.5−1)−60×3.5=90(千米), 故答案为:90.18.【答案】6250【解析】解:∵甲产品每袋售价72元,则利润率为20%. 设甲产品的成本价格为b 元, ∴72−b b=20%,∴b =60,∴甲产品的成本价格60元,∴1.5kgA 原料与1.5kgB 原料的成本和60元, ∴A 原料与B 原料的成本和40元,设A 种原料成本价格x 元,B 种原料成本价格(40−x)元,生产甲产品m 袋,乙产品n 袋,根据题意得:{m +n ≤10060m +(2x +40−x)n +500=60m +n(80−2x +x), ∴xn =20n −250,设生产甲乙产品的实际成本为W 元,则有 W =60m +40n +xn ,∴W =60m +40n +20n −250=60(m +n)−250, ∵m +n ≤100, ∴W ≤6250;∴生产甲乙产品的实际成本最多为5750元, 故答案为5750;先求出A 与B 原料的成本和,再设A 种原料成本价格x 元,B 种原料成本价格(40−x)元,生产甲产品m 袋,乙产品n 袋,根据题意列出方程{m +n ≤10060m +(2x +40−x)n +500=60m +n(80−2x +x),得到W =60m +40n +20n +250=60(m +n)+250,即可求解;本题考查一元一次方程和不等式;能够通过题意列出方程是解题的关键.19.【答案】(1)y =2x +12x −1(2)① 1 134②(3)① y 2<y 1<y 3 ②1<k ≤13412≤x ≤8【解析】解:(1)设y 1=k 1x,y 2=k 2(x −2),则y =k 1x+k 2(x −2),由题意得:{k 1−k 2=32k 14+2k 2=32,解得:{k 1=2k 2=12, ∴该函数解析式为y =2x +12x −1, 故答案为:y =2x +12x −1,(3)①由(2)中图象可得:(2,1)是图象上最低点,在该点左侧,y 随x 增大而减小;在该点右侧y 随x 增大而增大, ∴y 2<y 1<y 3,故答案为:y 2<y 1<y 3,②观察图象得:x ≥12,图象最低点为(2,1), ∴当直线y =k 与该图象有两个交点时,1<k ≤134,此时x 的范围是:12≤x ≤8. 故答案为:1<k ≤134,12≤x ≤8. 【分析】(1)用待定系数法设y 1=k 1x,y 2=k 2(x −2),则y =k 1x+k 2(x −2),将已知条件代入得关于k 1、k 2方程组,即可求得该函数解析式;(2)选取适当数值填表,在平面直角坐标系中描点,用平滑曲线从左到右顺次连接各点,画出图象;(3)观察图象,得出结论.本题考查了待定系数法求函数解析式,列表,画函数图象,观察函数图象.20.【答案】解:(1)(2a −b)2+(a +b)(a −b)=4a 2+b 2−4ab +a 2−b 2=5a 2−4ab ;(2)(4x +5x −1+x +1)÷x 2+2xx −1 =4x +5+x 2−1x −1×x −1x(x +2) =(x +2)2x −1×x −1x(x +2)=x+2x.【解析】(1)直接利用完全平方公式以及平方差公式分别计算得出答案;(2)直接将括号里面通分,进而利用分式的混合运算法则计算得出答案.此题主要考查了分式的混合运算以及乘法公式,正确掌握运算法则是解题关键. 21.【答案】解:(1)∵AB =AC ,AD 平分∠BAC , ∴AD ⊥BC ,BD =CD =3,在Rt △ABD 中,AD =√AB 2−BD 2=√82−32=√55.(2)∵GA =GF , ∴∠G =∠AFG ,∵∠BAC =∠G +∠AFG =2∠AFG ,∠BAC =2∠CAD , ∴∠AFG =∠CAD , ∴AD//EG , ∵AD ⊥BC , ∴GE ⊥BC .【解析】(1)利用等腰三角形的三线合一的性质证明AD ⊥BC ,BD =CD ,利用勾股定理即可解决问题.(2)想办法证明EG//AD 即可.本题考查等腰三角形的性质,平行线的判定和性质,勾股定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型. 22.【答案】(1)4,8,87,88; (2)800;(3)初二学生的平均分高.【解析】解:(1)由题意a =4,b =8,c =87,d =88, 故答案为:4,8,87,88; (2)1000×620=300(人),1200×512=500(人),300+500=800(人), 故答案为:800人;(3)初二学生的课外阅读整体水平较高,理由是初二学生的平均分高, 故答案为:初二学生的平均分高.【分析】(1)利用收集的数据以及中位数,众数的定义即可解决问题; (2)利用样本估计总体的思想解决问题即可;(3)利用平均数的大小即可判断. 本题考查方差,平均数,中位数,众数,样本估计总体等知识,解题的关键是理解题意,熟练掌握基本知识,属于中考常考题型.23.【答案】解:(1)设普通椅子销售了x 把,实木椅子销售了y 把, 依题意,得:{x +y =900180x +400y =272000,解得:{x =400y =500.答:普通椅子销售了400把,实木椅子销售了500把; (2)依题意,得:(180−30)×400(1+103a%)+400(1−2a%)×500(1+a%)=251000,整理,得:a 2−225=0,解得:a 1=15,a 2=−15(不合题意,舍去). 答:a 的值为15.【解析】本题考查了二元一次方程组的应用以及一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)找准等量关系,正确列出一元二次方程.(1)设普通椅子销售了x 把,实木椅子销售了y 把,根据总价=单价×数量结合900把椅子的总销售金额为272000元,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)根据销售总价=销售单价×销售数量,即可得出关于a 的一元二次方程,解之取其正值即可得出结论.24.【答案】解:(1)设BC =x ,则AD =BD =x , ∵DE =16, ∴BE =x −16,∵AE ⊥BD ,tan ∠ABE =3, ∴AE =3(x −16)=3x −48, 在Rt △ADE 中,由勾股定理得, x 2−(3x −48)2=162, 解得,x =20或16, ∴BC =20或16,(2)延长AE 与BC 交于点M ,过点O 作OG//AE ,分别交BC 、CF 于点G 、H ,连接EH ,BF ,并延长BF ,与AD 交于点N ,连接DF ,DG .∵AE ⊥BD , ∴OG ⊥BD , ∵OB =OD , ∴BG =DG , ∵∠DBC =45°,∴∠BDG=45°,∴∠BGD=90°,∵OG//AM,OA=OC,∴OH=12AF=OE,HF=HC,∴∠OEH=∠OHE=45°=∠OBC,∴EH//BC,∴EF=MF,∵BE⊥MF,BF=BF,∴△BEM≌△BEF(SAS),∴∠MBE=∠EBF=45°,BM=BF,∴∠DNB=∠NBG=90°,∴四边形BGDN是正方形,∴DG=DN=BN=BG,∴MG=FN,∵AM//OG,OA=OC,∴MG=CG,∴CG=FN,在△DNF和△DGC中,{DN=DG∠DNF=∠DGC=90°FN=CG,∴△DNF≌△DGC(SAS),∴DF=DC,∠NDF=∠GDC,∴∠FDC=∠NDG=90°,∴CF=√2CD.【解析】(1)设BC=x,根据题意依次表示出AD、BE、AE,再由勾股定理列出x的方程便可求得x的值;(2)延长AE与BC交于点M,过点O作OG//AE,分别交BC、CF于点G、H,连接EH,BF,并延长BF,与AD交于点N,连接DF,DG,先证明四边形BGDN是正方形,再证明△DNF≌△DGC,得△CDF是等腰直角三角形便可.本题是平行四边形的综合题,主要考查了平行四边形的性质,解直角三角形,正方形的性质与判定,全等三角形的性质与判定,等腰直角三角形的性质与判定,勾股定理,第(1)小题的关键是用勾股定理列方程;第(2)小题较难,关键是证明△CDE为等腰直角三角形,突破方法是正确作辅助线,构造全等三角形与正方形.25.【答案】解:(1)∵a2+b2=(2n+1)2+(2n2+2n)2=4n2+4n+1+4n4+8n3+ 4n2=4n4+8n3+8n2+4n+1,c2=(2n2+2n+1)2=4n4+8n3+8n2+4n+1,∴a2+b2=c2,∵n为正整数,∴a、b、c是一组勾股数;(2)解:∵n=5∴a=12(m2−52),b=5m,c=12(m2+25),∵直角三角形的一边长为37,∴分三种情况讨论,①当a =37时,12(m 2−52)=37, 解得m =±3√11(不合题意,舍去) ②当y =37时,5m =37, 解得m =375(不合题意舍去);③当z =37时,37=12(m 2+n 2),解得m =±7,∵m >n >0,m 、n 是互质的奇数, ∴m =7,把m =7代入①②得,x =12,y =35.综上所述:当n =5时,一边长为37的直角三角形另两边的长分别为12,35.【解析】(1)分别计算出a 2+b 2=4n 4+8n 3+8n 2+4n +1,c 2=4n 4+8n 3+8n 2+4n +1,于是得到a 2+b 2=c 2,即可得到结论;(2)讨论:①当x =37时,利用12(m 2−52)=37计算出m ,然后分别计算出y 和z ;②当y =37时,利用5m =37,解得m =375,不合题意舍去;③当z =37时,利用37=12(m 2+n 2)求出m =±7,从而得到当n =5时,一边长为37的直角三角形另两边的长.此题主要考查了勾股定理与勾股数,关键是根据所给的数据证明a 2+b 2=c 2.26.【答案】解:(1)∵抛物线y =−√32x 2+2√3x −√3与y 轴交于点C ,∴C(0,−√3), ∵y =−√32x 2+2√3x −√3=−√32(x −2)2+√3,∴顶点D(2,√3),对称轴x =2,∴E(2,0),设CE 解析式y =kx +b , ∴{b =−√30=2k +b , 解得:{k =√32b =−√3,∴直线CE 的解析式:y =√32x −√3;(2)∵直线CE 交抛物线于点F(异于点C), ∴√32x −√3=−√32(x −2)2+√3,∴x 1=0,x 2=3, ∴F(3,√32), 过P 作PH ⊥x 轴,交CE 于H ,如图1, 设P(a,−√32a 2+2√3a −√3) 则H(a,√32a −√3), ∴PH =−√32a 2+2√3a −√3−(√32a −√3),=−√32a 2+3√32,∵S △CFP =12PH ×3=−3√34a 2+9√34,∴当a =32时,S △CFP 面积最大, 如图2,作点M 关于对称轴的对称点,过F 点作,FG =1,即G(4,√32),∵M 的横坐标为32,且M 与关于对称轴x =2对称,的横坐标为52,, ,且,是平行四边形, ,,根据两点之间线段最短可知:当O ,N ,,G 四点共线时,的值最短,即 FM +MN +ON 的值最小, ∴FM +MN +ON =OG =(√32)=√672; (3)如图3,设CD 解析式y =mx +n ,则{n =−√3√3=2m +n, 解得:{m =√3n =−√3,∴CD 解析式y =√3x −√3, ∴当y =0时,x =1.即G(1,0), ∴DG =√1+3=2, ∵tan ∠DGI =√31=√3,∴∠DGI =60°, ∵DI ⊥DG ,∴∠GDI =90°,∠GID =30°,∴GI =2DG =4∴I(5,0),∵将△GDI 沿射线GB 方向平移至△G′D′I′处,将△G′D′I′绕点D′逆时针旋转α(0<α<180°),当旋转到一定度数时,点G′会与点I 重合,连接,,,是等边三角形, ,,如图4,当与I、K重合,△GKL为以∠LGK为底角的等腰三角形,∠LGK=∠GLK=30°,;如图5,L与重合,△GKL为以∠LGK为底角的等腰三角形,综上,GL的长为4√3或2√3+2.【解析】(1)根据抛物线解析式可得顶点D的坐标,C点坐标,E点解析式,可求CE解析式.(2)过P作PH⊥x轴,交CE于H,设P(a,−√3a2+2√3a−√3),用a表示△PCF的面2积,根据二次函数性质可求a的值,从而可得M的横坐标,作M点关于对称轴对称点,)可得是平行四边形,则可得,作,FG=1,即G(4,√32,由两点之间线段最短可知,当O,N,,G四点共线时,的值最短,即FM+MN+ON的值最小,最小值为OG.(3)如图3,易得CD解析式:y=√3x−√3,则G(1,0),计算DG和GI的长,则I(5,0),将△GDI沿射线GB方向平移至△G′D′I′处,将△G′D′I′绕点D′逆时针旋转α(0<α< 180°),当旋转到一定度数时,点G′会与点I重合,连接,是等边三角形,得,如图4,当与L重合,可得△LGK是等边三角形,当△GKL为以∠LGK为底角的等腰三角形时,存在两种情况,画图可得结论.本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求函数的解析式、二次函数的性质、轴对称图形的性质、平行四边形的性质、等腰三角形的性质、锐角三角函数的定义,将FM+MN+ON转化为OG的长是解答问题(2)的关键,根据题意画出图形是解答问题(3)的关键.。
xx学校xx学年xx学期xx试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题(每空xx 分,共xx分)试题1:如图,抛物线y=x2+bx+c与x轴交于点A和点B(3,0),与y轴交于点C(0,3).(1)求抛物线的解析式;(2)若点M是抛物线在x轴下方上的动点,过点M作MN∥y轴交直线BC于点N,求线段MN的最大值;(3)在(2)的条件下,当MN取得最大值时,在抛物线的对称轴l上是否存在点P,使△PBN是等腰三角形?若存在,请直接写出所有点P的坐标;若不存在,请说明理由.试题2:根据学习函数的经验,探究函数y=x2+ax﹣4|x+b|+4(b<0)的图象和性质:(1)下表给出了部分x,y的取值;x L ﹣3 ﹣2 ﹣1 0 1 2 3 4 5 Ly L 3 0 ﹣1 0 3 0 ﹣1 0 3 L由上表可知,a=,b=;评卷人得分(2)用你喜欢的方式在坐标系中画出函数y=x2+ax﹣4|x+b|+4的图象;(3)结合你所画的函数图象,写出该函数的一条性质;(4)若方程x2+ax﹣4|x+b|+4=x+m至少有3个不同的实数解,请直接写出m的取值范围.试题3:(1)×+cos30°﹣|1﹣|+(﹣2)2(2)÷(﹣a+1)试题4:如图,正方形ABCD中,AB=2,O是BC边的中点,点E是正方形内一动点,OE=2,连接DE,将线段DE绕点D逆时针旋转90°得DF,连接AE、CF.则线段OF长的最小值为.试题5:已知A、B、C三地顺次在同一直线上,甲、乙两人均骑车从A地出发,向C地匀速行驶.甲比乙早出发5分钟,甲到达B 地并休息了2分钟后,乙追上了甲.甲、乙同时从B地以各自原速继续向C地行驶.当乙到达C地后,乙立即掉头并提速为原速的倍按原路返回A地,而甲也立即提速为原速的倍继续向C地行驶,到达C地就停止.若甲、乙间的距离y(米)与甲出发的时间t(分)之间的函数关系如图所示,则当甲到达C地时,乙距A地米.试题6:如图,在Rt△AOB中,∠AOB=90°,OA=2,OB=1,将Rt△AOB绕点O顺时针旋转90°后得到Rt△FOE,将线段EF绕点E逆时针旋转90°后得到线段ED,分別以O、E为圆心,OA、ED长为半径画弧AF和弧DF,连接AD,则图中阴影部分的面积是.试题7:从﹣2,﹣1,1,2四个数中任取两数,分别记为a、b,则关于x的不等式组有解的概率是.试题8:已知一个多边形的内角和等于900°,则这个多边形的边数是.试题9:分解因式:x3y﹣xy3=.试题10:使关于x的二次函数y=﹣x2+(a﹣2)x﹣3在y轴右侧y随x的增大而减小,且使得关于x的分式方程有整数解的整数a的和为()A.﹣1 B.﹣2 C.8 D.10试题11:我校小伟同学酷爱健身,一天去爬山锻炼,在出发点C处测得山顶部A的仰角为30度,在爬山过程中,每一段平路(CD、EF、GH)与水平线平行,每一段上坡路(DE、FG、HA)与水平线的夹角都是45度,在山的另一边有一点B(B、C、D同一水平线上),斜坡AB的坡度为2:1,且AB长为900,其中小伟走平路的速度为65.7米/分,走上坡路的速度为42.3米/分.则小伟从C出发到坡顶A的时间为()(图中所有点在同一平面内≈1.41,≈1.73)A.60分钟 B.70分钟 C.80分钟 D.90分钟试题12:如图,点A在反比例函数y=的图象上,AB⊥x轴于点B,点C在x轴上,且CO:OB=2:1.△ABC的面积为6,则k的值为()A.2 B.3 C.4 D.5试题13:关于x的一元二次方程x2﹣4x+m=0的两实数根分别为x1、x2,且x1+3x2=5,则m的值为()A. B. C. D.0试题14:如图,AB是⊙O的直径,且经过弦CD的中点H,已知tan∠CDB=,BD=10,则OH的长度为()A. B.1 C. D.试题15:如图,在平面直角坐标系中,已知点A(﹣3,6)、B(﹣9,﹣3),以原点O为位似中心,相似比为,把△ABO缩小,则点B的对应点B′的坐标是()A.(﹣3,﹣1) B.(﹣1,2)C.(﹣9,1)或(9,﹣1) D.(﹣3,﹣1)或(3,1)试题16:端午节前夕,某超市用1680元购进A、B两种商品共60件,其中A型商品每件24元,B型商品每件36元.设购买A型商品x件、B型商品y件,依题意列方程组正确的是()A. B.C. D.试题17:已知函数y=在实数范围内有意义,则自变量x的取值范围是()A.x≥2 B.x>3 C.x≥2且x≠3 D.x>2试题18:下列命题正确的是()A.长度为 5cm、2cm 和 3cm 的三条线段可以组成三角形B.的平方根是±3C.无限不循环小数是无理数D.两条直线被第三条直线所截,同位角相等试题19:如图所示的几何体的左视图是()A. B. C. D.试题20:下列运算正确的是()A.x﹣2x=x B.2x﹣y=xyC.x2+x2=x4 D.x﹣(1﹣x)=2x﹣1试题21:下列各数比1大的是()A.0 B. C. D.﹣3 试题1答案:【解答】(1)将点B(3,0)、C(0,3)代入抛物线y=x2+bx+c中,得:,解得:,∴抛物线的解析式为y=x2﹣4x+3.(2)设点M的坐标为(m,m2﹣4m+3),设直线BC的解析式为y=kx+3,把点点B(3,0)代入y=kx+3中,得:0=3k+3,解得:k=﹣1,∴直线BC的解析式为y=﹣x+3.∵MN∥y轴,∴点N的坐标为(m,﹣m+3).∵抛物线的解析式为y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线的对称轴为x=2,∴点(1,0)在抛物线的图象上,∴1<m<3.∵线段MN=﹣m+3﹣(m2﹣4m+3)=﹣m2+3m=﹣+,∴当m=时,线段MN取最大值,最大值为.(3)假设存在.设点P的坐标为(2,n).当m=时,点N的坐标为(,),∴PB==,PN=,BN==.△PBN为等腰三角形分三种情况:①当PB=PN时,即=,解得:n=,此时点P的坐标为(2,);②当PB=BN时,即=,解得:n=±,此时点P的坐标为(2,﹣)或(2,);③当PN=BN时,即=,解得:n=,此时点P的坐标为(2,)或(2,).综上可知:在抛物线的对称轴l上存在点P,使△PBN是等腰三角形,点P的坐标为(2,)、(2,﹣)、(2,)、(2,)或(2,).【分析】(1)由点B、C的坐标利用待定系数法即可求出抛物线的解析式;(2)设出点M的坐标以及直线BC的解析式,由点B、C的坐标利用待定系数法即可求出直线BC的解析式,结合点M的坐标即可得出点N的坐标,由此即可得出线段MN的长度关于m的函数关系式,再结合点M在x轴下方可找出m的取值范围,利用二次函数的性质即可解决最值问题;(3)假设存在,设出点P的坐标为(2,n),结合(2)的结论可求出点N的坐标,结合点N、B的坐标利用两点间的距离公式求出线段PN、PB、BN的长度,根据等腰三角形的性质分类讨论即可求出n值,从而得出点P的坐标.试题2答案:【解答】(1)将点(0,0)、(1,3)代入函数y=x2+ax﹣4|x+b|+4(b<0),得解得a=﹣2,b=﹣1,故答案为6,﹣1;(2)画出函数图象如图:(3)该函数的一条性质:函数关于x=1对称;(4)当x=3时,y=﹣1;当x=1时,y=3;∴当0≤m≤2时,方程x2+ax﹣4|x+b|+4=x+m至少有3个不同的实数解,故答案为0≤m≤2.【分析】(1)将点(0,0)、(1,3)代入函数y=x2+ax﹣4|x+b|+4,得到关于a、b的一元二次方程,解方程组即可求得;(2)描点法画图即可;(3)根据图象即可得到函数关于x=1对称;(4)结合图象找,当x=﹣1时,y=﹣1;当x=1,y=3;则当0<m<2时,方程x2+ax﹣4|x+b|+4=x+m至少有3个不同的实数解.试题3答案:(1)+5 (2)【分析】(1)根据二次根式的乘法和加减法可以解答本题;(2)根据分式的减法和除法可以解答本题.【解答】(1)×+cos30°﹣|1﹣|+(﹣2)2=2×+﹣(﹣1)+4=2﹣+1+4=+5;(2)÷(﹣a+1)===﹣=.试题4答案:5.【分析】连接DO,将线段DO绕点D逆时针旋转90°得DM,连接OF,FM,OM,证明△EDO≌△FDM,可得FM=OE=2,由条件可得OM=5,根据OF+MF≥OM,即可得出OF的最小值.【解答】如图,连接DO,将线段DO绕点D逆时针旋转90°得DM,连接OF,FM,OM,∵∠EDF=∠ODM=90°,∴∠EDO=∠FDM,∵DE=DF,DO=DM,∴△EDO≌△FDM(SAS),∴FM=OE=2,∵正方形ABCD中,AB=2,O是BC边的中点,∴OC=,∴OD==5,∴OM==5,∵OF+MF≥OM,∴OF≥5,∴线段OF长的最小值为5.试题5答案:6075.【分析】根据题意和函数图象中的数据,可以分别求得甲乙刚开始的速度和后来的速度,也可求得A、B两地的距离、A、C两地的距离,然后即可求得甲到达C地时,乙距A地距离.【解答】由题意可得,甲乙两人刚开始的速度之差为:900÷(23﹣14)=100(米/分),设甲刚开始的速度为x米/分,乙刚开始的速度为(x+100)米/分,12x=(14﹣5)×(x+100),解得,x=300,则x+100=400,则A、B两地之间的距离为:300×12=3600(米),A、C两地之间的距离为:400×(23﹣5)=7200(米),∵当乙到达C地后,乙立即掉头并提速为原速的倍按原路返回A地,而甲也立即提速为原速的倍继续向C地行驶,∴后来乙的速度为:400×=500(米/分),甲的速度为300×=400(米/分),甲到达C地的时间为:23+[7200﹣(23﹣2)×300]÷400=25(分钟),∴当甲到达C地时,乙距A地:7200﹣(25﹣23)×500=6075(米),试题6答案:.【分析】作DH⊥AE于H,根据勾股定理求出AB,根据阴影部分面积=△ADE的面积+△EOF的面积+扇形AOF的面积﹣扇形DEF的面积、利用扇形面积公式计算即可.【解答】作DH⊥AE于H,∵∠AOB=90°,OA=2,OB=1,∴AB==,由旋转,得△EOF≌△BOA,∴∠OAB=∠EFO,∵∠FEO+∠EFO=∠FEO+∠HED=90°,∴∠EFO=∠HED,∴∠HED=∠OAB,∵∠DHE=∠AOB=90°,DE=AB,∴△DHE≌△BOA(AAS),∴DH=OB=1,阴影部分面积=△ADE的面积+△EOF的面积+扇形AOF的面积﹣扇形DEF的面积=×3×1+×1×2+﹣=,试题7答案:.【分析】根据关于x的不等式组有解,得出b≤x≤a+1,根据题意列出树状图得出所有等情况数和关于x的不等式组有解的情况数,再根据概率公式即可得出答案.【解答】∵关于x的不等式组有解,∴b≤x≤a+1,根据题意画图如下:共有12种等情况数,其中关于x的不等式组有解的情况分别是,,,,,,,,共8种,则有解的概率是=;试题8答案:7【分析】根据多边形的内角和计算公式作答.【解答】设所求正n边形边数为n,则(n﹣2)•180°=900°,解得n=7.试题9答案:xy(x+y)(x﹣y)【分析】首先提取公因式xy,再对余下的多项式运用平方差公式继续分解.【解答】x3y﹣xy3,=xy(x2﹣y2),=xy(x+y)(x﹣y).试题10答案:A【分析】根据二次函数y=﹣x2+(a﹣2)x﹣3在y轴右侧y随x的增大而减小和分式方程,可以求得a的所有可能性,从而可以求得所有符合条件的a的和,本题得以解决.【解答】∵关于x的二次函数y=﹣x2+(a﹣2)x﹣3在y轴右侧y随x的增大而减小,∴﹣≤0,解得,a≤2,由分式方程,得x=,则使得关于x的分式方程有整数解的整数a的值为5,3,0,﹣1,又∵a≤2,∴a的整数值为0,﹣1,∴0+(﹣1)=﹣1,故选:A.试题11答案:C【分析】如图,作AP⊥BC于P,延长AH交BC于Q,延长EF交AQ于T.想办法求出AQ.CQ即可解决问题.【解答】如图,作AP⊥BC于P,延长AH交BC于Q,延长EF交AQ于T.由题意:=2,AQ=AH+FG+DE,CQ=CD+EF+GH,∠AQP=45°,∵∠APB=90°,AB=900,∴PB=900,PA=1800,∵∠PQA=∠PAQ=45°,∴PA=PQ=1800,AQ=PA=1800,∵∠C=30°,∴PC=PA=1800,∴CQ=1800﹣1800,∴小伟从C出发到坡顶A的时间=+≈80(分钟),故选:C.试题12答案:C【分析】首先确定三角形AOB的面积,然后根据反比例函数的比例系数的几何意义确定k的值即可.【解答】∵CO:OB=2:1,∴S△AOB=S△ABC=×6=2,∴|k|=2S△ABC=4,∵反比例函数的图象位于第一象限,∴k=4,故选:C.试题13答案:A【分析】根据一元二次方程根与系数的关系得到x1+x2=4,代入代数式计算即可.【解答】∵x1+x2=4,∴x1+3x2=x1+x2+2x2=4+2x2=5,∴x2=,把x2=代入x2﹣4x+m=0得:()2﹣4×+m=0,解得:m=,故选:A.试题14答案:A【分析】连接OD,由垂径定理得出AB⊥CD,由三角函数求出DH=4,BH=3,设OH=x,则OD=OB=x+3,在Rt△ODH中,由勾股定理得出方程,解方程即可.【解答】连接OD,如图所示:∵AB是⊙O的直径,且经过弦CD的中点H,∴AB⊥CD,∴∠OHD=∠BHD=90°,∵tan∠CDB==,BD=5,∴DH=4,BH=3,设OH=x,则OD=OB=x+3,在Rt△ODH中,由勾股定理得:x2+42=(x+3)2,解得:x=,∴OH=;故选:A.试题15答案:D【分析】利用以原点为位似中心,相似比为k,位似图形对应点的坐标的比等于k或﹣k,把B点的横纵坐标分别乘以或﹣即可得到点B′的坐标.【解答】∵以原点O为位似中心,相似比为,把△ABO缩小,∴点B(﹣9,﹣3)的对应点B′的坐标是(﹣3,﹣1)或(3,1).故选:D.试题16答案:B【分析】根据A、B两种商品共60件以及用1680元购进A、B两种商品分别得出等式组成方程组即可.【解答】设购买A型商品x件、B型商品y件,依题意列方程组:.故选:B.试题17答案:C【分析】根据二次根式有意义的条件和分式有意义的条件列出不等式,解不等式即可.【解答】由题意得x﹣2≥0,x﹣3≠0,解得x≥2且x≠3,故选:C.试题18答案:C【分析】根据三角形三边的关系对A进行判断;根据平方根的定义对B进行判断;根据无理数的定义对C进行判断;根据平行线的性质对D进行判断.【解答】A、因为2+3=5,则长度为 5cm、2cm 和 3cm 的三条线段不能组成三角形,所以A选项错误;B、=3,而3的平方根为±,所以B选项错误;C、无限不循环小数是无理数,所以C选项正确;D、两平行直线被第三条直线所截,同位角相等,所以D选项错误.故选:C.试题19答案:D【分析】根据从左边看得到的图形是左视图,可得答案.【解答】从左边看是两个等宽的矩形,矩形的公共边是虚线,故选:D.试题20答案:D【分析】各项计算得到结果,即可作出判断.【解答】A、原式=﹣x,不符合题意;B、原式不能合并,不符合题意;C、原式=2x2,不符合题意;D、原式=x﹣1+x=2x﹣1,符合题意,故选:D.试题21答案:C【分析】实数大小比较的方法:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判定即可.【解答】∵>1>>0>﹣3,∴比1大的是.故选:C.。
2020年中考数学第二次模拟测试试卷一、选择题1.下列各数中,属于无理数的是()A.B.0C.D.2.下列运算正确的是()A.﹣4﹣3=﹣1B.5×(﹣1)2=﹣1C.x2•x4=x8D.+=3 3.不等式﹣x+2>3x的解为()A.x>﹣B.x<C.x>﹣2D.x<24.已知A(﹣3,2)关于x轴对称点为A',则点A'的坐标为()A.(3,2)B.(2,﹣3)C.(3,﹣2)D.(﹣3,﹣2)5.若5y﹣x=7时,则代数式3﹣2x+10y的值为()A.17B.11C.﹣11D.106.规定用符号[x]表示一个实数的整数部分,例如[3.87]=3,[]=1,按此规定[(﹣)]=()A.1B.2C.3D.47.如图,菱形ABCD中,过顶点C作CE⊥BC交对角线BD于E点,已知∠A=134°,则∠BEC的大小为()A.23°B.28°C.62°D.67°8.按如图的程序计算,若开始输入x的值为正整数,最后输出的结果为22,则开始输入的x值可以为()A.1B.2C.3D.49.如图所示,已知AC为⊙O的直径,直线PA为圆的一条切线,在圆周上有一点B,且使得BC=OC,连接AB,则∠BAP的大小为()A.30°B.50°C.60°D.70°10.如图,小明为了测量大楼AB的高度,他从点C出发,沿着斜坡面CD走52米到点D 处,测得大楼顶部点A的仰角为37°,大楼底部点B的俯角为45°,已知斜坡CD的坡度为i=1:2.4.大楼AB的高度约为()(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)A.32米B.35米C.36米D.40米11.若关于x的不等式组无解,且关于y的方程+=1的解为正数,则符合题意的整数a有()个.A.1个B.2个C.3个D.4个12.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=4,将△ABC绕点C逆时针旋转得到△A′B′C,且B′恰好落在AB上,M是BC的中点,N是A′B′的中点,连接MN,则C到MN的距离是()A.B.C.D.二、填空题13.计算:﹣2sin45°+(﹣1)0=.14.国家发改委2月7日紧急下达第二批中央预算内投资2亿元人民币,专项补助承担重症感染患者救治任务的湖北多家医院重症治疗病区建设,其中数据2亿用科学记数法表示为元.15.如果任意选择一对有序整数(m,n),其中|m|≤1,|n|≤2,每一对这样的有序整数被选择的可能性是相等的,那么关于x的方程x2+nx+m=0有两个相等实数根的概率是.16.如图,四边形ABCD的顶点都在坐标轴上,若AB∥CD,△AOB与△COD面积分别为8和18,若双曲线y=恰好经过BC的中点E,则k的值为.17.小刚从家出发匀速步行去学校上学.几分钟后发现忘带数学作业,于是掉头原速返回并立即打电话给爸爸,挂断电话后爸爸立即匀速跑步去追小刚,同时小刚以原速的两倍匀速跑步回家,爸爸追上小刚后以原速的倍原路步行回家.由于时间关系小明拿到作业后同样以之前跑步的速度赶往学校,并在从家出发后23分钟到校(小刚被爸爸追上时交流时间忽略不计).两人之间相距的路程y(米)与小刚从家出发到学校的步行时间x(分钟)之间的函数关系如图所示,则小刚家到学校的路程为米.18.如图,在边长为1的菱形ABCD中,∠ABC=60°,将△ABD沿射线BD的方向平移得到△A'B'D',分别连接A'C,A'D,B'C,则A'C+B'C的最小值为.三、解答题19.计算:(1)(3x﹣y)2+(3x+y)(3x﹣y)(2)解方程:=20.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=4,以BC为直径的半圆O交斜边AB于点D.(1)证明:AD=3BD;(2)求弧BD的长度;(3)求阴影部分的面积.21.钟南山院士谈到防护新型冠状病毒肺炎时说:“我们需要重视防护,但也不必恐慌,尽量少去人员密集的场所,出门戴口罩,在室内注意通风,勤洗手,多运动,少熬夜.”某社区为了加强社区居民对新型冠状病毒肺炎防护知识的了解,通过微信群宣传新型冠状病毒肺炎的防护知识,并鼓励社区居民在线参与作答《2020年新型冠状病毒防治全国统一考试(全国卷)》试卷,社区管理员随机从甲、乙两个小区各抽取20名人员的答卷成绩,并对他们的成绩(单位:分)进行统计、分析,过程如下:收集数据甲小区:85 80 95 100 90 95 85 65 75 85 90 90 70 90100 80 80 90 95 75乙小区:80 60 80 95 65 100 90 85 85 80 95 75 80 9070 80 95 75 100 90整理数据成绩x(分)60≤x≤7070<x≤8080<x≤9090<x≤100甲小区25a b乙小区3755分析数据统计量平均数中位数众数甲小区85.7587.5c乙小区83.5d80应用数据(1)填空:a=,b=,c=,d=;(2)若甲小区共有800人参与答卷,请估计甲小区成绩大于90分的人数;(3)社区管理员看完统计数据,认为甲小区对新型冠状病毒肺炎防护知识掌握更好,请你写出社区管理员的理由.22.小明根据学习函数的经验,对函数y=+1的图象与性质进行了探究.下面是小明的探究过程,请补充完整:(1)函数y=+1的自变量x的取值范围是;(2)如表列出了y与x的几组对应值,请写出m,n的值:m=,n=;x…﹣﹣1﹣023…y…m0﹣1n2…(3)在如图所示的平面直角坐标系中,描全上表中以各对对应值为坐标的点,并画出该函数的图象.(4)结合函数的图象,解决问题:①写出该函数的一条性质:.②当函数值+1>时,x的取值范围是:.23.每年的3月15日是“国际消费者权益日”,许多家居商城都会利用这个契机进行打折促销活动,甲卖家的A商品成本为600元,在标价1000元的基础上打8折销售(1)现在甲卖家欲继续降价吸引买主,问最多降价多少元,才能使利润率不低于20%?(2)据媒体爆料,有一些卖家先提高商品价格后再降价促销,存在欺诈行为,乙卖家也销售A商品,其成本、标价与甲卖家一致,以前每周可售出50件,现乙卖家先将标价提高2m%,再大幅降价24m元,使得A商品在3月15日那一天卖出的数量就比原来一周卖出的数量增加了m%后,这样一天的利润达到了20000元,求m的值24.如图1,抛物线y=ax2+2ax+c(a≠0)与x轴交于点A,B(1,0)两点,与y轴交于点C,且OA=OC.(1)求抛物线的解析式;(2)点D是抛物线顶点,求△ACD的面积;(3)如图2,射线AE交抛物线于点E,交y轴的负半轴于点F(点F在线段AE上),点P是直线AE下方抛物线上的一点,S△ABE=,求△APE面积的最大值和此动点P 的坐标.25.我们已经知道一些特殊的勾股数,如三个连续正整数中的勾股数:3、4、5;三个连续的偶数中的勾股数6、8、10;事实上,勾股数的正整数倍仍然是勾股数.(1)另外利用一些构成勾股数的公式也可以写出许多勾股数,毕达哥拉斯学派提出的公式:a=2n+1,b=2n2+2n,c=2n2+2n+1(n为正整数)是一组勾股数,请证明满足以上公式的a、b、c的数是一组勾股数.(2)然而,世界上第一次给出的勾股数公式,收集在我国古代的著名数学著作《九章算术》中,书中提到:当a=(m2﹣n2),b=mn,c=(m2+n2)(m、n为正整数,m >n时,a、b、c构成一组勾股数;利用上述结论,解决如下问题:已知某直角三角形的边长满足上述勾股数,其中一边长为37,且n=5,求该直角三角形另两边的长.26.【初步探索】(1)如图1:在四边形ABC中,AB=AD,∠B=∠ADC=90°,E、F分别是BC、CD 上的点,且EF=BE+FD,探究图中∠BAE、∠FAD、∠EAF之间的数量关系.小王同学探究此问题的方法是:延长FD到点G,使DG=BE.连接AG,先证明△ABE ≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是;【灵活运用】(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E、F分别是BC、CD 上的点,且EF=BE+FD,上述结论是否仍然成立,并说明理由;【拓展延伸】(3)如图3,已知在四边形ABCD中,∠ABC+∠ADC=180°AB=AD,若点E在CB 的延长线上,点F在CD的延长线上,如图3所示,仍然满足EF=BE+FD,请写出∠EAF 与∠DAB的数量关系,并给出证明过程.参考答案1.C.2.D.3.B.4.D.5.A.6.B.7.D.8.B.9.C.10.B.11.D.12.A.13.+1.14.2×108.15..16.6.17.2960.18..19.解:(1)原式=9x2﹣6xy+y2+9x2﹣y2=18x2﹣6xy;(2)去分母得:2(2x+1)=4,整理得:2x+1=2,移项合并得:2x=1,解得:x=,经检验x=是增根,分式方程无解.20.解:(1)∵在Rt△ABC中,∠ACB=90°,∠A=30°,∴∠B=60°,∴∠COD=120°,∵BC=4,BC为半圆O的直径,∴∠CDB=90°,∴∠BCD=30°,∴BC=2BD,∵∠A=30°,∴AB=2BC=4BD,∴AD=3BD;(2)由(1)得∠B=60°,∴OC=OD=OB=2,∴弧BC的长为=;(3)∵BC=4,∠BCD=30°,∴CD=BC=2,图中阴影部分的面积=S扇形COD﹣S△COD=﹣×2×1=﹣.21.解:(1)a=8,b=5,甲小区的出现次数最多的是90,因此众数是90,即c=90.中位数是从小到大排列后处在第10、11位两个数的平均数,由乙小区中的数据可得处在第10、11位的两个数的平均数为(80+85)÷2=82.5,因此d=82.5.(2)800×=200(人).答:估计甲小区成绩大于90分的人数是200人.(3)根据(1)中数据,甲小区对新型冠状病毒肺炎防护知识掌握得更好,理由是:甲小区的平均数、中位数、众数都比乙小区的大.故答案为:8,5,90,82.5;甲,甲小区的平均数、中位数、众数都比乙小区的大.22.解:(1)由分式的分母不为0得:x﹣1≠0,∴x≠1;故答案为:x≠1.(2)当x=﹣1时,y=+1=,当x=时,y=+1=3,∴m=,n=3,故答案为:,3.(3)如图:(4)①观察函数图象,可知:函数图象经过原点且关于点(1,1)对称,故答案为:函数图象经过原点且关于点(1,1)对称.②观察函数图象,可知:当函数值+1>时,x的取值范围是1<x<3,故答案为:1<x<3.23.解:(1)设降价x元,依题意,得:(1000×0.8﹣x)≥600×(1+20%),解得:x≤80.答:最多降价80元,才能使利润率不低于20%.(2)设m%=a,依题意,得:[1000(1+2a)﹣2400a﹣600]•50(1+a)=20000,整理,得:5a2﹣3a=0,解得:a1=0(舍去),a2=,∴m%=,∴m=60.答:m的值为60.24.解:(1)∵抛物线y=ax2+2ax+c(a≠0)与x轴交于点A,B(1,0)两点,与y轴交于点C,且OA=OC,∴a+2a+c=0,点C的坐标为(0,c),∴点A的坐标为(c,0),∴ac2+2ac+c=0,∴,解得,或,∵函数图象开口向上,∴a>0,∴a=1,c=﹣3,∴抛物线的解析式为y=x2+2x﹣3;(2)∵y=x2+2x﹣3=(x+1)2﹣4,抛物线与与y轴交于点C,顶点为D,OA=OC,抛物线y=ax2+2ax+c(a≠0)与x轴交于点A,B(1,0)两点,∴点D的坐标为(﹣1,﹣4),点C的坐标为(0,﹣3),点A的坐标为(﹣3,0),连接OD,如右图1所示,由图可知:S△ACD=S△OAD+S△OCD﹣S△OAC==3;(3)∵A(﹣3,0),点B(1,0),∴AB=4,设点E的纵坐标为t,t<0,∵S△ABE=,∴=,得t=,把y=﹣代入y=x2+2x﹣3,得﹣=x2+2x﹣3,解得,x1=,x2=,∵点E在y轴的右侧,∴点E(,﹣),设直线AE的解析式为y=mx+n(m≠0),∴,得,∴直线AE的解析式为y=﹣x﹣1,过点P作y轴的平行线交AC于点G,如图2所示,设点P的横坐标为x,则P(x,x2+2x﹣3),点G(x,﹣x﹣1),∴PG=(﹣x﹣1)﹣(x2+2x﹣3)=﹣x2﹣x+2,又∵A(﹣3,0),E(,﹣),∴S△APE=S△APG+S△PEG=(﹣x2﹣x+2)(x+3)+(﹣x2﹣x+2)(﹣x)=(﹣x2﹣x+2)(3+)=(x+)2+,∴当x=﹣时,S△APE取得最大值,最大值是,把x=﹣代入y=x2+2x﹣3,得y=(﹣)2+2×(﹣)﹣3=﹣,∴此时点P的坐标为(﹣,﹣).25.解:(1)∵a2+b2=(2n+1)2+(2n2+2n)2=4n2+4n+1+4n4+8n3+4n2=4n4+8n3+8n2+4n+1,c2=(2n2+2n+1)2=4n4+8n3+8n2+4n+1,∴a2+b2=c2,∵n为正整数,∴a、b、c是一组勾股数;(2)解:∵a=(m2﹣n2),b=mn,c=(m2+n2),∴a2+b2=c2,∴△ABC是直角三角形,且c为直角边,∵n=5,∴a=(m2﹣52),b=5m,c=(m2+25),∵直角三角形的一边长为37,∴分三种情况讨论,①当a=37时,(m2﹣52)=37,解得m=±3(不合题意,舍去)②当b=37时,5m=37,解得m=(不合题意舍去);③当c=37时,37=(m2+n2),解得m=±7,∵m>n>0,m、n是互质的奇数,∴m=7,把m=7代入①②得,a=12,b=35.综上所述:当n=5时,一边长为37的直角三角形另两边的长分别为12,35.26.解:(1)∠BAE+∠FAD=∠EAF.理由:如图1,延长FD到点G,使DG=BE,连接AG,根据SAS可判定△ABE≌△ADG,进而得出∠BAE=∠DAG,AE=AG,再根据SSS可判定△AEF≌△AGF,可得出∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF.故答案为:∠BAE+∠FAD=∠EAF;(2)仍成立,理由:如图2,延长FD到点G,使DG=BE,连接AG,∵∠B+∠ADF=180°,∠ADG+∠ADF=180°,∴∠B=∠ADG,又∵AB=AD,∴△ABE≌△ADG(SAS),∴∠BAE=∠DAG,AE=AG,∵EF=BE+FD=DG+FD=GF,AF=AF,∴△AEF≌△AGF(SSS),∴∠EAF=∠GAF=∠DAG+∠DAF=∠BAE+∠DAF;(3)∠EAF=180°﹣∠DAB.证明:如图3,在DC延长线上取一点G,使得DG=BE,连接AG,∵∠ABC+∠ADC=180°,∠ABC+∠ABE=180°,∴∠ADC=∠ABE,又∵AB=AD,∴△ADG≌△ABE(SAS),∴AG=AE,∠DAG=∠BAE,∵EF=BE+FD=DG+FD=GF,AF=AF,∴△AEF≌△AGF(SSS),∴∠FAE=∠FAG,∵∠FAE+∠FAG+∠GAE=360°,∴2∠FAE+(∠GAB+∠BAE)=360°,∴2∠FAE+(∠GAB+∠DAG)=360°,即2∠FAE+∠DAB=360°,∴∠EAF=180°﹣∠DAB.。
2020年重庆市育才中学中考数学练习卷(含答案)一.选择题(满分24分,每小题2分)1.下列各数,﹣3,π,﹣,0,,0.010010001…(每相邻两个1之间0的个数依次多1),其中无理数的个数是()A.1 B.2 C.3 D.42.下列运算中,正确的是()A.a3•a5=a15B.a3+a3=2a6C.=±2 D.﹣=2 3.解不等式时,去分母步骤正确的是()A.1+x≤1+2x+1 B.1+x≤1+2x+6C.3(1+x)≤2(1+2x)+1 D.3(1+x)≤2(1+2x)+64.已知点P(1,a)与Q(b,2)关于y轴对称,则a+b的值为()A.﹣1 B.1 C.3 D.﹣35.已知x2+3x+5的值是7,则式子﹣3x2﹣9x+2的值是()A.0 B.﹣2 C.﹣4 D.﹣66.估计的值应在()A.4和5之间B.5和6之间C.6和7之间D.7和8之间7.已知菱形ABCD,对角线交点为O,延长CD至E且CD=DE.下列判断正确个数是()(1)∠AOB=90°;(2)AE=2OD;(3)∠OAE=90°;(4)∠AEO=∠CEO.A.1个B.2个C.3个D.4个8.把x=﹣1输入程序框图可得()A.﹣1 B.0 C.不存在D.19.如图,AB是⊙O的直径,直线PA与⊙O相切于点A,PO交⊙O于点C,连接BC.若∠P =42°,则∠ABC的度数是()A.21°B.24°C.42°D.48°10.小明利用所学教学知识测量某建筑物BC的高度,采用了如下的方法:小明从与某建筑物底端B在同一水平线上的A点出发.先沿斜坡AD行走260米至坡顶D处,再从D处沿水平方向继续前行若干米后至点E处,在E点测得该建筑物顶端c的仰角为72°,建筑物底端B的俯角为63°.其中点A、B、C、D、E在同一平面内,斜坡AD的坡度i=1:2.4,根据小明的测量数据,计算得出建筑物BC的高度为()米(计算结果精确到0.1米)参考数据:sin72°≈0.95,tan72°≈3.08,sin63°≈0.89,tan63°≈1.96A.157.1 B.157.4 C.257.1 D.257.411.若数a使关于x的不等式组有解且所有解都是2x+6>0的解,且使关于y的分式方程+3=有整数解,则满足条件的所有整数a的个数是()A.5 B.4 C.3 D.212.如图,Rt△ABC中,∠C=90°,∠ABC=30°,AC=2,△ABC绕点C顺时针旋转得△CEF,当E落在AB边上时,连接BF,取BF的中点D,连接ED,则ED的长度是()A.B.2C.3 D.2二.填空题(满分24分,每小题4分)13.计算:|2﹣|﹣2sin30°﹣(π﹣3)0=.14.2019年1至6月份,东台黄海森林公园入园人数约为280000人,数字280000用科学记数法可以表示为.15.投掷一枚质地均匀的骰子两次,向上一面的点数依次记为a,b.那么方程x2+ax+b=0有解的概率是.16.已知点A、B分别在反比例函数y=(x>0),y=(x>0)的图象上,且OA⊥OB,tan B=,则k=.17.已知A、B、C三地顺次在同一直线上,甲、乙两人均骑车从A地出发,向C地匀速行驶.甲比乙早出发5分钟,甲到达B地并休息了2分钟后,乙追上了甲.甲、乙同时从B地以各自原速继续向C地行驶.当乙到达C地后,乙立即掉头并提速为原速的倍按原路返回A地,而甲也立即提速为原速的倍继续向C地行驶,到达C地就停止.若甲、乙间的距离y(米)与甲出发的时间t(分)之间的函数关系如图所示,则下列说法①甲、乙提速前的速度分别为300米/分、400米/分;②A、C两地相距7200米;③甲从A地到C 地共用时26分钟;④当甲到达C地时,乙距A地6075米;其中正确的是.18.如图,在菱形ABCD中,AB=4,∠A=120°,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK的最小值为.三.解答题19.(8分)计算:(1)(x﹣3y)2﹣(x+3y)(x﹣3y);(2)解方程:=.20.(10分)如图,AB是⊙O的直径,弦CD⊥AB,垂足为P,若AB=2,AC=.(1)求∠BAC的度数.(2)求的长.(3)求阴影部分的面积.21.(8分)终南山院士谈到防护新型冠状病毒肺炎时说:“我们需要重视防护,但也不必恐慌,尽量不去人员密集的场所,出门戴口罩,在室内注意通风,勤洗手,多运动,少熬夜.”某社区为了加强社区居民对防护知识的了解,通过微信宣传防护知识,并鼓励社区居民在线参与作答《2020年新型冠状病毒防治全国统一考试(全国卷)》试卷,社区管理员随机从甲、乙两个小区各抽取20名人员的答卷成绩,并对他们的成绩(单位:分)进行统计、分析,过程如下:收集数据:甲小区:85 80 95 100 90 95 85 65 75 8590 90 70 90 100 80 80 90 95 75乙小区:80 60 80 95 65 100 90 85 85 8095 75 80 90 70 80 95 75 100 90整理数据60≤x≤70 70<x≤80 80<x≤90 90<x≤100 成绩x小区甲小区 2 5 a b乙小区 3 7 5 5 分析数据平均数中位数众数统计量小区甲小区85.75 87.5 c乙小区83.5 d80 应用数据(1)填空:a=,b=,c=,d=;(2)根据以上数据,(填“甲”或“乙”)小区对新型冠状病毒肺炎防护知识掌握得更好,理由是(一条即可)(3)若甲小区共有800人参加答卷,请估计甲小区成绩高于90分的人数.22.(8分)已知点A(2,a)、B(﹣8,b)两点在函数y=的图象上.(1)直接写出a=,b=,并在网格内画出函数y=的图象(2)将点C(6,c)绕A点逆时针旋转90°得到点D,若点D恰好落在函数图象上,求c的值;(3)设AB的解析式为y=kx+m,请直接写出不等式kx+m>的解集.23.(8分)甲、乙两个工程队原计划修建一条长100千米的公路,由于实际情况,进行了两次改道,每次改道以相同的百分率增加修路长度,使得实际修建长度为121千米,已知甲工程队每天比乙工程队每天多修路0.5千米,乙工程队单独完成修路任务所需天数是甲工程队单独完成修路任务所需天数的1.5倍.(1)求两次改道的平均增长率;(2)求甲、乙两个工程队每天各修路多少千米?(3)若甲工程队每天的修路费用为0.5万元,乙工程队每天的修路费用为0.4万元,要使两个工程队修路总费用不超过42.4万元,甲工程队至少修路多少天?24.(8分)如图①抛物线y=ax2+bx+3(a≠0)与x轴,y轴分别交于点A(﹣1,0),B (3,0),点C三点.(1)试求抛物线的解析式;(2)点D(2,m)在第一象限的抛物线上,连接BC,BD.试问,在对称轴左侧的抛物线上是否存在一点P,满足∠PBC=∠DBC?如果存在,请求出点P点的坐标;如果不存在,请说明理由;(3)点N在抛物线的对称轴上,点M在抛物线上,当以M、N、B、C为顶点的四边形是平行四边形时,请直接写出点M的坐标.25.(8分)我们已经知道了一些特殊的勾股数,如三个连续整数中的勾股数:3、4、5;三个连续偶数中的勾股数6、8、10;由此发现勾股数的正整数倍仍然是勾股数.(1)如果a、b、c是一组勾股数,即满足a2+b2=c2,求证:ka、kb、kc(k为正整数)也是一组勾股数.(2)另外利用一些构成勾股数的公式也可以写出许多勾股数,毕达哥拉斯学派就曾提出公式a=2n+1,b=2n2+2n,c=2n2+2n+l(n为正整数)是一组勾股数,证明满足以上公式的a,b,c是一组勾股数.(3)值得自豪的是,世界上第一次给出的勾股数公式,收集在我国的《九章算术》中,书中提到:当a=(m2﹣n2),b=mn,c=(m2+n2)(m、n为正整数,m>n)时,a,b,c构成一组勾股数;请根据这一结论直接写出一组符合条件的勾股数.26.(10分)如图,互相垂直的两条射线OE与OF的端点O在三角板的内部,与三角板两条直角边的交点分别为点D、B.(1)填空:若∠ABO=50°,则∠ADO=;(2)若DC、BP分别是∠ADO、∠ABF的角平分线,如图1.求证:DC⊥BP;(3)若DC、BP分别分别是∠ADE、∠ABF的角平分线,如图2.猜想DC与BP的位置关系,并说明理由.参考答案一.选择题1.解:=2,∴在﹣3,π,﹣,0,,0.010010001…(每相邻两个1之间0的个数依次多1)中,无理数有π,0.010010001…(每相邻两个1之间0的个数依次多1)共2个.故选:B.2.解:A、a3•a5=a3+5=a8,故本选项错误;B、a3+a3=2a3,故本选项错误;C、=2,故本选项错误;D、﹣=3﹣=2,故本选项正确.故选:D.3.解:,去分母得:3(1+x)≤2(1+2x)+6,故选:D.4.解:∵点P(1,a)与Q(b,2)关于y轴对称,∴b=﹣1,a=2,∴a+b=1.故选:B.5.解:∵x2+3x+5=7,∴x2+3x=7﹣5=2,∴﹣3x2﹣9x+2=﹣3(x2+3x)+2=﹣3×2+2=﹣6+2=﹣4故选:C.6.解:=3﹣1,∵5.96<6<6.25,∴2.4<<2.5,∴6.2<<6.5,故选:C.7.解:∵四边形ABCD是菱形,∴AC⊥BD,AB=CD,OB=OD,AB∥CD,∴∠AOB=90°,(1)正确;∵DE=CD,∴AB=DE.∴四边形ABDE是平行四边形,∴AE∥BD,AE=BD=2OD,(2)正确;∵AC⊥BD,∴AC⊥AE,∴∠OAE=90°,(3)正确;∵AE∥BD,∴∠AEO=∠DOE,∵DE=CD>OD,∴∠DOE>∠CEO,∴∠AEO>∠CEO,(4)错误;正确的个数有3个,故选:C.8.解:根据x=﹣1,﹣1<0,可得y=1.故选:D.9.解:∵直线PA与⊙O相切于点A,∴OA⊥PA,∴∠OAP=90°,∴∠AOP=90°﹣∠P=90°﹣42°=48°,∴∠ABC=∠AOC=24°,故选:B.10.解:如图作DH⊥AB于H,延长DE交BC于F.在Rt△ADH中,∵AD=260,DH:AH=1:2.4,∴DH=100(m),∵四边形DHBF是矩形,∴BF=DH=100,在Rt△EFB中,tan63°=,∴EF=,在Rt△EFC中,FC=EF•tan72°,∴CF=×3.08≈157.1,∴BC=BF+CF=257.1(m).故选:C.11.解:不等式组整理得:,由不等式组有解且都是2x+6>0,即x>﹣3的解,得到﹣3<a﹣1≤3,即﹣2<a≤4,即a=﹣1,0,1,2,3,4,分式方程去分母得:5﹣y+3y﹣3=a,即y=,由分式方程有整数解,得到a=0,2,共2个,故选:D.12.解:∵∠ACB=90°,∠ABC=30°,AC=2,∴∠A=90°﹣∠ABC=60°,AB=4,BC=2,∵△ABC绕点C顺时针旋转得△CEF,∴CA=CE,∠ACE=∠BCF,BC=CF,∴△ACE是等边三角形,AE=AC=BE=EC=2,∴∠BCF=∠ACE=60°,∵CB=CF,∴△BCF是等边三角形,∴BF=2,∠CBF=60°,∵点D是BF中点,∴BD=,且BE=2,∠ABF=90°,∴DE===,故选:A.二.填空题13.解:原式=2﹣2﹣2×﹣1=2﹣2﹣1﹣1=2﹣4.故答案为:2﹣4.14.解:280000用科学记数法表示为:2.8×105.故答案为:2.8×105.15.解:画树状图为:共有36种等可能的结果数,其中使a2﹣4b≥0,即a2≥4b的有19种,∴方程x2+ax+b=0有解的概率是,故答案为:.16.解:过点A作AC⊥y轴于点C,过点B作BD⊥y轴于点D,如图所示.∵AC⊥y轴,BD⊥y轴,OA⊥OB,∴∠ACD=∠ODB=90°,∠AOB=90°.∵∠OAC+∠AOC=90°,∠BOD+∠OBD=90°,∠AOC+∠BOD=180°﹣90°=90°,∴∠AOC=∠OBD,∴△AOC∽△OBD,∴=.∵反比例函数y=在第四象限有图象,∴k<0.∵tan B=,S△AOC =×2=1,S△OBD=|k|=﹣k,∴=,解得:k=﹣8,经检验:k=﹣8是方程=的解.故答案为:﹣8.17.解:由题意可得,甲乙两人刚开始的速度之差为:900÷(23﹣14)=100(米/分),设甲刚开始的速度为x米/分,乙刚开始的速度为(x+100)米/分,12x=(14﹣5)×(x+100),解得,x=300,则x+100=400,即甲、乙提速前的速度分别为300米/分、400米/分.故①正确;A、B两地之间的距离为:300×12=3600(米),A、C两地之间的距离为:400×(23﹣5)=7200(米),故②正确;∵当乙到达C地后,乙立即掉头并提速为原速的倍按原路返回A地,而甲也立即提速为原速的倍继续向C地行驶,∴后来乙的速度为:400×=500(米/分),甲的速度为300×=400(米/分),∴甲从A地到C地共用时:23+[7200﹣(23﹣2)×300]÷400=25(分钟),故③错误;∴当甲到达C地时,乙距A地:7200﹣(25﹣23)×500=6075(米),故④正确.综上所述,正确的有①②④.故答案为:①②④18.解:作点P关于BD的对称点P′,作P′Q⊥CD交BD于K,交CD于Q,∵AB=4,∠A=120°,∴点P′到CD的距离为4×=2,∴PK+QK的最小值为2,故答案为:2.三.解答题19.解:(1)原式=x2﹣6xy+9y2﹣x2+9y2=﹣6xy+18y2;(2)去分母得:2(2x+1)=4,去括号得:4x+2=4,移项合并得:4x=2,解得:x=,经检验x=是分式方程的解.20.解:(1)连接BC,BD,∵AB是直径,∴∠ACB=90°,∵AB=2,AC=,∴BC=1,∴∠BAC=30°;(2)连接OC,OD,∵CD⊥AB、AB是直径,∴∠BOC=2∠A=60°,∴∠COD=120°,∴的长是:=π;(3)∵OC=OA=1,∠BOC=60°,∴CP=OC•sin60°=1×=,OP=OC•cos60°=,∴CD=2CP=,∴弓形阴影部分的面积是:﹣×=﹣.21.解:(1)a=8,b=5,甲小区的出现次数最多的是90,因此众数是90,即c=90.中位数是从小到大排列后处在第10、11位两个数的平均数,由乙小区中的数据可得处在第10、11位的两个数的平均数为(80+85)÷2=82.5,因此d=82.5.(2)根据以上数据,甲小区对新型冠状病毒肺炎防护知识掌握得更好,理由是甲小区的平均数、中位数、众数都比乙小区的大.(3)800×=200(人).答:估计甲小区成绩高于90分的人数是200人.故答案为:8,5,90,82.5;甲,甲小区的平均数、中位数、众数都比乙小区的大.22.解:(1)A(2,a)、B(﹣8,b)分别代入y=得,a==4,b==1,画出函数图象如图:故答案为:a=4,b=1;(2)将点C(6,c)绕A点逆时针旋转90°得到点D,则D(6﹣c,8),将D(6﹣c,8)代入y=中,得|=8,解得c=5或7;(3)把点A(2,4)、B(﹣8,1)代入y=kx+m得,解得∴直线AB的解析式为y=x+,联立,解得x1=﹣8,x2=﹣,由图象可知:不等式kx+m>的解集为﹣8<x<﹣或x>2 23.解:(1)设两次改道的平均增长率为x,根据题意得:100(1+x)2=121,解得:x1=0.1=10%,x2=﹣2.1(舍去).答:两次改道的平均增长率为10%.(2)设乙工程队每天修路y千米,则甲工程队每天修路(y+0.5)千米,根据题意得:=1.5×,解得:y=1,经检验,y=1是原分式方程的解,且符合题意,∴y+0.5=1.5.答:乙工程队每天修路1千米,甲工程队每天修路1.5千米.(3)设甲工程队修路m天,则乙工程队修路(121﹣1.5m)天,根据题意得:0.5m+0.4(121﹣1.5m)≤42.4,解得:m≥60.答:甲工程队至少修路60天.24.解:如图:(1)∵抛物线y=ax2+bx+3(a≠0)与x轴,y轴分别交于点A(﹣1,0),B(3,0),点C三点.∴解得∴抛物线的解析式为y=﹣x2+2x+3.(2)存在.理由如下:y=﹣x2+2x+3=﹣(x﹣1)2+4.∵点D(2,m)在第一象限的抛物线上,∴m=3,∴D(2,3),∵C(0,3)∵OC=OB,∴∠OBC=∠OCB=45°.连接CD,∴CD∥x轴,∴∠DCB =∠OBC =45°,∴∠DCB =∠OCB ,在y 轴上取点G ,使CG =CD =2,再延长BG 交抛物线于点P ,在△DCB 和△GCB 中,CB =CB ,∠DCB =∠OCB ,CG =CD ,∴△DCB ≌△GCB (SAS )∴∠DBC =∠GBC .设直线BP 解析式为y BP =kx +b (k ≠0),把G (0,1),B (3,0)代入,得 k =﹣,b =1,∴BP 解析式为y BP =﹣x +1.y BP =﹣x +1,y =﹣x 2+2x +3当y =y BP 时,﹣x +1=﹣x 2+2x +3,解得x 1=﹣,x 2=3(舍去),∴y =,∴P (﹣,). (3)M 1(﹣2,﹣5),M 2(4,﹣5),M 3(2,3).设点N (1,n ),当BC 、MN 为平行四边形对角线时,由BC 、MN 互相平分,M (2,3﹣n ),代入y =﹣x 2+2x +3,3﹣n =﹣4+4+3,解得n =0,∴M (2,3);当BM 、NC 为平行四边形对角线时,由BM 、NC 互相平分,M (﹣2,3+n ),代入y =﹣x 2+2x +3,3+n =﹣4﹣4+3,解得n =﹣8,∴M (﹣2,﹣5);当MC 、BN 为平行四边形对角线时,由MC、BN互相平分,M(4,n﹣3),代入y=﹣x2+2x+3,n﹣3=﹣16+8+3,解得n=﹣2,∴M(4,﹣5).综上所述,点M的坐标为:M1(﹣2,﹣5),M2(4,﹣5),M3(2,3).25.(1)证明:(ka)2+(kb)2=k2(a2+b2)=k2c2,∴ka、kb、kc(k为正整数)也是一组勾股数;(2)证明:(2n+1)2+(2n2+2n)2=4n2+4n+1+4n4+8n3+4n2=4n4+8n3+8n2+1,(2n2+2n+l)2=4n4+8n3+8n2+1,∴(2n+1)2+(2n2+2n)2=(2n2+2n+l)2,∴满足以上公式的a,b,c是一组勾股数;(3)解:[(m2﹣n2)]2+(mn)2=m4﹣m2n2+n2+m2n2=m4+m2n2+n2=[(m2+n2)]2=c2,∴a,b,c构成一组勾股数;当m=4,n=2时,a=(m2﹣n2)=6,b=mn=8,c=(m2+n2)=10,6,8,10构成一组勾股数.26.(1)解:如图1,∵OE⊥OF,∴∠EOF=90°,在四边形OBAD中,∠A=∠BOD=90°,∠ABO=50°,∴∠ADO=360°﹣90°﹣90°﹣50°=130°;故答案为:130°;(2)证明:如图1,延长DC交BP于G,∵∠OBA+∠ODA=180°,而∠OBA+∠ABF=180°,∴∠ODA=∠ABF,∵DC、BP分别是∠ADO、∠ABF的角平分线,∴∠CDA=∠CBG,而∠DCA=∠BCG,∴∠BGC=∠A=90°,∴DC⊥BP;(3)解:DC与BP互相平行.理由:如图2,作过点A作AH∥BP,则∠ABP=∠BAH,∵∠OBA+∠ODA=180°,∴∠ABF+∠ADE=180°,∵DC、BP分别分别是∠ADE、∠ABF的角平分线,∴∠ADC+∠ABP=90°,∴∠ADC+∠BAH=90°,而∠DAH+∠BAH=90°,∴∠DAH=∠ADC,∴CD∥AH,∴CD∥BP.。
2020年中考数学第二次模拟测试试卷
一、选择题
1.下列各数中,属于无理数的是()
A.B.0C.D.
2.下列运算正确的是()
A.﹣4﹣3=﹣1B.5×(﹣1)2=﹣1C.x2•x4=x8D.+=3 3.不等式﹣x+2>3x的解为()
A.x>﹣B.x<C.x>﹣2D.x<2
4.已知A(﹣3,2)关于x轴对称点为A',则点A'的坐标为()
A.(3,2)B.(2,﹣3)C.(3,﹣2)D.(﹣3,﹣2)5.若5y﹣x=7时,则代数式3﹣2x+10y的值为()
A.17B.11C.﹣11D.10
6.规定用符号[x]表示一个实数的整数部分,例如[3.87]=3,[]=1,按此规定[(﹣)]=()
A.1B.2C.3D.4
7.如图,菱形ABCD中,过顶点C作CE⊥BC交对角线BD于E点,已知∠A=134°,则∠BEC的大小为()
A.23°B.28°C.62°D.67°
8.按如图的程序计算,若开始输入x的值为正整数,最后输出的结果为22,则开始输入的x值可以为()
A.1B.2C.3D.4
9.如图所示,已知AC为⊙O的直径,直线PA为圆的一条切线,在圆周上有一点B,且使得BC=OC,连接AB,则∠BAP的大小为()
A.30°B.50°C.60°D.70°
10.如图,小明为了测量大楼AB的高度,他从点C出发,沿着斜坡面CD走52米到点D 处,测得大楼顶部点A的仰角为37°,大楼底部点B的俯角为45°,已知斜坡CD的坡度为i=1:2.4.大楼AB的高度约为()
(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)
A.32米B.35米C.36米D.40米
11.若关于x的不等式组无解,且关于y的方程+=1的解为正数,则符合题意的整数a有()个.
A.1个B.2个C.3个D.4个
12.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=4,将△ABC绕点C逆时针旋转得到△A′B′C,且B′恰好落在AB上,M是BC的中点,N是A′B′的中点,连接MN,则C到MN的距离是()
A.B.C.D.
二、填空题
13.计算:﹣2sin45°+(﹣1)0=.
14.国家发改委2月7日紧急下达第二批中央预算内投资2亿元人民币,专项补助承担重症感染患者救治任务的湖北多家医院重症治疗病区建设,其中数据2亿用科学记数法表示为元.
15.如果任意选择一对有序整数(m,n),其中|m|≤1,|n|≤2,每一对这样的有序整数被选择的可能性是相等的,那么关于x的方程x2+nx+m=0有两个相等实数根的概率是.
16.如图,四边形ABCD的顶点都在坐标轴上,若AB∥CD,△AOB与△COD面积分别为8和18,若双曲线y=恰好经过BC的中点E,则k的值为.
17.小刚从家出发匀速步行去学校上学.几分钟后发现忘带数学作业,于是掉头原速返回并立即打电话给爸爸,挂断电话后爸爸立即匀速跑步去追小刚,同时小刚以原速的两倍匀速跑步回家,爸爸追上小刚后以原速的倍原路步行回家.由于时间关系小明拿到作业后同样以之前跑步的速度赶往学校,并在从家出发后23分钟到校(小刚被爸爸追上时交流时间忽略不计).两人之间相距的路程y(米)与小刚从家出发到学校的步行时间x (分钟)之间的函数关系如图所示,则小刚家到学校的路程为米.
18.如图,在边长为1的菱形ABCD中,∠ABC=60°,将△ABD沿射线BD的方向平移得到△A'B'D',分别连接A'C,A'D,B'C,则A'C+B'C的最小值为.
三、解答题
19.计算:
(1)(3x﹣y)2+(3x+y)(3x﹣y)
(2)解方程:=
20.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=4,以BC为直径的半圆O 交斜边AB于点D.
(1)证明:AD=3BD;
(2)求弧BD的长度;
(3)求阴影部分的面积.
21.钟南山院士谈到防护新型冠状病毒肺炎时说:“我们需要重视防护,但也不必恐慌,尽量少去人员密集的场
所,出门戴口罩,在室内注意通风,勤洗手,多运动,少熬夜.”某社区为了加强社区居民对新型冠状病毒肺炎防护知识的了解,通过微信群宣传新型冠状病毒肺炎的防护知识,并鼓励社区居民在线参与作答《2020年新型冠状病毒防治全国统一考试(全国卷)》试卷,社区管理员随机从甲、乙两个小区各抽取20名人员的答卷成绩,并对他们的成绩(单位:分)进行统计、分析,过程如下:
收集数据
甲小区:85 80 95 100 90 95 85 65 75 85 90 90 70 90 100 80 80 90 95 75
乙小区:80 60 80 95 65 100 90 85 85 80 95 75 80 90
70 80 95 75 100 90
整理数据
成绩x(分)60≤x≤7070<x≤8080<x≤9090<x≤100
甲小区25a b
乙小区3755
分析数据
统计量平均数中位数众数
甲小区85.7587.5c
乙小区83.5d80
应用数据
(1)填空:a=,b=,c=,d=;
(2)若甲小区共有800人参与答卷,请估计甲小区成绩大于90分的人数;
(3)社区管理员看完统计数据,认为甲小区对新型冠状病毒肺炎防护知识掌握更好,请你写出社区管理员的理由.
22.小明根据学习函数的经验,对函数y=+1的图象与性质进行了探究.下面是小明的探究过程,请补充完整:
(1)函数y=+1的自变量x的取值范围是;
(2)如表列出了y与x的几组对应值,请写出m,n的值:m=,n=;
x…﹣﹣1﹣023…
y…m0﹣1n2…
(3)在如图所示的平面直角坐标系中,描全上表中以各对对应值为坐标的点,并画出该函数的图象.
(4)结合函数的图象,解决问题:
①写出该函数的一条性质:.
②当函数值+1>时,x的取值范围是:.
23.每年的3月15日是“国际消费者权益日”,许多家居商城都会利用这个契机进行打折促销活动,甲卖家的A商品成本为600元,在标价1000元的基础上打8折销售
(1)现在甲卖家欲继续降价吸引买主,问最多降价多少元,才能使利润率不低于20%?
(2)据媒体爆料,有一些卖家先提高商品价格后再降价促销,存在欺诈行为,乙卖家也销售A商品,其成本、标价与甲卖家一致,以前每周可售出50件,现乙卖家先将标价提高2m%,再大幅降价24m元,使得A商品在3月15日那一天卖出的数量就比原来一周卖出的数量增加了m%后,这样一天的利润达到了20000元,求m的值
24.如图1,抛物线y=ax2+2ax+c(a≠0)与x轴交于点A,B(1,0)两点,与y轴交于点C,且OA=OC.
(1)求抛物线的解析式;
(2)点D是抛物线顶点,求△ACD的面积;
(3)如图2,射线AE交抛物线于点E,交y轴的负半轴于点F(点F在线段AE上),点P是直线AE下方抛物线上的一点,S△ABE=,求△APE面积的最大值和此动点P 的坐标.。