人教新课标版数学高一- 必修4第二章《平面向量》章末复习课
- 格式:doc
- 大小:337.50 KB
- 文档页数:7
平面向量必修4 第2章 平面向量 §2.1向量的概念及其表示重难点:理解并掌握向量、零向量、单位向量、相等向量、共线向量的概念,会表示向量,掌握平行向量、相等向量和共线向量的区别和联系. 考纲要求:①了解向量的实际背景.②理解平面向量的概念及向量相等的含义. ③理解向量的几何表示.A.a与b共线,b与c共线,则a与c 也共线B.任意两个相等的非零向量的始点与终点是一平行四边形的四顶点C.向量a与b不共线,则a与b都是非零向量D.有相同起点的两个非零向量不平行当堂练习:1.下列各量中是向量的是 ( ) A.密度 B.体积 C.重力 D.质量2下列说法中正确的是 ( ) A. 平行向量就是向量所在的直线平行的向量 B. 长度相等的向量叫相等向量 C. 零向量的长度为零 D.共线向量是在一条直线上的向量 3.设O 是正方形ABCD 的中心,则向量、、、是 ( ) A .平行向量 B .有相同终点的向量 C .相等的向量 D .模都相同的向量4.下列结论中,正确的是 ( ) A. 零向量只有大小没有方向 B. 对任一向量,||>0总是成立的 C. |=|| D. |与线段BA 的长度不相等A. 与共线B. 与相等C. 与 是相反向量D. 与模相等6.已知O 是正方形ABCD 对角线的交点,在以O ,A ,B ,C ,D 这5点中任意一点为起点,另一点为终点的所有向量中,(1)与相等的向量有 ; (2)与长度相等的向量有 ; (3)与共线的向量有 .8.如图,O 是正方形ABCD 对角线的交点,四边形OAED ,OCFB 都是正方形,在图中所示的向量中:(1)与相等的向量有 ;AO OB CO OD ||AB CD AC BD AD AB BC OB DA AO(2)写出与共线的向有 ; (3)写出与的模相等的有 ; (4)向量与是否相等?答 . 9.O 是正六边形ABCDE 的中心,且,,,在以A ,B ,C ,D ,E ,O 为端点的向量中:(1)与相等的向量有 ; (2)与相等的向量有 ; (3)与相等的向量有10.在如图所示的向量,,,,中(小正方形的边长为1),是否存在:(1)是共线向量的有 ; (2)是相反向量的为 ; (3)相等向量的的 ; (4)模相等的向量 .11.如图,△ABC 中,D ,E ,F 分别是边BC ,AB ,CA 的中点,在以A 、B 、C 、D 、E 、F 为端点的有向线段中所表示的向量中,(1)与向量共线的有 . (2)与向量的模相等的有 . (3)与向量相等的有 .12.如图,中国象棋的半个棋盘上有一只“马”,开始下棋时,它位于A 点,这只“马”第一步有几种可能的走法?试在图中画出来.若它位于图中的P 点,这只“马”第一步有几种可能的走法?它能否从点A 走到与它相邻的B ?它能否从一交叉点出发,走到棋盘上的其它任何一个交叉点?必修4 第2章 平面向量 §2.2向量的线性运算 重难点:灵活运用向量加法的三角形法则和平行四边形法则解决向量加法的问题,利用交换律和结合律进行向量运算;灵活运用三角形法则和平行四边形法则作两个向量的差,以及求两个向量的差的问题;理解实数与向量的积的定义掌握实数与向量的积的运算律体会两向量共线的充要条件.考纲要求:①掌握向量加法,减法的运算,并理解其几何意义. ②掌握向量数乘的运算及其意义。
第2章平面向量
本章概览
内容提要
向量是近代数学中重要和基本的数学概念之一,它是沟通代数、几何、三角函数的一种工具,有着极其丰富的实际背景.本章中,我们将了解向量概念的实际背景,理解平面向量及其运算的意义,能用向量语言和方法表述和解决数学和物理中的一些问题,发展运算能力和解决实际问题的能力.
向量的概念是学习向量的基础,学好向量这一章首先要理解向量的基本概念和运算法则,特别要注意向量的加、减、数乘运算结果均为向量,而向量的数量积是一个实数,通过向量的数量积可以计算向量的长度、平面内两点间的距离、两个向量的夹角等问题.
另外,学好向量这一章,还要掌握数形结合的思想方法,结合向量的应用问题,在理解向量知识和应用两方面上下功夫.
学法指导
1.结合向量的实际背景理解向量概念.向量的物理背景是力、速度、加速度等概念,几何背景是有向线段,学习过程中应结合这些背景深刻理解向量概念.
2.理解并正确运用向量的有关运算法则和公式.学习向量的运算法则和公式时要注意与实数的运算法则相类比,同时注意它们之间的区别,防止负迁移.
3.注重向量的实际应用.在了解向量实际背景的基础上,理解平面向量及其运算的意义,能用向量语言和方法表述和解决数学物理中的一些问题.发展运算能力和解决实际问题的能力.。
高一数学必修四第二章平面向量章末总结平面向量是高中数学必修四中的一章内容,主要介绍了平面向量的定义、平面向量的加法、减法、数乘、数量积、向量积等基本运算,以及平面向量的共线、垂直、平行、四边形法则、平面向量的投影等相关概念和定理。
在学习这一章节的过程中,我深刻体会到平面向量的重要性和应用,对于解决实际问题有着很大的帮助。
下面我将对这一章内容进行总结。
第一节平面向量的定义平面向量是一个有大小和方向的量。
平面向量的表示可以用有向线段表示,其中线段代表向量的大小,箭头代表了向量的方向。
平面向量的起点和终点分别叫做向量的始点和终点。
平面向量常用大写字母表示,例如:AB、AC。
平面向量也可以用坐标表示,例如:向量AB的坐标为(3,4),表示向量的起点在原点,终点在坐标点(3,4)处。
平面向量的大小叫做向量的模,用|AB|表示。
第二节平面向量的加法平面向量的加法满足三个定律:1. 交换律:AB + BC = BC + AB.2. 结合律:(AB + BC) + CD = AB + (BC + CD).3. 加法逆元:对于任意的向量AB, 存在向量BA, 使得AB +BA = 0, BA + AB = 0.第三节平面向量的数乘平面向量的数乘即将向量与一个实数进行乘法运算。
加法和数乘的运算统称为线性运算。
数乘满足两个定律:1. 结合律:a(bAB) = (ab)AB.2. 分配律:(a+b)AB = aAB + bAB.第四节平面向量的减法平面向量的减法可以转化为加法和数乘的运算:AB - AC = AB + (-1)AC第五节平面向量的数量积数量积又称为点积,记为AB·CD, 定义为AB·CD = |AB| |CD| cosθ, 其中θ为两个向量的夹角。
第六节平面向量的向量积向量积的结果是一个向量,记为AB×CD,用它来表示与它们夹角θ所在平面的法向量,其大小等于两个向量的模的乘积与夹角θ的正弦值,方向遵循右手螺旋法则。
第二章平面向量
本章概览
三维目标
1.经历平面向量基本概念的形成过程,提高应用向量解决问题的能力,培养应用意识.
2.探索平面向量的线性运算及其几何意义,感受处理向量问题的思维过程,培养应用数形结合思想解决问题的能力.
3.探索平面向量基本定理及其坐标表示,体验用向量处理问题的两种方法:向量法和坐标法,逐步认识向量的科学价值、应用价值.
4.探讨平面向量数量积的含义、应用及其意义,知道向量是沟通代数、几何与三角函数的一种工具,体会它们之间的联系.
5.经历用向量方法解决几何问题、物理问题的过程,体会向量的工具作用,归纳用向量解决问题的思维方法,以便提高学习数学的兴趣,树立学好数学的信心.
知识网络。
第二章 平面向量学习目标.1.回顾梳理向量的有关概念,进一步体会向量的有关概念的特征.2.系统整理向量线性运算、数量积运算及相应的运算律和运算性质.3.体会应用向量解决问题的基本思想和基本方法.4.进一步理解向量的“工具”性作用.1.向量的运算:设a =(x 1,y 1),b =(x 2,y 2).2.两个定理(1)平面向量基本定理①定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任意向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2.②基底:把不共线的向量e 1,e 2叫做表示这一平面内所有向量的一组基底.(2)向量共线定理向量a (a ≠0)与b 共线,当且仅当有唯一一个实数λ,使b =λa . 3.向量的平行与垂直a ,b 为非零向量,设a =(x 1,y 1),b =(x 2,y 2),类型一.向量的线性运算例1.如图所示,在△ABC 中,AN →=13NC →,P 是BN 上的一点,若AP →=mAB →+211AC →,则实数m 的值为________.答案.311解析.设BP →=λBN →,则BP →=BA →+AP →=-AB →+mAB →+211AC →=(m -1)AB →+211AC →.BN →=BA →+AN →=-AB →+14AC →.∵BP →与BN →共线,∴14(m -1)+211=0,∴m =311.反思与感悟.向量共线定理和平面向量基本定理是进行向量合成与分解的核心,是向量线性运算的关键所在,常应用它们解决平面几何中的共线、共点问题.跟踪训练1.在△ABC 中,E 为线段AC 的中点,试问在线段AC 上是否存在一点D ,使得BD →=13BC→+23BE →,若存在,说明D 点位置;若不存在,说明理由.解.假设存在D 点,使得BD →=13BC →+23BE →.BD →=13BC →+23BE →⇒BD →=13BC →+23(BC →+CE →)=BC →+23CE →⇒BD →-BC →=23CE →⇒CD →=23CE →⇒CD →=23×⎝ ⎛⎭⎪⎫12CA →⇒CD →=13CA →.所以当点D 为AC 的三等分点⎝⎛⎭⎪⎫CD →=13CA →时,BD →=13BC →+23BE →.类型二.向量的数量积运算例2.已知a =(cos α,sin α),b =(cos β,sin β),且|k a +b |=3|a -k b |(k >0). (1)用k 表示数量积a ·b ;(2)求a ·b 的最小值,并求出此时a 与b 的夹角θ的大小. 解.(1)由|k a +b |=3|a -k b |, 得(k a +b )2=3(a -k b )2,∴k 2a 2+2k a ·b +b 2=3a 2-6k a ·b +3k 2b 2. ∴(k 2-3)a 2+8k a ·b +(1-3k 2)b 2=0.∵|a |=cos 2α+sin 2α=1,|b |=cos 2β+sin 2β=1, ∴k 2-3+8k a ·b +1-3k 2=0, ∴a ·b =2k 2+28k =k 2+14k.(2)a ·b =k 2+14k =14(k +1k).由函数的单调性可知,f (k )=14(k +1k )在(0,1]上单调递减,在[1,+∞)上单调递增,∴当k =1时,f (k )min =f (1)=14×(1+1)=12,此时a 与b 的夹角θ的余弦值cos θ=a ·b |a ||b |=12,∴θ=60°.反思与感悟.数量积运算是向量运算的核心,利用向量数量积可以解决以下问题: (1)设a =(x 1,y 1),b =(x 2,y 2),a ∥b ⇔x 1y 2-x 2y 1=0, a ⊥b ⇔x 1x 2+y 1y 2=0.(2)求向量的夹角和模的问题 ①设a =(x 1,y 1),则|a |=x 21+y 21. ②两向量夹角的余弦(0≤θ≤π)cos θ=a ·b |a ||b |=x 1x 2+y 1y 2x 21+y 21 x 22+y 22. 跟踪训练2.已知向量OA →=(3,-4),OB →=(6,-3),OC →=(5-m ,-(3+m )). (1)若点A ,B ,C 能构成三角形,求实数m 应满足的条件; (2)若△ABC 为直角三角形,且∠A 为直角,求实数m 的值. 解.(1)若点A ,B ,C 能构成三角形,则这三点不共线, ∵OA →=(3,-4),OB →=(6,-3), OC →=(5-m ,-(3+m )),∴AB →=(3,1),BC →=(-m -1,-m ), ∵AB →与BC →不平行,∴-3m ≠-m -1,解得m ≠12,∴当实数m ≠12时满足条件.(2)若△ABC 为直角三角形,且∠A 为直角,则AB →⊥AC →,而AB →=(3,1),AC →=(2-m ,1-m ), ∴3(2-m )+(1-m )=0,解得m =74.类型三.向量坐标法在平面几何中的应用例3.已知在等腰△ABC 中,BB ′,CC ′是两腰上的中线,且BB ′⊥CC ′,求顶角A 的余弦值的大小.解.建立如图所示的平面直角坐标系,设A (0,a ),C (c ,0),则B (-c ,0),OA →=(0,a ),BA →=(c ,a ),OC →=(c ,0),BC →=(2c ,0).因为BB ′,CC ′为AC ,AB 边上的中线, 所以BB ′—→=12(BC →+BA →)=⎝ ⎛⎭⎪⎫3c 2,a 2,同理CC ′—→=⎝ ⎛⎭⎪⎫-3c 2,a 2.因为BB ′—→⊥CC ′—→,所以BB ′—→·CC ′—→=0, 即-9c 24+a 24=0,化简得a 2=9c 2,又因为cos A =AB →·AC→|AB →||AC →|=a 2-c 2a 2+c 2=9c 2-c 29c 2+c 2=45.即顶角A 的余弦值为45.反思与感悟.把几何图形放到适当的坐标系中,就赋予了有关点与向量具体的坐标,这样就能进行相应的代数运算和向量运算,从而解决问题.这样的解题方法具有普遍性.跟踪训练3.如图,半径为3的扇形AOB 的圆心角为120°,点C 在AB 上,且∠COB =30°,若OC →=λOA →+μOB →,则λ+μ等于(..)A. 3B.33C.433D.2 3 答案.A解析.由题意,得∠AOC =90°,故以O 为坐标原点,OC ,OA 所在直线分别为x 轴,y 轴建立平面直角坐标系,则O (0,0),A (0,3),C (3,0),B (3×cos 30°,-3×sin 30°),因为OC →=λOA →+μOB →,所以(3,0)=λ(0,3)+μ(3×32,-3×12), 即⎩⎪⎨⎪⎧3=μ×3×32,0=3λ-3×12μ,则⎩⎪⎨⎪⎧μ=233,λ=33,所以λ+μ= 3.1.在菱形ABCD 中,若AC =2,则CA →·AB →等于(..) A.2 B.-2C.|AB →|cos A D.与菱形的边长有关答案.B解析.如图,设对角线AC 与BD 交于点O ,∴AB →=AO →+OB →.CA →·AB →=CA →·(AO →+OB →) =-2+0=-2.2.设四边形ABCD 为平行四边形,|AB →|=6,|AD →|=4.若点M ,N 满足BM →=3MC →,DN →=2NC →,则AM →·NM →等于(..) A.20 B.15 C.9 D.6答案.C解析.▱ABCD 的图象如图所示,由题设知,AM →=AB →+BM →=AB →+34AD →,NM →=13AB →-14AD →,∴AM →·NM →=⎝ ⎛⎭⎪⎫AB →+34AD →·⎝ ⎛⎭⎪⎫13AB →-14AD →=13|AB →|2-316|AD →|2+14AB →·AD →-14AB →·AD →=13×36-316×16=9. 3.已知向量a =(2,3),b =(-1,2),若m a +4b 与a -2b 共线,则m 的值为(..) A.12 B.2 C.-12 D.-2 答案.D解析.m a +4b =(2m -4,3m +8),a -2b =(4,-1). ∵m a +4b 与a -2b 共线,∴(2m -4)×(-1)-(3m +8)×4=0,解得m =-2.4.若向量OA →=(1,-3),|OA →|=|OB →|,OA →·OB →=0,则|AB →|=________. 答案.2 5解析.由题意可知,△AOB 是以O 为直角顶点的等腰直角三角形,且腰长|OA →|=|OB →|=10,由勾股定理得|AB →|=20=2 5.5.平面向量a =(3,-1),b =⎝ ⎛⎭⎪⎫12,32,若存在不同时为0的实数k 和t ,使x =a +(t 2-3)b ,y =-k a +t b ,且x⊥y ,试求函数关系式k =f (t ). 解.由a =(3,-1),b =⎝ ⎛⎭⎪⎫12,32,得a·b =0,|a |=2,|b |=1,由x ⊥y ,得[a +(t 2-3)b ]·(-k a +t b )=0, -k a 2+t a·b -k (t 2-3)a·b +t (t 2-3)b 2=0, 即-4k +t 3-3t =0,所以k =14(t 3-3t ),令f (t )=14(t 3-3t ),所以函数关系式为k =f (t )=14(t 3-3t ).1.由于向量有几何法和坐标法两种表示方法,它的运算也因为这两种不同的表示方法而有两种方式,因此向量问题的解决,理论上讲总共有两个途径,即基于几何表示的几何法和基于坐标表示的代数法,在具体做题时要善于从不同的角度考虑问题.2.向量是一个有“形”的几何量,因此,在研究向量的有关问题时,一定要结合图形进行分析判断求解,这是研究平面向量最重要的方法与技巧.课时作业一、选择题1.下列命题中正确的是(..) A.OA →-OB →=AB → B.AB →+BA →=0 C.0·AB →=0 D.AB →+BC →+CD →=AD → 答案.D解析.OA →-OB →=BA →;AB →,BA 是一对相反向量,它们的和应该为零向量,即AB →+BA →=0;0·AB →=0.2.在平面直角坐标系xOy 中,已知四边形ABCD 是平行四边形,AB →=(1,-2),AD →=(2,1),则AD →·AC →等于(..) A.5 B.4 C.3 D.2 答案.A解析.∵四边形ABCD 为平行四边形,∴AC →=AB →+AD →=(1,-2)+(2,1)=(3,-1),∴AD →·AC →=2×3+(-1)×1=5.3.设向量a =(2,4)与向量b =(x ,6)共线,则实数x 等于(..) A.2 B.3 C.4 D.6 答案.B解析.∵a ∥b ,∴2×6-4x =0,∴x =3.4.若平面向量b 与向量a =(1,-2)的夹角是180°,且|b |=35,则b 等于(..) A.(-3,6) B.(3,-6) C.(6,-3) D.(-6,3)答案.A解析.设b =k a =(k ,-2k ),k <0,而|b |=35,则5k 2=35,∴k =-3,b =(-3,6).5.已知向量m =(λ+1,1),n =(λ+2,2),若(m +n )⊥(m -n ),则λ等于(..) A.-4 B.-3 C.-2 D.-1 答案.B6.在△ABC 中,若AB →2-AB →·AC →=BA →·BC →-CA →·BC →,则△ABC 是(..) A.等边三角形 B.锐角三角形 C.直角三角形 D.钝角三角形答案.C解析.由已知,得AB →·(AB →-AC →)-BC →·(BA →-CA →)=0, ∴AB →·CB →-BC →·BC →=0,∴BC →·(-AB →-BC →)=0,即-BC →·AC →=0,BC →⊥AC →, ∴BC ⊥AC ,∴△ABC 为直角三角形.故选C.7.若a ,b 是非零向量且满足(a -2b )⊥a ,(b -2a )⊥b ,则a 与b 的夹角θ的大小为(..) A.π6 B.π3 C.2π3D.5π6答案.B解析.∵a 2-2a ·b =0,b 2-2a ·b =0, ∴a 2=b 2,|a |=|b |,又∵cos θ=a ·b |a ||b |=12a 2|a |2=12,θ∈[0,π],∴θ=π3.8.如图所示,在△ABC 中,AD =DB ,AE =EC ,CD 与BE 交于点F .设AB →=a ,AC →=b ,AF →=x a +y b ,则(x ,y )为(..)A.⎝ ⎛⎭⎪⎫12,12B.⎝ ⎛⎭⎪⎫23,23C.⎝ ⎛⎭⎪⎫13,13 D.⎝ ⎛⎭⎪⎫23,12 答案.C解析.令BF →=λBE →.由题可知,AF →=AB →+BF →=AB →+λBE →=AB →+λ⎝ ⎛⎭⎪⎫12AC →-AB →=(1-λ)AB →+12λAC →.令CF →=μCD →,则AF →=AC →+CF →=AC →+μCD →=AC →+μ⎝ ⎛⎭⎪⎫12AB →-AC →=12μAB →+(1-μ)AC →.由⎩⎪⎨⎪⎧1-λ=12μ,12λ=1-μ,解得⎩⎪⎨⎪⎧λ=23,μ=23,所以AF →=13AB →+13AC →,故选C.二、填空题9.若|a |=1,|b |=2,a 与b 的夹角为60°,若(3a +5b )⊥(m a -b ),则m 的值为________. 答案.238解析.由题意知(3a +5b )·(m a -b )=3m a 2+(5m -3)a·b -5b 2=0,即3m +(5m -3)×2×cos 60°-5×4=0,解得m =238.10.已知向量a ,b 的夹角为120°,|a |=1,|b |=3,则|5a -b |=________. 答案.711.在△ABC 中,点O 在线段BC 的延长线上,且|BO →|=3|CO →|,当AO →=xAB →+yAC →时,x -y =________. 答案.-2解析.由|BO →|=3|CO →|,得BO →=3CO →, 则BO →=32BC →,所以AO →=AB →+BO →=AB →+32BC →=AB →+32(AC →-AB →)=-12AB →+32AC →.所以x =-12,y =32,所以x -y =-12-32=-2.12.已知向量a ,b 满足|a |=|b |=2,a 与b 的夹角为60°,则b 在a 方向上的投影是________. 答案.1解析.∵|a |=|b |=2,a 与b 的夹角为60°,∴b 在a 方向上的投影是|b |cos 60°=1.13.已知向量AB →与AC →的夹角为120°,且|AB →|=3,|AC →|=2.若AP →=λAB →+AC →,且AP →⊥BC →,则实数λ的值为________.答案.712解析.∵AP →⊥BC →,∴AP →·BC →=(λAB →+AC →)·(AC →-AB →)=-λAB →2+(λ-1)AB →·AC →+AC →2=-9λ+(λ-1)×3×2×(-12)+4=0, ∴λ=712. 三、解答题14.若OA →=(sin θ,-1),OB →=(2sin θ,2cos θ),其中θ∈[0,π2],求|AB →|的最大值. 解.∵AB →=OB →-OA →=(sin θ,2cos θ+1)⇒|AB →|=sin 2θ+4cos 2θ+4cos θ+1=3cos 2θ+4cos θ+2= 3(cos θ+23)2+23, ∴当cos θ=1,即θ=0时,|AB →|取得最大值3.四、探究与拓展15.已知OA →=(1,0),OB →=(0,1),OM →=(t ,t )(t ∈R ),O 是坐标原点.(1)若A ,B ,M 三点共线,求t 的值;(2)当t 取何值时,MA →·MB →取到最小值?并求出最小值.解.(1)AB →=OB →-OA →=(-1,1),AM →=OM →-OA →=(t -1,t ).∵A ,B ,M 三点共线,∴AB →与AM →共线, ∴-(t -1)-t =0,∴t =12. (2)∵MA →=(1-t ,-t ),MB →=(-t ,1-t ),∴MA →·MB →=2t 2-2t =2⎝ ⎛⎭⎪⎫t -122-12,易知当t =1 2时,MA→·MB→取得最小值-12.。
必修4第二章—平面向量复习一、基础知识1、零向量: _________________________的向量叫零向量,记作________。
规定: 0 →的方向为任意方向, 0 →与任一向量平行。
2、单位向量:________________________的向量叫单位向量。
如果a 的单位向量是0a ,则a= 0a ,0a= 。
3、向量加法的运算法则:___________、______________ 、 向量减法的运算法则:____________________。
4、相反向量:与a 方向 的向量叫做a的相反向量,记作 。
相反向量与方向相反的向量一样吗?5、 数乘向量:a λ 的长度:a λ = ,当0λ>时,a λ 的方向与a的方向 ; 当0λ<时,a λ 的方向与a的方向 ;当0λ=或0a = 时,0a ⋅= ,或0λ⋅=。
6、如果两个非零向量a 平行于b,则 。
7、平面向量基本定理:如果1e 和2e是一平面内的两个 的向量,那么对于该平面内的 a ,存在 12,a a ,使a= , 把不共线的向量1e ,2e叫做表示这一平面内所有向量的一组 ,记为{}12,e e 。
8、直线的向量参数方程式:已知,A B 是直线l 上任意两点,O 是l 外一点,则对直线l 上一点P ,存在实数t ,满足向量式O P= ,满足向量式的点P 一定在l 上,则向量等式叫做直线l 的向量参数方程式,其中实数t 叫做参变数。
9、向量的直角坐标:在直角坐标系内,分别取与x 轴、y 轴方向 的两个单位向量1e 和2e,则对任一向量a ,存在唯一的有序实数对12(,)a a ,使得1122a a e a e =+ ,12(,)a a 就是向量a在基底{}12,e e 下的坐标,即a= 。
已知向量A B 的起点A 11(,)x y ,终点B 22(,)x y ,则A B= 。
10、两个向量的夹角的范围是 ,记两个非零向量 a →,b →的夹角为θ,(1)当θ=0时, a →与b → ;(2)当θ=π时, a →与b → ;(2)当θ=π2时, a →与b →,记作 。
第二章 平面向量复习课(一)一、教学目标1. 理解向量.零向量.向量的模.单位向量.平行向量.反向量.相等向量.两向量的夹角等概念。
2. 了解平面向量基本定理.3. 向量的加法的平行四边形法则(共起点)和三角形法则(首尾相接)。
4. 了解向量形式的三角形不等式:||a |-|b |≤|a ±b |≤|a |+|b |(试问:取等号的条件是什么?)和向量形式的平行四边形定理:2(|a |2+|b |2)=|a -b |2+|a +b |2.5. 了解实数与向量的乘法(即数乘的意义):6. 向量的坐标概念和坐标表示法7. 向量的坐标运算(加.减.实数和向量的乘法.数量积)8. 数量积(点乘或内积)的概念,a ·b =|a ||b |cos θ=x 1x 2+y 1y 2注意区别“实数与向量的乘法;向量与向量的乘法”二、知识与方法向量知识,向量观点在数学.物理等学科的很多分支有着广泛的应用,而它具有代数形式和几何形式的“双重身份”能融数形于一体,能与中学数学教学内容的许多主干知识综合,形成知识交汇点,所以高考中应引起足够的重视. 数量积的主要应用:①求模长;②求夹角;③判垂直三、教学过程(一)重点知识:1. 实数与向量的积的运算律: b a b a a a a a a λλλμλμλλμμλ+=++=+=)( (3) )( (2) )()( (1)2. 平面向量数量积的运算律:)1(a b b a ⋅=⋅)()()( )2(b a b a b a λλλ⋅=⋅=⋅c b c a c b a ⋅+⋅=⋅+ )( )3(3. 向量运算及平行与垂直的判定:).0(),,(),,(2211≠==b y x b y x a 设 则),(2121y y x x b a ++=+),(2121y y x x b a --=-2121y y x x b a +=⋅.0//1221=-⇔y x y x b a .02121=+⇔⊥y y x x b a4. 两点间的距离:221221)()(||y y x x AB -+-=5. 夹角公式:222221212121cos y x y x y y x x +⋅++==θ6. 求模:=22y x +=221221)()(y y x x -+-=(二)习题讲解:《习案》P167 面2题,P168面6题,P169面1题,P170面5、6题, P171面1、2、3题,P172面5题,P173面6题。
必修4第二章平面向量复习课班级: 姓名: 学号: 小组:[核心速填]1.向量的运算(1)加法:①OA →+AB →=OB →,②若四边形OABC 为平行四边形,则OA →+OC →=OB →.(2)减法:OA →-OB →=BA →. (3)数乘:|λa |=|λ||a |.(4)数量积:a·b =|a ||b |cos θ(a 与b 的夹角为θ). 2.两个重要定理(1)向量共线定理:向量a (a ≠0)与b 共线,当且仅当有唯一一个实数λ,使b =λa .(2)平面向量基本定理:如果e 1,e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1,λ2,使a =λ1e 1+λ2e 2,其中e 1,e 2是一组基底.3.两个非零向量平行、垂直的充要条件 若a =(x 1,y 1)b =(x 2,y 2),则: (1)a ∥b ⇔a =λb (λ≠0)⇔x 1y 2-x 2y 1=0. (2)a ⊥b ⇔a·b =0⇔x 1x 2+y 1y 2=0. 4.平面向量的三个性质(1)若a =(x ,y ),则|a |=a·a =x 2+y 2.(2)若A (x 1,y 1),B (x 2,y 2),则|AB →|=(x 2-x 1)2+(y 2-y 1)2.(3)若a =(x 1,y 1),b =(x 2,y 2),θ为a 与b 的夹角,则cos θ=a·b|a ||b |=x 1x 2+y 1y 2x 21+y 21x 22+y 22.[体系构建][题型探究]平面向量的线性运算(1)平面上有A (2,-1),B (1,4),D (4,-3)三点,点C 在直线AB 上,且AC →=12BC →,连接DC 延长至E ,使|CE →|=14|ED →|,则点E 的坐标为________.图2-1(2)如图2-1,在正五边形ABCDE 中,若AB →=a ,BC →=b ,CD →=c ,DE →=d ,EA →=e ,求作向量a -c +b -d -e .[规律方法] 1.向量加法是由三角形法则定义的,要点是“首尾相连”,即AB →+BC →=AC →.向量加法的平行四边形法则:将两向量移至共起点,分别为邻边作平行四边形,则同起点对角线的向量即为向量的和.加法满足交换律、结合律.2.向量减法实质是向量加法的逆运算,是相反向量的作用.几何意义有两个:一是以减向量的终点为起点,被减向量的终点为终点的向量;二是加法的平行四边形法则的另外一条对角线的向量.注意两向量要移至共起点.3.数乘运算即通过实数与向量的乘积,实现同向或反向上向量长度的伸缩变换.[跟踪训练]1.如图2-2所示,在△ABC 中,AN →=13NC →,P 是BN 上的一点,若AP →=mAB →+211AC →,则实数m 的值为________.图2-2平面向量数量积的运算(1)已知点A (-1,1)、B (1,2)、C (-2,-1)、D (3,4),则向量AB →在CD →方向上的投影为( )A .322 B .3152 C .-322D .-3152(2)如图2-3,在梯形ABCD 中,AB ∥CD ,AB =4,AD =3,CD =2,AM →=2MD →.若AC →·BM →=-3,则AB →·AD →=________.图2-3[规律方法] 向量数量积的求解策略(1)利用数量积的定义、运算律求解.在数量积运算律中,有两个形似实数的完全平方公式在解题中的应用较为广泛,即(a +b )2=a 2+2a·b +b 2,(a -b )2=a 2-2a·b +b 2,上述两公式以及(a +b )·(a -b )=a 2-b 2这一类似于实数平方差的公式在解题过程中可以直接应用.(2)借助零向量.即借助“围成一个封闭图形且首尾相接的向量的和为零向量”,再合理地进行向量的移项以及平方等变形,求解数量积.(3)借助平行向量与垂直向量.即借助向量的拆分,将待求的数量积转化为有垂直向量关系或平行向量关系的向量数量积,借助a ⊥b ,则a·b =0等解决问题.(4)建立坐标系,利用坐标运算求解数量积. [跟踪训练]2.在边长为1的菱形ABCD 中,∠BAD =60°,E 是BC 的中点,则AC →·AE →等于( )A.3+33B.92C. 3D.94平面向量的平行与垂直问题),则λ=( )A .-4B .-3C .-2D .-1(2)设A ,B ,C ,D 为平面内的四点,且A (1,3),B (2,-2),C (4,1). ①若AB →=CD →,求D 点的坐标.②设向量a =AB →,b =BC →,若k a -b 与a +3b 平行,求实数k 的值. [规律方法] 1.证明共线问题常用的方法(1)向量a ,b (a ≠0)共线⇔存在唯一实数λ,使b =λa . (2)向量a =(x 1,y 1),b =(x 2,y 2)共线⇔x 1y 2-x 2y 1=0. (3)向量a 与b 共线⇔|a ·b |=|a ||b |.(4)向量a 与b 共线⇔存在不全为零的实数λ1,λ2,使λ1a +λ2b =0. 2.证明平面向量垂直问题的常用方法 a ⊥b ⇔a·b =0⇔x 1x 2+y 1y 2=0, 其中a =(x 1,y 1),b =(x 2,y 2).平面向量的模、夹角(1)已知向量a ,b 夹角为45°,且|a |=1,|2a -b |=10,|b |=________. (2)已知c =m a +n b ,c =(-23,2),a ⊥c ,b 与c 的夹角为2π3,b·c =-4,|a |=22,求实数m ,n 的值及a 与b 的夹角θ.[规律方法] 1.解决向量模的问题常用的策略 (1)应用公式:|a |=x 2+y 2(其中a =(x ,y )). (2)应用三角形或平行四边形法则. (3)应用向量不等式||a |-|b ||≤|a ±b |≤|a |+|b |. (4)研究模的平方|a ±b |2=(a ±b )2. 2.求向量的夹角设非零向量a =(x 1,y 1),b =(x 2,y 2),两向量夹角θ(0≤θ≤π)的余弦cos θ=a·b|a ||b |=x 1x 2+y 1y 2x 21+y 21x 22+y 22.[跟踪训练]3.已知向量a=(1,2),b=(-2,-4),|c|=5,若(c-b)·a=152,则a与c的夹角为()A.30°B.60°C.120°D.150°平面向量在平面几何和物理中的应用知物体的重力大小为10 N,则每根绳子的拉力大小是________.图2-4(2)如图2-5所示,在正方形ABCD中,P为对角线AC上任一点,PE⊥AB,PF⊥BC,垂足分别为E,F,连接DP,EF,求证:DP⊥EF.图2-5[规律方法]平面向量两个方面的应用(1)平面几何应用向量几何问题共线向量点共线问题、直线与直线平行数乘向量求线段长度之比数量积线段的长度、直线与直线的夹角(2)物理应用:速度、位移、力、功.[跟踪训练]4.已知点O ,N ,P 在△ABC 所在平面内,且|OA →|=|OB →|=|OC →|,NA →+NB →+NC →=0,P A →·PB →=PB →·PC →=PC →·P A →,则点O ,N ,P 依次是△ABC 的( )A .重心、外心、垂心B .重心、外心、内心C .外心、重心、垂心D .外心、重心、内心。
章末复习课
课时目标 1.掌握向量线性运算及其几何意义.2.理解共线向量的含义、几何表示及坐标表示的条件.3.掌握数量积的含义、坐标形式及其应用. 知识结构
一、选择题
1.若向量a =(1,2),b =(-3,4),则(a ·b )(a +b )等于( ) A .20 B .(-10,30) C .54 D .(-8,24)
2.已知平面向量a =(1,-3),b =(4,-2),λa +b 与a 垂直,则λ等于( ) A .-1 B .1 C .-2 D .2
3.已知O 是△ABC 所在平面内一点,D 为BC 边的中点,且2OA →+OB →+OC →
=0,那么( ) A. AO →=OD → B. AO →=2OD → C. AO →=3OD → D .2AO →=OD →
4.在平行四边形ABCD 中,AC →=(1,2),BD →=(-3,2),则AD →·AC →
等于( ) A .-3 B .-2 C .2 D .3
5.若向量a 与b 不共线,a·b ≠0,且c =a -⎝⎛⎭⎫
a·a a·b b ,则向量a 与c 的夹角为( ) A .0 B.π6 C.π3 D.π2
6.在△ABC 中,M 是BC 的中点,AM =1,点P 在AM 上且满足AP →=2PM →,则AP →·(PB →+PC →
)等于( ) A.49 B.43 C .-43 D .-49
二、填空题
7.过点A (2,3)且垂直于向量a =(2,1)的直线方程是____________.
8.已知向量a ,b 满足|a |=1,|b |=2,a 与b 的夹角为60°,则b 在a 上的投影是______. 9.设向量a =(1,2),b =(2,3).若向量λa +b 与向量c =(-4,-7)共线,则λ=________. 10.已知平面向量α、β,|α|=1,|β|=2,α⊥(α-2β),则|2α+β|的值是________.
三、解答题
11.已知A (1,-2)、B (2,1)、C (3,2)和D (-2,3),以AB →、AC →为一组基底来表示AD →+BD →+CD →.
12.设a ,b 是两个不共线的非零向量,t ∈R .
(1)若a 与b 起点相同,t 为何值时a ,t b ,1
3(a +b )三向量的终点在一直线上?
(2)若|a |=|b |且a 与b 夹角为60°,那么t 为何值时,|a -t b |的值最小?
能力提升
13.已知点O 为△ABC 所在平面内一点,且OA →2+BC →2=OB →2+CA →2=OC →2+AB →
2,则O 一定是△ABC 的( )
A .外心
B .内心
C .垂心
D .重心
14. 如图,平面内有三个向量OA →、OB →、OC →,其中OA →与OB →的夹角为120°,OA →与OC →
的夹角为30°,且|OA →|=|OB →|=1,|OC →|=2 3.若OC →=λOA →+μOB →
(λ,μ∈R ),求实数λ、μ的值.
1.由于向量有几何法和坐标法两种表示方法,它的运算也因为这两种不同的表示方法而有两种方式,因此向量问题的解决,理论上讲总共有两个途径即基于几何表示的几何法和基于坐标表示的代数法,在具体做题时要善于从不同的角度考虑问题.
2.向量是一个有“形”的几何量,因此,在研究向量的有关问题时,一定要结合图形进行分析判断
求解,这是研究平面向量最重要的方法与技巧.
章末复习课
答案
作业设计
1.B [a ·b =-3+8=5,a +b =(-2,6), ∴(a ·b )(a +b )=5×(-2,6)=(-10,30).故选B.] 2.A [(λa +b )·a =0,∴λa 2+a ·b =0. ∴10λ+10=0,∴λ=-1.故选A.] 3.A [由题意D 是BC 边的中点, 所以有OB →+OC →=2OD →,
所以2OA →+OB →+OC →=2OA →+2OD →=2(OA →+OD →)=0⇒OA →+OD →=0⇒AO →=OD →.]
4.D [AC →=AB →+AD →=(1,2),BD →=AD →-AB →=(-3,2),解得AD →=(-1,2),∴AD →·AC →
=(-1,2)·(1,2)=3.故选D.]
5.D [∵a·c =a·⎣⎡⎦⎤a -⎝⎛⎭⎫a·a a·b b =a·a -⎝⎛⎭⎫a·a a·b ·(a·b )=0,∴〈a ,c 〉=π2
.] 6.A [易知P 为△ABC 的重心,则PB →+PC →=-PA →=AP →,故AP →·(PB →+PC →)=AP →2=49,故选A.]
7.2x +y -7=0
解析 设直线上任一点P (x ,y ),则AP →
=(x -2,y -3). 由AP →·a =2(x -2)+(y -3)=0,得2x +y -7=0. 8.1
解析 b 在a 上的投影为|b |cos θ=2×cos 60°=1. 9.2
解析 λa +b =(λ+2,2λ+3)与c =(-4,-7)共线, ∴(λ+2)(-7)-(2λ+3)(-4)=0,得λ=2. 10.10
解析 由α⊥(α-2β)得α·(α-2β)=0,∴α2-2α·β=0.又∵|α|=1,∴α·β=1
2.又∵|β|=2,
∴|2α+β|=
(2α+β)2=
4α2+4α·β+β2=
4+4×1
2
+4=10.
11.解 ∵AB →=(1,3),AC →=(2,4),AD →
=(-3,5), BD →=(-4,2),CD →
=(-5,1),
∴AD →+BD →+CD →
=(-3,5)+(-4,2)+(-5,1)=(-12,8). 根据平面向量基本定理,必存在唯一实数对m ,n 使得 AD →+BD →+CD →=mAB →+nAC →, ∴(-12,8)=m (1,3)+n (2,4).
∴⎩⎪⎨⎪⎧
-12=m +2n ,8=3m +4n .
,得m =32,n =-22. ∴AD →+BD →+CD →=32AB →-22AC →.
12.解 (1)设a -t b =m [a -1
3(a +b )],m ∈R ,
化简得(23m -1)a =(m
3-t )b ,
∵a 与b 不共线,
∴⎩⎨⎧ 2
3m -1=0
m
3-t =0,
∴⎩⎨⎧
m =3
2,t =1
2.
∴t =12时,a ,t b ,1
3
(a +b )的终点在一直线上.
(2)|a -t b |2=(a -t b )2=|a |2+t 2|b |2-2t |a ||b |cos 60°=(1+t 2-t )|a |2. ∴当t =12时,|a -t b |有最小值32
|a |.
13.C [由OA →2+BC →2=OB →2+CA →2,得OA →2+(OC →-OB →)2=OB →2+(OA →-OC →)2,得OC →·OB →=OA →·OC →
.∴
OC
→
·AB
→=0,O在边AB的高线上.同理O在边AC的高线上,即O为△ABC的垂心.故选C.] 14.解方法一
过点C分别作平行于OB的直线CE交直线OA于点E,平行于OA的直线CF交直线OB于点F.如图所示.
在Rt△OCE中,|OE→|=|OC
→
|
cos 30°
=23
3
2
=4;
|CE
→
|=|OC
→
|·tan 30°=23×
3
3
=2,
由平行四边形法则知,OC→=OE→+OF→=4OA→+2OB→,
∴λ=4,μ=2.
方法二
如图所示,以OA→所在直线为x轴,过O垂直于OA的直线为y轴建立直角坐标系.设B点在x轴的射影为B′,C点在x轴的射影为C′.
易知,OC′=23cos 30°=3,CC′=OC sin 30°=3,BB′=OB sin 60°=3
2
,
OB′=OB cos 60°=
1
2
,
∴A点坐标为(1,0),B点坐标为
⎝
⎛
⎭
⎫
-1
2
,3
2
,
C点坐标为(3,3).
∵OC→=λOA→+μOB→
∴
⎩
⎨
⎧λ-12μ=3,
0·λ+
3
2
μ=3,
∴
⎩⎪
⎨
⎪⎧λ=4
μ=2
.
方法三 ∵OC →=λOA →+μOB →
. ∴⎩⎪⎨⎪⎧
OC →·OC →=(λOA →+μOB →)·OC →OA →·
OC →=(λOA →+μOB →)·OA →, ∴⎩⎨
⎧
23×32λ=12λ-μ2=23×32
,解得λ=4,μ=2.。