自动控制原理 习题解答
- 格式:pdf
- 大小:354.01 KB
- 文档页数:23
自动控制原理1一、单项选择题(每小题1分,共20分)9. 一阶微分环节Ts s G +=1)(,当频率T=ω时,则相频特性)(ωj G ∠为( ) A.45° B.-45° C.90° D.-90° 10.最小相位系统的开环增益越大,其( )A.振荡次数越多B.稳定裕量越大C.相位变化越小D.稳态误差越小11.设系统的特征方程为()0516178234=++++=s s s s s D ,则此系统 ( ) A.稳定 B.临界稳定 C.不稳定 D.稳定性不确定。
12.某单位反馈系统的开环传递函数为:())5)(1(++=s s s ks G ,当k =( )时,闭环系统临界稳定。
A.10B.20C.30D.4013.设系统的特征方程为()025103234=++++=s s s s s D ,则此系统中包含正实部特征的个数有( ) A.0 B.1 C.2 D.3 14.单位反馈系统开环传递函数为()ss s s G ++=652,当输入为单位阶跃时,则其位置误差为( ) A.2 B.0.2 C.0.5 D.0.05 15.若已知某串联校正装置的传递函数为1101)(++=s s s G c ,则它是一种( )A.反馈校正B.相位超前校正C.相位滞后—超前校正D.相位滞后校正 16.稳态误差e ss 与误差信号E (s )的函数关系为( )A.)(lim 0s E e s ss →= B.)(lim 0s sE e s ss →=C.)(lim s E e s ss ∞→= D.)(lim s sE e s ss ∞→=17.在对控制系统稳态精度无明确要求时,为提高系统的稳定性,最方便的是( ) A.减小增益 B.超前校正 C.滞后校正 D.滞后-超前 18.相位超前校正装置的奈氏曲线为( )A.圆B.上半圆C.下半圆D.45°弧线 19.开环传递函数为G (s )H (s )=)3(3s s K,则实轴上的根轨迹为( )三、名词解释(每小题3分,共15分) 31.稳定性32.理想微分环节 33.调整时间 34.正穿越 35.根轨迹四、简答题(每小题5分,共25分)36.为什么说物理性质不同的系统,其传递函数可能相同 ? 举例说明。
自动控制原理1一、单项选择题(每小题1分,共20分)1. 系统和输入已知,求输出并对动态特性进行研究,称为( )A.系统综合B.系统辨识C.系统分析D.系统设计 2. 惯性环节和积分环节的频率特性在( )上相等。
A.幅频特性的斜率B.最小幅值C.相位变化率D.穿越频率3. 通过测量输出量,产生一个与输出信号存在确定函数比例关系值的元件称为( ) A.比较元件 B.给定元件 C.反馈元件 D.放大元件4. ω从0变化到+∞时,延迟环节频率特性极坐标图为( )A.圆B.半圆C.椭圆D.双曲线5. 当忽略电动机的电枢电感后,以电动机的转速为输出变量,电枢电压为输入变量时,电动机可看作一个( ) A.比例环节 B.微分环节 C.积分环节 D.惯性环节6. 若系统的开环传 递函数为2)(5 10+s s ,则它的开环增益为( )A.1B.2C.5D.10 7. 二阶系统的传递函数52 5)(2++=s s s G ,则该系统是( ) A.临界阻尼系统 B.欠阻尼系统 C.过阻尼系统 D.零阻尼系统 8. 若保持二阶系统的ζ不变,提高ωn ,则可以( )A.提高上升时间和峰值时间B.减少上升时间和峰值时间C.提高上升时间和调整时间D.减少上升时间和超调量 9. 一阶微分环节Ts s G +=1)(,当频率T1=ω时,则相频特性)(ωj G ∠为( ) A.45° B.-45° C.90° D.-90° 10.最小相位系统的开环增益越大,其( )A.振荡次数越多B.稳定裕量越大C.相位变化越小D.稳态误差越小 11.设系统的特征方程为()0516178234=++++=s s s s s D ,则此系统 ( ) A.稳定 B.临界稳定 C.不稳定 D.稳定性不确定。
12.某单位反馈系统的开环传递函数为:())5)(1(++=s s s ks G ,当k =( )时,闭环系统临界稳定。
自动控制原理习题 一、(20分) 试用结构图等效化简求下图所示系统的传递函数)()(s R s C 。
解:所以:32132213211)()(G G G G G G G G G G s R s C +++= 二.(10分)已知系统特征方程为06363234=++++s s s s ,判断该系统的稳定性,若闭环系统不稳定,指出在s 平面右半部的极点个数。
(要有劳斯计算表)解:劳斯计算表首列系数变号2次,S 平面右半部有2个闭环极点,系统不稳定。
三.(20分)如图所示的单位反馈随动系统,K=16s -1,T=,试求:(1)特征参数n ωξ,; (2)计算σ%和t s ;(3)若要求σ%=16%,当T 不变时K 应当取何值解:(1)求出系统的闭环传递函数为:因此有:(2) %44%100e %2-1-=⨯=ζζπσ(3)为了使σ%=16%,由式可得5.0=ζ,当T 不变时,有:四.(15分)已知系统如下图所示,1.画出系统根轨迹(关键点要标明)。
2.求使系统稳定的K 值范围,及临界状态下的振荡频率。
解① 3n =,1,2,30P =,1,22,1m Z j ==-±,1n m -=②渐进线1条π ③入射角同理 2ϕ2135sr α=-︒ ④与虚轴交点,特方 32220s Ks Ks +++=,ωj s =代入222K K-0=1K ⇒=,s = 所以当1K >时系统稳定,临界状态下的震荡频率为ω。
五.(20分)某最小相角系统的开环对数幅频特性如下图所示。
要求(1) 写出系统开环传递函数;(2) 利用相角裕度判断系统的稳定性;(3) 将其对数幅频特性向右平移十倍频程,试讨论对系统性能的影响。
解(1)由题图可以写出系统开环传递函数如下:(2)系统的开环相频特性为截止频率 1101.0=⨯=c ω相角裕度:︒=+︒=85.2)(180c ωϕγ故系统稳定。
(3)将其对数幅频特性向右平移十倍频程后,可得系统新的开环传递函数其截止频率 10101==c c ωω而相角裕度 ︒=+︒=85.2)(18011c ωϕγγ=故系统稳定性不变。
第一章绪论1-1 试比较开环控制系统和闭环控制系统的优弊端.解答: 1 开环系统(1)长处 :构造简单,成本低,工作稳固。
用于系统输入信号及扰动作用能早先知道时,可获得满意的成效。
(2)弊端:不可以自动调理被控量的偏差。
所以系统元器件参数变化,外来未知扰动存在时,控制精度差。
2闭环系统⑴长处:不论因为扰乱或因为系统自己构造参数变化所惹起的被控量偏离给定值,都会产生控制作用去消除此偏差,所以控制精度较高。
它是一种按偏差调理的控制系统。
在实质中应用宽泛。
⑵弊端:主要弊端是被控量可能出现颠簸,严重时系统没法工作。
1-2什么叫反应?为何闭环控制系统常采纳负反应?试举例说明之。
解答:将系统输出信号引回输入端并对系统产生控制作用的控制方式叫反应。
闭环控制系统常采纳负反应。
由1-1 中的描绘的闭环系统的长处所证明。
比如,一个温度控制系统经过热电阻(或热电偶)检测出目前炉子的温度,再与温度值对比较,去控制加热系统,以达到设定值。
1-3试判断以下微分方程所描绘的系统属于何种种类(线性,非线性,定常,时变)?2 d 2 y(t)3 dy(t ) 4y(t ) 5 du (t ) 6u(t )(1)dt 2 dt dt(2) y(t ) 2 u(t)(3)t dy(t) 2 y(t) 4 du(t) u(t ) dt dtdy (t )u(t )sin t2 y(t )(4)dtd 2 y(t)y(t )dy (t ) (5)dt 2 2 y(t ) 3u(t )dt(6)dy (t ) y 2 (t) 2u(t ) dty(t ) 2u(t ) 3du (t )5 u(t) dt(7)dt解答: (1)线性定常(2)非线性定常 (3)线性时变(4)线性时变(5)非线性定常(6)非线性定常(7)线性定常1-4 如图 1-4 是水位自动控制系统的表示图, 图中 Q1,Q2 分别为进水流量和出水流量。
控制的目的是保持水位为必定的高度。
第1章控制系统概述【课后自测】1-1 试列举几个日常生活中的开环控制和闭环控制系统,说明它们的工作原理并比较开环控制和闭环控制的优缺点。
解:开环控制——半自动、全自动洗衣机的洗衣过程。
工作原理:被控制量为衣服的干净度。
洗衣人先观察衣服的脏污程度,根据自己的经验,设定洗涤、漂洗时间,洗衣机按照设定程序完成洗涤漂洗任务。
系统输出量(即衣服的干净度)的信息没有通过任何装置反馈到输入端,对系统的控制不起作用,因此为开环控制。
闭环控制——卫生间蓄水箱的蓄水量控制系统和空调、冰箱的温度控制系统。
工作原理:以卫生间蓄水箱蓄水量控制为例,系统的被控制量(输出量)为蓄水箱水位(反应蓄水量)。
水位由浮子测量,并通过杠杆作用于供水阀门(即反馈至输入端),控制供水量,形成闭环控制。
当水位达到蓄水量上限高度时,阀门全关(按要求事先设计好杠杆比例),系统处于平衡状态。
一旦用水,水位降低,浮子随之下沉,通过杠杆打开供水阀门,下沉越深,阀门开度越大,供水量越大,直到水位升至蓄水量上限高度,阀门全关,系统再次处于平衡状态。
开环控制和闭环控制的优缺点如下表1-2 自动控制系统通常有哪些环节组成?各个环节分别的作用是什么?解:自动控制系统包括被控对象、给定元件、检测反馈元件、比较元件、放大元件和执行元件。
各个基本单元的功能如下:(1)被控对象—又称受控对象或对象,指在控制过程中受到操纵控制的机器设备或过程。
(2)给定元件—可以设置系统控制指令的装置,可用于给出与期望输出量相对应的系统输入量。
(3)检测反馈元件—测量被控量的实际值并将其转换为与输入信号同类的物理量,再反馈到系统输入端作比较,一般为各类传感器。
(4)比较元件—把测量元件检测的被控量实际值与给定元件给出的给定值进行比较,分析计算并产生反应两者差值的偏差信号。
常用的比较元件有差动放大器、机械差动装置和电桥等。
(5)放大元件—当比较元件产生的偏差信号比较微弱不足以驱动执行元件动作时,可通过放大元件将微弱信号作线性放大。
第三章3-3 已知各系统的脉冲响应,试求系统的闭环传递函数()s Φ:()()1.25(1)()0.0125;(2)()510sin 445;(3)()0.11t t k t e k t t t k t e --==++=-解答: (1) []0.0125()() 1.25s L k t s Φ==+(2)[])222223222()()5sin 4cos 4544451116s L k t L t t t s s s s s s s s ⎡⎤Φ==+⎢⎥⎣⎦⎫=++⎪++⎭⎫++⎪⎝⎭=⎛⎫+ ⎪⎝⎭(3)[]()111()()0.1110313s L k t s s s s ⎡⎤⎢⎥Φ==-=⎢⎥+⎢⎥+⎣⎦ 3-4 已知二阶系统的单位阶跃响应为)6.1sin(5.1210)(1.532.1︒-+-=t t h et试求系统的超调量σ%,峰值时间tp和调节时间ts.解答:因为0<ξ<1,所以系统是欠阻尼状态。
阻尼比ξ=cos(1.53︒)=0.6,自然频率26.0/2.1==w n, 阻尼振荡频率wd=6.16.01212=-⨯=-=ξw w n d1. 峰值时间tp的计算96.16.1===ππwt dp2. 调节时间t s 的计算9.226.05.35.3=⨯==w t ns ξ3. 超调量σ%的计算%48.9%1006.0%100%221/6.01/=⨯=⨯=-⨯---eeππξξσ3-5设单位反馈系统的开环传递函数为)6.0(14.0)(++=s s s s G ,试求系统在单位阶跃输入下的动态性能。
解答:方法一:根据比例-微分一节推导出的公式)135(6.014.0)12/()1()(+⨯⨯+=++=s s s s s s K s G w T n d ξ1)5.2(4.0114.0)6.0(14.01)6.0(14.0)2()(1)()(22222+++=+++=+++++=+++=+=s s s s s s s s s s s zs z S G s G s s s w w s w nn dn ξφ)1()](1[12)1sin(1)(222222ξξξξξξξπψξddnddndnn ddn tarctg z arctg z r t w r t h www w zw e n d -+--+-=-+-=ψ+-+=-把z=1/Td=2.5,1=wn,5.0=ξd 代入可得)3.8323sin(5.005.11)7.9623sin(5.005.11)( ---=--+=t e t t e t t h峰值时间的计算0472.1)1(2=-=ξξβdddarctg ,-1.6877=ψ158.312=--=ξβψdndpwt超调量得计算%65.21%10011%22=⨯--=-ξξξσddetrpd调节时间得计算29.6)ln(21ln )2ln(2131222=--+-+=-ww w z t ndn n d sd z ξξξ方法二:根据基本定义来求解闭环传递函数为114.0)6.0(14.01)6.0(14.0)(1)()(2+++=+++++=+=s s s s s s s s S G s G s s φ当输入为单位阶跃函数时 )232()21(21.0)232()21(2)21(116.01)1(14.0)(22++-++++-+=++--+=+++=s s s s s s s s s s s C s s 得单位阶跃响应)23sin(1.0)23cos(1)(2121t t t h e et --⨯--=)3.8423sin(121+-=-t et )0(≥t 1. 峰值时间tp的计算 对h(t)求导并令其等于零得-0.5023)23cos()23sin(3.843.842121=⨯+-+︒-︒-t e t ep p t t p p3)23tan(3.84=+︒t p t p =2.9 2. 超调量σ%的计算%100)()()(%⨯∞∞-=h h h t p σ=17.49%3. 调节时间t s 得计算05.0)84.523sin(21≤-⨯-t est s5.33=t s 3-6.已知控制系统的单位阶跃响应为6010()10.2 1.2t t h t e e --=+- ,试确定系统的阻尼比ζ和自然频率n ω。
第一章 习题答案1-1 根据题1-1图所示的电动机速度控制系统工作原理图(1) 将a,b 与c ,d 用线连接成负反馈状态;(2) 画出系统方框图。
解 (1)负反馈连接方式为:d a ↔,c b ↔;(2)系统方框图如图解1—1 所示。
1—2 题1—2图是仓库大门自动控制系统原理示意图。
试说明系统自动控制大门开闭的工作原理,并画出系统方框图。
题1-2图 仓库大门自动开闭控制系统解 当合上开门开关时,电桥会测量出开门位置与大门实际位置间对应的偏差电压,偏差电压经放大器放大后,驱动伺服电动机带动绞盘转动,将大门向上提起。
与此同时,和大门连在一起的电刷也向上移动,直到桥式测量电路达到平衡,电动机停止转动,大门达到开启位置。
反之,当合上关门开关时,电动机带动绞盘使大门关闭,从而可以实现大门远距离开闭自动控制。
系统方框图如图解1—2所示。
1—3 题1-3图为工业炉温自动控制系统的工作原理图。
分析系统的工作原理,指出被控对象、被控量和给定量,画出系统方框图。
题1-3图 炉温自动控制系统原理图解 加热炉采用电加热方式运行,加热器所产生的热量与调压器电压c u 的平方成正比,c u 增高,炉温就上升,c u 的高低由调压器滑动触点的位置所控制,该触点由可逆转的直流电动机驱动。
炉子的实际温度用热电偶测量,输出电压f u 。
f u 作为系统的反馈电压与给定电压r u 进行比较,得出偏差电压e u ,经电压放大器、功率放大器放大成a u 后,作为控制电动机的电枢电压。
在正常情况下,炉温等于某个期望值T °C,热电偶的输出电压f u 正好等于给定电压r u .此时,0=-=f r e u u u ,故01==a u u ,可逆电动机不转动,调压器的滑动触点停留在某个合适的位置上,使c u 保持一定的数值.这时,炉子散失的热量正好等于从加热器吸取的热量,形成稳定的热平衡状态,温度保持恒定。
当炉膛温度T °C 由于某种原因突然下降(例如炉门打开造成的热量流失),则出现以下的控制过程: 控制的结果是使炉膛温度回升,直至T °C 的实际值等于期望值为止。
1 请解释下列名字术语:自动控制系统、受控对象、扰动、给定值、参考输入、反馈。
解:自动控制系统:能够实现自动控制任务的系统,由控制装置与被控对象组成;受控对象:要求实现自动控制的机器、设备或生产过程扰动:扰动是一种对系统的输出产生不利影响的信号。
如果扰动产生在系统内部称为内扰;扰动产生在系统外部,则称为外扰。
外扰是系统的输入量。
给定值:受控对象的物理量在控制系统中应保持的期望值参考输入即为给定值。
反馈:将系统的输出量馈送到参考输入端,并与参考输入进行比较的过程。
2 请说明自动控制系统的基本组成部分。
解:作为一个完整的控制系统,应该由如下几个部分组成:①被控对象:所谓被控对象就是整个控制系统的控制对象;②执行部件:根据所接收到的相关信号,使得被控对象产生相应的动作;常用的执行元件有阀、电动机、液压马达等。
③给定元件:给定元件的职能就是给出与期望的被控量相对应的系统输入量(即参考量);④比较元件:把测量元件检测到的被控量的实际值与给定元件给出的参考值进行比较,求出它们之间的偏差。
常用的比较元件有差动放大器、机械差动装置和电桥等。
⑤测量反馈元件:该元部件的职能就是测量被控制的物理量,如果这个物理量是非电量,一般需要将其转换成为电量。
常用的测量元部件有测速发电机、热电偶、各种传感器等;⑥放大元件:将比较元件给出的偏差进行放大,用来推动执行元件去控制被控对象。
如电压偏差信号,可用电子管、晶体管、集成电路、晶闸管等组成的电压放大器和功率放大级加以放大。
⑦校正元件:亦称补偿元件,它是结构或参数便于调整的元件,用串联或反馈的方式连接在系统中,用以改善系统的性能。
常用的校正元件有电阻、电容组成的无源或有源网络,它们与原系统串联或与原系统构成一个内反馈系统。
3 请说出什么是反馈控制系统,开环控制系统和闭环控制系统各有什么优缺点?解:反馈控制系统即闭环控制系统,在一个控制系统,将系统的输出量通过某测量机构对其进行实时测量,并将该测量值与输入量进行比较,形成一个反馈通道,从而形成一个封闭的控制系统;开环系统优点:结构简单,缺点:控制的精度较差;闭环控制系统优点:控制精度高,缺点:结构复杂、设计分析麻烦,制造成本高。
1、 已知系统方框图如图1所示,试计算传递函数)()(11s R s C ,)()(12s R s C ,)()(21s R s C 及)()(22s R s C 。
解: 计算传递函数)()(11s R s C 时,在方框图中需设0)(2=s R ,画出如图A-1(a)所示的)(1s R 为输入、)(1s C 为输出的方框图。
由图A-1(a)求得传递函数)()(11s R s C 为)()()()(1)()()(4321111s G s G s G s G s G s R s C -= 计算传递函数)()(12s R s C 时,在方框图中需设0)(2=s R ,画出如图A-1(b)所示的)(1s R 为输入、)(2s C 为输出的方框图。
图 1 第1题题图图A- 1(a )图A- 1(b )由图A-1(b)求得传递函数)()(12s R s C 为 )()()()(1)()()()()(432132112s G s G s G s G s G s G s G s R s C --= 计算传递函数)()(21s R s C 时,在方框图中需设0)(1=s R ,画出如图A-1(c)所示的)(2s R 为输入、)(1s C 为输出的方框图。
由图A-1(c)求得传递函数)()(21s R s C 为 )()()()(1)()()()()(432143121s G s G s G s G s G s G s G s R s C --= 计算传递函数)()(22s R s C 时,在方框图中需设0)(1=s R ,画出如图A-1(d)所示的)(2s R 为输入、)(2s C 为输出的方框图。
由图A-1(d)求得传递函数)()(22s R s C 为)()()()(1)()()(4321322s G s G s G s G s G s R s C -=2、设已知描述某控制系统的运动方程组如下)()()()(11t n t c t r t x +-=)()(112t x K t x =)()()(523t x t x t x -=图A- 1 (b)图A- 1(c )图A-1(d ))()(34t x dtt dx T = )()()(2245t n K t x t x -=dtt dc dt t c d t x K )()()(2250+= 式中 )(t r :系统控制信号输入(输入变量))(),(21t n t n :系统扰动信号(输出变量))(t c :系统的被控制信号(输出变量))()(51t x t x :中间变量210K K K :常值增益T :时间常数 试绘出系统的方框图,并由方框图求取闭环传递函数)()(s R s C 、)()(1s N s C 、)()(2s N s C解:(1)绘制系统方框图对题中运动方程组取拉氏变换,设初始条件为零,得:)()()()(11s N s C s R s X +-=)()(112s X K s X =)()()(523s X s X s X -=)()(34s X s TsX =)()()(2245s N K s X s X -=)()()(250s sC s C s s X K +=根据以上各式,按照变量之间传递关系,绘出系统结构如下图A-2-1所示(2)求取闭环传递函数)()(s R s C 、)()(1s N s C 、)()(2s N s C求取闭环传递函数)()(s R s C 时,令0)(1=s N 以及0)(2=s N ,由图A-2得 102310201201)1(1111111)()(K K s s T Ts K K s s K TsTs K s s K Ts Ts K s R s C 由于扰动信号)(1t n 与控制信号)(t r 在系统中作用点相同,所以1023101)1()()()()(K K s s T Ts K K s R s C s N s C 求取闭环传递函数)()(2s N s C 时,需令0)(1=s N 及0)(=s R ,图A-2-1改画成图A-2-2 (a),图(a )可等效画成图A-2-2(b ),由图A-2-1 (b)得:图A- 2- 1图A- 2-210232010022)1()1(1)1()1(1111)1()1(111)()(K K s s T Ts Ts K K K Ts s s K Tss s K Ts K s N s C ++++-=-⋅⋅+⋅---+⋅---=3、求取题图所示电路传递函数)()(12s U s U解答:首先计算传递函数)()(13s U s U ,此时将2LR 电路看做与电容C 并联的负载,应用复阻抗法写出传递函数)()(13s U s U 为 )(||1)(||1)()(21213R Ls CsR R Ls Cs s U s U +++= 式中:Cs1、Ls 分别为电容C 及电感线圈L 的复阻抗; )(||12R Ls Cs +表示复阻抗Cs1与复阻抗)(2R Ls +的并联值。
1. 采样系统结构如图所示,求该系统的脉冲传递函数。
答案:该系统可用简便计算方法求出脉冲传递函数。
去掉采样开关后的连续系统输出表达式为对闭环系统的输出信号加脉冲采样得再对上式进行变量替换得2. 已知采样系统的结构如图所示,,采样周期=0.1s。
试求系统稳定时K的取值范围。
答案:首先求出系统的闭环传递函数。
由求得,已知T=0.1s,e-1=0.368,故系统闭环传递函数为,特征方程为D(z)=1+G(z)=z2+(0.632K-1.368)z+0.368=0将双线性变换代入上式得+1 4 +( 7 -0.632K)=0要使二阶系统稳定,则有K>0,2.736-0.632K>0故得到K的取值范围为0<K<4.32。
3. 求下列函数的z变换。
(1). e(t)=te-at答案:e(t)=te-at该函数采样后所得的脉冲序列为e(nT)=nTe-anT n=0,1,2,…代入z变换的定义式可得E(z)=e(0)+P(T)z-1+e(2T)z-2+…+e(n )z-n+…= + e-aT z-1+2Te-2aT z-2+…+n e-naT z-n+…= (e-aT z-1+2e -2aT z-2+…+ne-naT z-n+…)两边同时乘以e-aT z-1,得e-aT z-1E(z)=T(e-2aT z-2+2e-3aT z-3+…+ne-a(n+1)T z-(n+1)+…)两式相减,若|e-aT z-1|<1,该级数收敛,同样利用等比级数求和公式,可得最后该z变换的闭合形式为(2). e( )=答案 e( )=对e( )= 取拉普拉斯变换.得展开为部分分式,即可以得到化简后得(3).答案:将上式展开为部分分式,得查表可得(4).答案:对上式两边进行z变换可得得4. 求下列函数的z反变换(1).答案:由于所以得所以可得(z)的z反变换为e(nT)=10(2n-1)(2).答案:由于所以得所以E(z)的z反变换为e(nT)=-n-1n+2n=2n-n-1(3).答案:由长除法可得E(z)=2z-1-6z-3+10z-5-14z-7+…所以其反变换为e*( )= δ( -T)- δ( - )+1 δ( -5T)-14δ( -7 )+18δ( -9 )+…(4).答案:解法1:由反演积分法,得解法2:由于所以得最后可得z 反变换为5. 分析下列两种推导过程:(1). 令x(k)=k1(k),其中1(k)为单位阶跃响应,有答案:(2). 对于和(1)中相同的(k),有x(k)-x(k-1)=k-(k-1)=1试找出(2)与(1)中的结果为何不同,找出(1)或(2)推导错误的地方。
1 请解释下列名字术语:自动控制系统、受控对象、扰动、给定值、参考输入、反馈。
解:自动控制系统:能够实现自动控制任务的系统,由控制装置与被控对象组成;受控对象:要求实现自动控制的机器、设备或生产过程扰动:扰动是一种对系统的输出产生不利影响的信号。
如果扰动产生在系统内部称为内扰;扰动产生在系统外部,则称为外扰。
外扰是系统的输入量。
给定值:受控对象的物理量在控制系统中应保持的期望值参考输入即为给定值。
反馈:将系统的输出量馈送到参考输入端,并与参考输入进行比较的过程。
2 请说明自动控制系统的基本组成部分。
解:作为一个完整的控制系统,应该由如下几个部分组成:①被控对象:所谓被控对象就是整个控制系统的控制对象;②执行部件:根据所接收到的相关信号,使得被控对象产生相应的动作;常用的执行元件有阀、电动机、液压马达等。
③给定元件:给定元件的职能就是给出与期望的被控量相对应的系统输入量(即参考量);④比较元件:把测量元件检测到的被控量的实际值与给定元件给出的参考值进行比较,求出它们之间的偏差。
常用的比较元件有差动放大器、机械差动装置和电桥等。
⑤测量反馈元件:该元部件的职能就是测量被控制的物理量,如果这个物理量是非电量,一般需要将其转换成为电量。
常用的测量元部件有测速发电机、热电偶、各种传感器等;⑥放大元件:将比较元件给出的偏差进行放大,用来推动执行元件去控制被控对象。
如电压偏差信号,可用电子管、晶体管、集成电路、晶闸管等组成的电压放大器和功率放大级加以放大。
⑦校正元件:亦称补偿元件,它是结构或参数便于调整的元件,用串联或反馈的方式连接在系统中,用以改善系统的性能。
常用的校正元件有电阻、电容组成的无源或有源网络,它们与原系统串联或与原系统构成一个内反馈系统。
3 请说出什么是反馈控制系统,开环控制系统和闭环控制系统各有什么优缺点?解:反馈控制系统即闭环控制系统,在一个控制系统,将系统的输出量通过某测量机构对其进行实时测量,并将该测量值与输入量进行比较,形成一个反馈通道,从而形成一个封闭的控制系统;开环系统优点:结构简单,缺点:控制的精度较差;闭环控制系统优点:控制精度高,缺点:结构复杂、设计分析麻烦,制造成本高。
自动控制原理习题一、(20分) 试用结构图等效化简求下图所示系统的传递函数)()(s R s C 。
解:所以:32132213211)()(G G G G G G G G G G s R s C +++= 二.(10分)已知系统特征方程为06363234=++++s s s s ,判断该系统的稳定性,若闭环系统不稳定,指出在s 平面右半部的极点个数。
(要有劳斯计算表)解:劳斯计算表首列系数变号2次,S 平面右半部有2个闭环极点,系统不稳定。
66.06503366101234s s s s s -三.(20分)如图所示的单位反馈随动系统,K=16s -1,T=0.25s,试求:(1)特征参数n ωξ,; (2)计算σ%和t s ; (3)若要求σ%=16%,当T 不变时K 应当取何值? 解:(1)求出系统的闭环传递函数为:TK s T s T K Ks Ts K s /1/)(22++=++=Φ因此有:25.0212/1),(825.0161======-KT T s T K n n ωζω(2) %44%100e %2-1-=⨯=ζζπσ%)2)((2825.044=∆=⨯=≈s t n s ζω(3)为了使σ%=16%,由式%16%100e %2-1-=⨯=ζζπσ可得5.0=ζ,当T 不变时,有:)(425.04)(425.05.021212/11221--=⨯===⨯⨯===s T K s T T n n ωζζω四.(15分)已知系统如下图所示,1.画出系统根轨迹(关键点要标明)。
2.求使系统稳定的K 值范围,及临界状态下的振荡频率。
解① 3n =,1,2,30P =,1,22,1m Z j ==-±,1n m -= ②渐进线1条π ③入射角1ϕ()18013513513590360135135=︒+︒+︒+︒-︒=︒+︒=︒同理 2ϕ2135sr α=-︒④与虚轴交点,特方 32220s Ks Ks +++=,ωj s =代入X rX cK S 3S 2+2S +2222K K-0=1K ⇒=,2s j =± 所以当1K >时系统稳定,临界状态下的震荡频率为2ω=。
第三章3-3 已知各系统的脉冲响应,试求系统的闭环传递函数()s Φ:()()1.25(1)()0.0125;(2)()510sin 445;(3)()0.11t t k t e k t t t k t e --==++=-解答: (1) []0.0125()() 1.25s L k t s Φ==+(2)[])222223222()()5sin 4cos 425452442142511616116s L k t L t t t s s s s s s s s ⎡⎤Φ==++⎢⎥⎣⎦⎫=++⎪++⎭⎛⎫+++ ⎪⎝⎭=⎛⎫+ ⎪⎝⎭(3)[]()111()()0.1110313s L k t s s s s ⎡⎤⎢⎥Φ==-=⎢⎥+⎢⎥+⎣⎦ 3-4 已知二阶系统的单位阶跃响应为)6.1sin(5.1210)(1.532.1︒-+-=t t h et试求系统的超调量σ%,峰值时间tp和调节时间ts.解答:因为0<ξ<1,所以系统是欠阻尼状态。
阻尼比ξ=cos(1.53︒)=,自然频率26.0/2.1==w n,阻尼振荡频率wd=6.16.01212=-⨯=-=ξw w n d 1. 峰值时间tp的计算96.16.1===ππwt dp2. 调节时间ts的计算9.226.05.35.3=⨯==w t ns ξ3. 超调量σ%的计算%48.9%1006.0%100%221/6.01/=⨯=⨯=-⨯---eeππξξσ3-5设单位反馈系统的开环传递函数为)6.0(14.0)(++=s s s s G ,试求系统在单位阶跃输入下的动态性能。
解答:方法一:根据比例-微分一节推导出的公式)135(6.014.0)12/()1()(+⨯⨯+=++=s s s s s s K s G w T n d ξ1)5.2(4.0114.0)6.0(14.01)6.0(14.0)2()(1)()(22222+++=+++=+++++=+++=+=s s s s s s s s s s s zs z S G s G s s s w w s w nn dn ξφ)1()](1[12)1sin(1)(222222ξξξξξξξπψξddnddndnn ddn tarctg z arctg z r t w r t h www w zw e n d -+--+-=-+-=ψ+-+=-把z=1/Td=,1=wn,5.0=ξd代入可得)3.8323sin(5.005.11)7.9623sin(5.005.11)( ---=--+=t e t t e t t h峰值时间的计算0472.1)1(2=-=ξξβdddarctg ,-1.6877=ψ158.312=--=ξβψdndpwt超调量得计算%65.21%10011%22=⨯--=-ξξξσddetrpd调节时间得计算29.6)ln(21ln )2ln(2131222=--+-+=-ww w z t ndn n d sd z ξξξ方法二:根据基本定义来求解闭环传递函数为114.0)6.0(14.01)6.0(14.0)(1)()(2+++=+++++=+=s s s s s s s s S G s G s s φ当输入为单位阶跃函数时 )232()21(21.0)232()21(2)21(116.01)1(14.0)(22++-++++-+=++--+=+++=s s s s s s s s s s s C s s 得单位阶跃响应)23sin(1.0)23cos(1)(2121t t t h e et --⨯--=)3.8423sin(121 +-=-t et )0(≥t 1. 峰值时间tp的计算 对h(t)求导并令其等于零得023)23cos()23sin(3.843.842121=⨯+-+︒-︒-t e t epp t t p p 3)23tan(3.84=+︒t p t p = 2. 超调量σ%的计算 %100)()()(%⨯∞∞-=h h h t p σ=%3. 调节时间ts得计算05.0)84.523sin(21≤-⨯-t est s5.33=t s3-6.已知控制系统的单位阶跃响应为6010()10.2 1.2t t h t e e --=+- ,试确定系统的阻尼比ζ和自然频率n ω。
⾃动控制原理习题解答1. 系统的传递函数,求在输⼊信号作⽤下系统的稳态输出。
解:稳态输出2.单位反馈系统的开环传递函数为:,试分别计算闭环系统的阻尼⽐ζ和⽆阻尼⾃然振荡⾓频率解:闭环传递函数:,所以3.控制系统如图如⽰。
已知输⼊信号试求系统的稳定误差。
.解:1.判别稳定性。
系统的闭环特征⽅程为:系统稳定条件:1 均⼤于0 2 由劳斯表,第⼀列元素应⼤于 . 2.求稳态误差:系统为型。
当时,稳态误差当时,稳态误差当时,稳态误差系统的总稳态误差:4.已知最⼩相位系统的对数幅频曲线如下图所⽰。
试写出他的传递函数。
解:传递函数: 5.已知系统的开环传递函数为,⽤劳斯判据判定系统闭环稳定性;并判断S 平⾯右半平⾯和虚轴上根的情况。
10()0.51G s s =+()10sin 6.3r t t =10()0.51G j j ωω=+ 6.36.3( 6.3) 3.03( 6.3)0.572.4G j G j arctg ωω===∠=-- 3.0310sin(6.372.4)30.3sin(6.372.4)ss C t t =?-=- )4(16)(+=s s s G k 16416)(2++=Φs s s s rad n n /4,162==ωω24n ζω=0.5ζ=)(121)(1)(1)(2t t t t t t r ?+?+=0)1()1(12=+++s K K s T s m m τ01123=+++m m m K K s K K s s T ττ,,,1m m K K T mT >τII )(1)(1t t r =01=ss e 2()1()r t t t =?)(121)(23t t t r =02=ss e m a ss K K k e 1311==m ss ss ss ss K K e e e e 13211=++=11.010)(+=s s G 2322()(2910)s G s s s s s +=+++n ω解:系统闭环特征⽅程列出劳斯阵第⼀列的元素符号变化两次,系统闭环不稳定,两个位于右半平⾯闭环极点,⽆纯虚根。