天然气放空管路水力计算
- 格式:pdf
- 大小:164.54 KB
- 文档页数:5
低压燃气管道水力计算公式-CAL-FENGHAI.-(YICAI)-Company One1燃气管道输送水力计算一、适用公式燃气的管道输配起点压力为10KPa,按《城镇燃气设计规范》,应纳入中压燃气管道的范围。
但本设计认为,虽然成套设备的输出压力为10KPa,出站后,压力即降至10KPa以下。
整个管网系统都在10KPa以下的压力状态下工作,因此,在混空轻烃管道燃气输配过程的水力计算,应采取低压水力计算公式为宜。
二、低压燃气管道水力计算公式:1、层流状态 R e≤2100λ=64/R e R e=dv/γΔP/L=×1010(Q0/d4)γρ0(T/T0)2、临界状态 R e=2100~3500λ=+(R e-2100)/(65 R e-1×105)ΔP/L=×106[1+( Q0-7×104dγ)/(-1×105dγ)](Q02/d5)ρ0(T/T0)3、紊流状态 R e≥35001)钢管λ=[(Δ/d)+(68/ R e)]ΔP/L=×106[(Δ/d)+(dγ/ Q0)](Q02/d5)ρ0(T/T0)2)铸铁管λ=[(1/d)+4960(dγ/ Q0)]ΔP/L=×106[(1/d)+4960(dγ/ Q0)](Q02/d5)ρ0(T/T0)注:ΔP——燃气管道的沿程压力降(Pa) L——管道计算长度(m)λ——燃气管道的摩阻系数 Q0——燃气流量(Nm3/h)d——管道内径(mm)ρ0——燃气密度(kg/Nm3)γ——0℃和时的燃气运动粘度(m2/s)Δ——管壁内表面的绝对当量粗糙度(mm) R e——雷诺数T——燃气绝对温度(K) T0——273Kv——管内燃气流动的平均速度(m/s)(摘自姜正侯教授主编的《燃气工程技术手册》——同济大学出版社1993版P551)二、燃气的输配工况条件起点压力——10KPa 最大流速——10m/s燃气密度——Nm3(20℃和浓度20%时)纯轻烃燃气运动粘度——×10-6m2/s(0℃和时)燃气运动粘度——×10-6m2/s(0℃和时)三、钢管阻力降的计算与查表结果注:1、——*因计算数据与实际数据误差过大,已无计算、列表的必要。
燃气管道计算流量和水力计算1.1城镇燃气管道的计算流量,应按计算月的小时zui 大用气量计算。
该小时zui 大用气量应根据所有用户燃气用气量的变化叠加后确定。
独立居民小区和庭院燃气支管的计算流量宜按本款第4条公式(1.4-2)计算。
1.2居民生活用气量:应根据本地燃料消耗统计数据折算,以每户3.5人计。
此处参考《××市××区燃气专项规划》,取2720MJ/人·年(65万大卡/人·年)。
1.3商业和工业用气量:应根据所有用气设备的额定流量和实际使用情况确定,参见本条规定的a 条和b 条。
无具体数据时,可按附录B 采用。
1) 商业用户燃气计算流量应按所有用气设备的额定热负荷和实际使用情况确定,无实际数据时,可参照附录Q 采用。
不同燃气的换算可按其低热值比计算,固体和液体燃料换算燃气还应考虑热效率,宜按下式计算:(1. 3)式中 V ——燃气用量(Nm 3/d );G ——原来使用的燃料量(kg/d ); Q 1——原用燃料的低热值(kcal/kg ); η1——原用燃料的燃具热效率(%); Q 2——燃气低热值(kcal/Nm 3); η2——燃气燃具热效率(%)。
各种燃料的低热值参照表1. 3-1,使用不同燃料的燃具热效率参照表1. 3-2。
2211ηηQ Q G V =表1. 3-1不同燃料的低热值表1.3-2使用不同燃料的燃具热效率注:①重油热效率比柴油约小5%。
2)工业企业生产用气设备的燃气用量,应按下列原则确定:a定型燃气加热设备,应根据设备铭牌标定的用气量或标定热负荷,采用经当地燃气热值折算的用气量;b非定型燃气加热设备应根据热平衡计算确定;或参照同类型用气设备的用气量确定;c 使用其他燃料的加热设备需要改用燃气时,可根据原燃料实际消耗量计算确定。
d 工业用户由固体或液体燃料改为使用燃气时,可按式(1.3)进行换算,式中的原用燃料量G 和原用燃料的燃具热效率η1应为实际测定值,η2可比照类似工业用气设备采用。
燃气管网水力计算公式
1)庭院燃气管道的计算公式:
Q=N Q K K n t ∑0
式中:
Q ——庭院燃气管道的计算流量(Nm 3/h );
K t ——不同类型用户的同时工作系数,当缺乏资料时,可取K t =1; K 0——相同燃具或者相同组合燃具数;
N ——相同燃具或相同组合燃具数;
Q n ——相同燃具或相同组合燃具的额定流量(Nm 3/h )
2)中压管网水力计算公式:
Z T T d
Q 1027.1L P P 052102221ρλ⨯=- ⎥⎦⎤⎢⎣
⎡+-=λλRe 51.23.7d K 2lg 1 式中:
P 1,P 2 ——管道始、末端的燃气绝对压力(kP a );
Z ——压缩因子,当燃气压力小于1.2MPa (表压)时,压缩因子取1.0; L ——管段计算长度(km);
Q ——燃气流量(Nm 3/s);
d ——管道内径(m);
ρo ——燃气的密度(Kg/Nm 3);
λ——摩擦阻力系数;
K ——管壁内表面的当量粗糙度(mm );
Re ——雷诺数(无量纲);
3)低压燃气管道单位长度的摩擦阻力损失应按下式计算:
0527T T d
1026.6p ρλQ l ⨯=∆ 式中: △P ——燃气管道摩擦阻力损失(Pa );
λ——燃气管道摩擦阻力系数;
Q ——燃气管道的计算流量(m 3/h );
d ——管道内径(mm );
ρ——燃气的密度(kg/ m 3);
T ——设计中所采用的燃气温度(K );
T 0——273.15(K);。
城市燃气输配燃气管网水力计算(1)一、城市燃气输配燃气管网的水力计算概述城市燃气输配燃气管网的水力计算是指计算城市燃气管网中燃气流经管线时的燃气压力、流速等参数的过程。
燃气的输送过程中需要维持一定的压力和流量,以保证用户的正常用气需求。
城市燃气管网的水力计算是燃气输配领域的重要技术之一,对规划设计、施工和运营维护都有着重要意义。
在计算过程中,需要考虑多个因素和参数,如管道长度、管径、燃气密度和温度、燃气流量和压力等,综合分析并进行水力优化,才能保证燃气管网的稳定、高效运行。
二、城市燃气输配燃气管网的水力计算方法1.基本原理城市燃气管网的水力计算基于燃气流动的流体动力学基本原理,主要包括能量守恒方程、连续性方程和状态方程等。
其中,能量守恒方程主要用于计算管道中燃气压力的变化;连续性方程用于计算燃气的流量;状态方程用于计算燃气的密度和温度等参数。
2.计算方法城市燃气管网的水力计算可以采用多种方法和软件进行,如相似理论方法、管道特性法和CFD数值模拟等。
其中,相似理论方法和管道特性法是比较常用的计算方法。
相似理论方法是通过建立模型来模拟实际的管网系统,在实验条件下进行流场等参数的测量和分析,得出管网水力特性,以此来推导出实际管道的水力性能。
管道特性法是通过分析管道的特性方程和各个管道之间的相互关系,计算出燃气流经管道时的燃气流量、压力等参数。
3.优化方法城市燃气管网的水力计算还需要进行优化,以求得最优的燃气输送方案。
优化方法主要包括管道线路规划、管道直径选取、阀门设置等方面的优化。
在管道线路规划方面,需要考虑管道的布局和长度,以缩短输送距离和减少压力损失。
在管道直径选取方面,需要综合考虑输送流量、压力损失和管道的制造和安装成本等因素,以确定最适合的管径。
在阀门设置方面,需要根据不同用户的用气需求和管道的分布情况,合理设置阀门,调节管道压力和流量,在确保正常用气的前提下尽可能减小能耗和损失。
三、城市燃气输配燃气管网的水力计算应用城市燃气输配燃气管网的水力计算是燃气输配领域的关键技术之一,广泛应用于城市燃气管网的规划设计、施工和运营维护中。
户内燃气管道水力计算1)计算方法:户内燃气管道压力降ΔP = 管段压力降 + 燃气表压力降 — 附加压力管段压力降 = 沿程压力降 + 局部阻力2)管段压力降计算➢ 方法一:计算局部阻力损失法当燃气流经三通、弯头、变径管、阀门等管道附件时,由于几何边界的急剧改变,燃气流线的变化,必然产生额外的压力损失,称之为局部阻力损失。
在进行城市燃气管网水力计算时,管网的局部阻力损失一般不逐项计算,可按燃气管道摩擦阻力损失的5%-10%进行估算。
对于街坊内庭院管道和室内管道,由于管道附件较多,压力损失主要消耗在局部阻力损失,常需要按下式逐一计算。
△P j =∑ξ22W ρ0式中 △P j ——局部阻力的压力损失(Pa );∑ξ——计算管段中局部阻力系数的总和(局部阻力系数可查得); W ——管段中燃气流速(m/s ); ρ0——燃气的容重(kg/Nm 3)。
管段压力降△P =△P l +△P j (△P l —沿程压力降) ➢ 方法二:当量长度计算法局部阻力损失一般用当量长度来计算,各种管件折成相同管径管段的当量长度L 2。
则管段的计算长度L 等于管段实际长度L 1与局部阻力系数的当量长度L 2之和。
局部阻力系数对应的当量长度可根据下式计算:L 2=λξd ∑⋅式中 d——管道内径(m );λ——燃气管道的摩擦阻力系数,计算公式同公式3、4、5、6; 计算长度L=L 1+ L 2,单位长度摩擦阻力损失同公式2。
3)附加压力计算由于燃气与空气的密度不同,当管段始末端存在标高差值时,在燃气管道中将产生附加压头。
因此,计算室内燃气管道及地面标高变化相当大的室外或厂区的低压燃气管道时,应考虑因高程差而引起的燃气附加压力。
燃气的附加压力可按下式计算:附P ∆=g (ρk -ρm )·△H =9.81×(1.293-0.75)×△H 式中 附P ∆ —沿燃气流动方向管段终端及始端的标高差,计算时注意正负号(Pa );ρk — 空气的密度(kg/m 3),一般取1.293;ρm — 燃气的密度(kg/m 3),为方便计算,这里统一取0.75; △H — 燃气管道终、起点的高程差(m)。
第四章 燃气管网的水力计算燃气管网水力计算的任务是根据燃气的计算流量和允许的压力降来确定管径;在有些情况下,已知管径和压力降,求管道的通过能力。
总之,通过水力计算,来确定管道的投资和金属耗量,及保证管网工作的可靠性。
第一节 水力计算的基本公式一、摩擦阻力 1.基本公式在通常情况下的一小段时间内,燃气管道中的燃气流动可视为稳定流。
将摩擦阻力公式、连续性方程和气体状态方程组成方程组:⎪⎪⎪⎩⎪⎪⎪⎨⎧===-RTZ P const wA w d dx dP ρρρλ22(4-1) 为了对摩擦阻力公式进行积分,由连续性方程得:00Q wA ρρ=由气体状态方程得:000Z PT TZP =ρρ 代入摩擦阻力公式,在管径不变的管段中24d A π=,整理得:dx Z T TZP dQ PdP 000052028ρλπ=- (4-2)假设燃气在管道中是等温流动,则λ和T 均为常数,考虑管道压力变化不太大,Z 也可视为常数。
通过积分,得高、中压燃气管道的单位长度摩擦阻力损失为:0000520222162.1Z T TZP dQ L P P ρλ=- 4-3) 式中 P 1——燃气管道始端的绝对压力(Pa );P 2——燃气管道末端的绝对压力(Pa ); P 0——标准大气压,P 0=101325Pa ; λ——燃气管道的摩擦阻力系数;Q 0——燃气管道的计算流量(Nm 3/s ) d ——管道内径(m );ρ0——标准状态下的燃气密度(kg/Nm 3);T 0——标准状态下的绝对温度(273.15K ); T ——燃气的绝对温度(K );Z 0——标准状态下的气体压缩因子; Z ——气体压缩因子;L ——燃气管道的计算长度(m )对低压燃气管道,()()m P P P P P P P P 221212221⋅∆=+-=-式中 ()221P P P m +=为管道1、2断面压力的算术平均值,对低压管道,0P P m ≈,代入式(4-3),得低压燃气管道的单位长度摩擦阻力损失为:00052081.0Z T TZdQ L P ρλ=∆ (4-4) 若采用工程中常用单位,则高、中压燃气管道的单位长度摩擦阻力损失为:005201022211027.1T TZ dQ L P P ρλ⨯=- (4-5) 式中 Z ——气体压缩因子,当燃气压力小于1.2MPa (表压)时,Z 取1。
天然气管径和压力以及流量的计算一、引言天然气作为一种清洁、高效的能源,在人们的生活中扮演着重要的角色。
在天然气的输送过程中,管道的直径、压力和流量是关键参数。
正确计算天然气管道的管径和压力以及流量,对于保证天然气输送的安全、高效和经济具有重要意义。
二、天然气管径的计算天然气管道的管径是指管道的内径,通常用毫米(mm)作为单位。
管径的大小直接影响天然气的流量和速度。
根据天然气的流量和所需的速度,可以计算出合适的管径。
1. 确定天然气流量:天然气的流量是指单位时间内通过管道的气体体积。
常用的单位是立方米每小时(m³/h)。
根据天然气的使用需求和预测,可以确定所需的天然气流量。
2. 计算管道的速度:管道的速度是指天然气在管道中的流速。
常用的单位是米每秒(m/s)。
根据天然气流量和管道的截面积,可以计算出天然气在管道中的速度。
3. 确定合适的管径:根据天然气的速度和流量,结合天然气输送的经验公式或标准表格,可以确定合适的管径。
一般来说,管径越大,天然气的流量和速度越大;管径越小,天然气的流量和速度越小。
根据实际情况,选择合适的管径。
三、天然气压力的计算天然气管道的压力是指在管道中的气体压强。
压力的大小直接影响天然气的流动性和输送距离。
根据天然气的流量和所需的压力,可以计算出合适的管道压力。
1. 确定所需的压力:根据天然气的使用需求和预测,可以确定所需的天然气压力。
常用的单位是千帕(kPa)或巴(bar)。
2. 计算管道的阻力:管道中的气体流动会产生摩擦力,这种摩擦力称为管道的阻力。
根据天然气流量、管道的长度和管道的直径,可以计算出管道的阻力。
3. 确定合适的管道压力:根据天然气的压力需求和管道的阻力,可以确定合适的管道压力。
一般来说,管道的压力越大,天然气的流动性越好;管道的压力越小,天然气的流动性越差。
根据实际情况,选择合适的管道压力。
四、天然气流量的计算天然气的流量是指单位时间内通过管道的气体体积。
燃气管道输送水力计算适用公式燃气的管道输配起点压力为 10KPa 按《城镇燃气设计规范》,应纳入中压 燃气管道的范围。
但本设计认为,虽然成套设备的输出压力为 10KPa 出站后,压力即降至 10K Pa 以下。
整个管网系统都在10K Pa 以下的压力状态下工作,因此,在混空轻 烃管道燃气输配过程的水力计算,应采取低压水力计算公式为宜。
二、低压燃气管道水力计算公式:入=64/R e R e = dv/ 丫△ P/L = 1.13 X 1010 (Q 0/d 4) YP 0 ( T/T Q )管内燃气流动的平均速度( m/s )(摘自姜正侯教授主编的《燃气工程技术手册》一一同济大学出版社P551)1、 层流状态R e W 21002、 临界状态 R e = 2100~3500 入=0.03 +( R — 2100) / (65 R e — 1X 105)△ P/L = 1.88 X 106 [1+( 11.8 Q 0— 7X 104d Y)/ (23.0Q 0— 1X 105d 丫)]3、 25(Q/d )p0( T/T 0)紊流状态R e > 35001 )钢管 入=0.11[(△ /d )0.25+( 68/ R e )]0.25△ P/L = 6.89 X 106 [(△ /d ) 0.252 5+192.26(dY / Q 0)]0.25(Q 02/d 5) P 0(T/T 0)+ 4960( dY / Q 0)]0.2840.2842 )铸铁管 入=0.102 (1/d )△ P/L = 6.39 X 106 (1/d )+ 4960 (dy / Q Q 门 0.284 (Q7d 5)p Q (T/T Q )注:△ 管道计算长度( m )Q0――燃气流量(Nm/h )――管道内径(mmP 0――燃气密度(kg/Nm )丫 一一0C 和101.325kPa 时的燃气运动粘度(nVs ) P ――燃气管道的沿程压力降(Pa )L入一一燃气管道的摩阻系数 △――管壁内表面的绝对当量粗糙度(mm R e雷诺数燃气绝对温度( K )0——273K1993 版二、燃气的输配工况条件起点压力lOKPa 最大流速10m/s燃气密度 1.658kg/Nm3(20E 和浓度20%寸)纯轻烃燃气运动粘度 1.92 X 10-6m/s (OE和101.325kPa 时)燃气运动粘度11.1 X 10-6m/s(0E和101.325kPa 时)三、钢管阻力降的计算与查表结果管道通径①mm20253040506080100125150200250300400500600800 1000注:1、层流状态Pa/m4.7295.5034.9083.1572.2721.7570.9830.6300.3990.2830.1560.0980.0690.0410.0230.0170.0120.006查表压降Pa/m13.33625.52945.00441.94734.24337.89723.68617.29113.45311.6068.3375.8744.7373.600临界状态Pa/m20.42245.41574.14772.77373.60474.04255.34744.33235.43429.48922.08817.68014.73411.0538.8457.3705.5284.418紊流状态Pa/m139.077105.29083.82958.50844.27435.25724.61018.612设计流速m/s10101010101010101010101010最大流量Nnm/h3.398.8317.836.263.610218128344263611301766254345227065101741808728260 *因计算数据与实际数据误差过大,已无计算、列表的必要。