教师资格证说课模板——函数的奇偶性
- 格式:docx
- 大小:52.08 KB
- 文档页数:4
函数的奇偶性前言函数的奇偶性是高中数学中的一个重要概念,也是数学中的常见性质之一。
片面地来讲,它们是课程表中的某一个知识点,但是如果它被用来将不同的数学概念联系起来,比如对称、周期性、等等,则可以把它作为基础知识点,引导学生探求数学中的奇美妙世界。
本文将围绕着函数的奇偶性来进行讲解。
正文什么是函数的奇偶性一个给定的函数,如果对于任意的x,都有f(−x)=−f(x),则称该函数为一个奇函数,如果对于任意的x,都有f(−x)=f(x),则称该函数为一个偶函数。
奇偶性的性质1.若f(x)是一个奇函数,则其图像关于原点对称。
若f(x)是一个偶函数,则其图像关于y轴对称。
2.对于任意的奇函数f(x),f(0)=0。
对于任意的偶函数f(x),f(0)是正的。
3.奇函数与奇函数相加,得到一个奇函数;奇函数与偶函数相加,得到一个奇函数;偶函数与偶函数相加,得到一个偶函数。
4.奇函数与奇函数相乘,得到一个偶函数;奇函数与偶函数相乘,得到一个奇函数;偶函数与偶函数相乘,得到一个偶函数。
5.如果f(x)是一个定义域为$[0,\\infty)$上的偶函,那么f(x)可以表示为一个关于x=0的偶函数的傅里叶级数。
奇偶性的应用对称性奇函数是关于原点对称的,而偶函数则是关于y轴对称的。
根据这一性质,我们可以很容易地画出函数的图像。
例如,对于函数f(x)=x3,其中f(x)是一个奇函数,我们可以得到关于原点的对称图像:奇函数对称性1同样地,对于函数g(x)=x2,其中g(x)是一个偶函数,我们可以得到关于y轴的对称图像:偶函数对称性1这种对称性不仅存在于函数的图像中,还可以应用于方程的解决。
例如,对于二次方程ax2+bx+c=0,如果b=0,那么该方程是一个偶函数。
如果我们知道一个根x0,那么−x0也是一个根。
这种对称性使得解方程变得更加简单。
周期性对于任意函数f(x),如果存在一个正数T,使得f(x+T)=f(x)对任意的x都成立,那么我们称f(x)是有周期的,T是这个周期。
高中数学教师资格认定说课稿函数的奇偶性说课稿
教师资格认定说课稿
函数的奇偶性
尊敬的各位评委:大家好!
我说课的题目是“函数的奇偶性”,选自人教版高中数学新课程教材必修1第一章“集合与函数”第三节“函数的基本性质”。
我分四个环节向各位评委汇报:
一、教学设计理念
按照新课程教学理念,数学课不仅仅是一些数学知识的学习,更要体现知识的认识和发展过程,同时要根据教学需要,关注学生已有的知识基础和学习经验,精心设计问题情境,激发学生学习兴趣,引导学生积极探索,在探索过程中获得对数学的积极体验和应用。
二、教材分析
1、对教学内容教材的认识
函数的奇偶性是函数的重要性质,是对函数概念的深化。
教材从观察函数图象开始,通过观察得出函数图象的对称性、分析函数值表格,逐步领悟图形(函数图象)对称、点(函数图象上的点)对称、数(纵坐标)相等、式(函数式)相等之间的关系。
在建立函数奇偶性的概念之后,应用定义判断简单函数的奇偶性,讨论函数图象的对称性。
教学内容较好地渗透了数形结合的思想方法。
2、教学目标
根据课程标准要求,我确定本节课的三维教学目标:。
《函数的奇偶性》说课稿【教材地位与作用】《函数的奇偶性》是高中人教版必修一第一章第三节的内容,教材从学生熟悉的两个特殊函数入手,从特殊到一般,从具体到抽象,从感性到理性比较系统地介绍了函数的奇偶性。
【学情分析】1.高一学生在初中已经学过轴对称及中心对称图形,但主要处在感性认知阶段,理性思维片面,缺乏深刻性。
2.从学生的思维特点看,学生很难从前面所学的函数的单调性联系到图形的对称性所反映的函数的奇偶性,这对学生的思维是一个突破,所以让学生利用对图像的直观感受,在学生的主动参与中引导学生多思、多说、多练,使得对问题的认知得到深化。
3.让学生经历函数奇偶性概念建立的全过程,体验数学概念学习的方法,积累数学学习的经验,所以让学生独立去观察、动手计算、归纳猜想,使学生自主参与知识的发生、发展及形成过程。
【教学目标】1.从数与形两个角度引导学生理解奇函数、偶函数的概念。
2.学会利用定义判断奇偶性。
3.渗透数形结合和从特殊到一般的数学思想,培养学生观察、归纳、抽象的能力。
【教学重点】函数奇偶性概念的建立过程,即通过几何直观地把函数图像的对称性用代数形式来描述。
重点确定的理由:学生通过观察函数图像的对称性,产生定量刻画描述的倾向,即通过图像抽象出用解析式描述函数的奇偶性,解决重点的关键是数形结合、归纳抽象。
【教学难点】函数奇偶性概念的形成及奇偶函数定义域的对称性。
难点确定的理由:奇偶性概念中蕴含着“具有奇偶性的函数其定义域关于原点对称”,学生理解的难点是定义域关于原点对称,所以问题主要集中在:如何帮助学生理解定义域的对称性。
【教学过程】一、提出问题,启发思考问题一:在所学过的函数图像中,哪些是轴对称图形、哪些是中心对称图形?预设:二次函数的图像是轴对称图形,反比例函数的图像是中心对称图形,学生到黑板上画出函数的图像并写出解析式。
问题二:华罗庚说过:“数无形时少直觉,形少数时难入微。
”“形”上的对称在“数”上表现出了怎样的规律?要寻找规律一般怎样做?预设:从特殊到抽象,从具体到一般,先猜想再证明。
函数的奇偶性一、引入在初中数学的学习中,我们学习了许多关于函数的知识,比如函数的定义、图像、性质等。
在这些知识中,函数的奇偶性则是我们需要重点掌握和理解的知识点之一。
那么函数的奇偶性具体是什么呢?为什么要学习它呢?今天我们就来深入探讨一下这个知识点。
二、概念解释1. 奇函数和偶函数先来看一下什么是奇函数和偶函数。
定义:如果对于任意的x均有f(−x)=−f(x),则称函数f(x)为奇函数。
比如y=x3。
如果对于任意的x均有f(−x)=f(x),则称函数f(x)为偶函数。
比如y=x2。
那么,如何来判断一个函数是奇函数还是偶函数呢?可以使用函数的图像来判断。
如下图所示,左边的函数图像为奇函数,右边的函数图像为偶函数。
奇偶性图像奇偶性图像可以看出,奇函数和偶函数的函数图像都具有一定的对称性。
2. 奇偶函数的性质接下来,我们来看一下奇偶函数的性质。
性质1:奇函数的对称中心为原点(0,0)。
偶函数的对称中心为y轴。
性质2:奇函数乘偶函数为奇函数。
奇函数加偶函数为奇函数。
偶函数乘奇函数为奇函数。
偶函数加奇函数为奇函数。
性质3:奇函数的积分区间为[−a,a],积分结果为0,其中a>0。
偶函数的积分区间为[−a,a],积分结果为$2\\int_{0}^{a}f(x)\\mathrm{d}x$,其中a>0。
三、例题演练1. 判断函数的奇偶性例题1:判断函数f(x)=x3−2x的奇偶性。
解析:对于任意的x,都有 $f(-x)=(-x)^3-2\\times(-x)=-x^3+2x=-f(x)$,因此f(x)是奇函数。
2. 奇偶函数性质的应用例题2:已知函数f(x)是偶函数,且在区间[0,3]上的积分为6。
求函数g(x)=f(x+2)−2在区间[−1,2]上的积分。
解析:首先,f(x)是偶函数,即对于任意的x,有f(−x)=f(x)。
因此,g(x)=f(x+2)−2=f(−(x−2))−2=f(2−x)−2。
函数的奇偶性引入大家好,我是现代数学教师,今天我来给大家讲解《函数的奇偶性》这一话题。
让我们开始这一趟数学之旅!首先,让我们回顾一下数学中的“奇偶性”概念。
在数学中,奇偶性通常用来描述一个数或者一个函数在变量变化时的规律性。
对于数学函数,我们可以通过对函数的自变量奇偶性的变化来探索这个函数的奇偶性质。
学习目标在学习完本节课后,我们将了解以下内容:•掌握函数奇偶性的定义•能够判断一个函数的奇偶性•能够利用函数的奇偶性来简化计算函数的奇偶性定义首先,让我们来定义函数的奇偶性。
对于一个函数f(x),我们称它为: - 奇函数,当且仅当f(−x)=−f(x)对于所有x成立; - 偶函数,当且仅当f(−x)=f(x)对于所有x成立; - 既不是奇函数也不是偶函数,当存在至少一个x使得f(−x)eqf(x)且f(−x)eq−f(x)成立。
上述定义意味着,如果一个函数既不是奇函数也不是偶函数,那么我们称它为“无奇偶性”的函数。
判断函数的奇偶性现在我们已经了解了函数奇偶性的定义,接下来我们就来看看如何判断一个函数的奇偶性。
奇函数对于奇函数而言,我们起始于f(−x)=−f(x)的假设,推导至一一般情况的有效方法是:•将f(x)变为−f(−x);•利用f(−x)=−f(x)替代−f(−x);•得到结果中−f(x)=f(−x)。
通过这些步骤我们得知,如果一个函数f(x)满足f(−x)=−f(x),那么这个函数一定是奇函数。
偶函数同样的,对于偶函数而言,我们起始于f(−x)=f(x)的假设,推导至一般情况的有效方法是:•将f(x)变为f(−x);•利用f(−x)=f(x)替代f(−x);•得到结果f(x)=f(−x)。
这说明,如果一个函数f(x)满足f(−x)=f(x),那么这个函数一定是偶函数。
无奇偶性的函数当一个函数f(x)既不是奇函数也不是偶函数时,表示我们无法通过f(x)和−f(x)的关系得到关于函数的更多信息。
《函数的奇偶性》说课稿——获奖说课稿引言:函数是数学中非常重要的概念之一,我们在数学学习的过程中会经常遇到各种类型的函数。
不同种类的函数都有不同的性质,今天我将要给大家讲述的是函数的奇偶性。
一、教学目标1. 知识目标:掌握奇函数和偶函数的基本概念、性质及图像。
2. 技能目标:能通过函数的变化确定其奇偶性,并求出奇偶扩展函数。
3. 情感目标:培养学生的求知欲和思考能力,养成勇于解决问题的良好习惯。
二、教学内容1. 函数的基本概念。
2. 奇函数和偶函数的定义与性质。
3. 常见的奇偶函数及其图像。
三、教学过程1. 导入新课,激发学生的学习兴趣。
先让学生思考以下问题:如果用一种颜色区分正数和负数情况下,函数图象会有什么变化? 如图所示,请看以下函数:f(x) = x^2, g(x) = x^3, h(x) = x^4-4x^2。
当x取正数、负数时,f(x)、g(x)、h(x)的值呈现什么规律?2. 引入函数的奇偶性概念引导学生来解答思考的问题,由此,我们很自然地引出了什么是偶函数什么是奇函数。
学生能够理解并总结什么是奇函数,什么是偶函数等相关概念。
3. 探究正、负数时函数的变化规律将函数f(x)、g(x)、h(x)的x值依次取-2、-1、0、1、2,通过对比负数和正数时函数的值得出以下规律:当x取正数时,f(x)、g(x)、h(x)的值相等,即f(x) = g(x) = h(x);当x取负数时,f(x)、g(x)的值相等,而h(x)的值与两个函数值不等;即我们可以说,函数f(x) 和g(x)关于y轴对称,而h(x)没有任何对称轴,只有原点的对称性。
通过以上探究学生能够感受到奇偶性函数的性质,掌握函数的奇偶性。
4. 探究奇函数和偶函数的性质及图像接下来,我们将通过一些例子来探究奇函数和偶函数性质及图像。
首先将以下函数的图像画出:f(x) = x^3, g(x) = x^4从图像中发现,函数f(x)的图像表现了奇函数的性质,它对称于原点,当x取正数时,f(x)、g(x)的值相等,而x取负数时,f(x)、g(x)的值相等;而函数g(x)的图像表现了偶函数的性质,它对称于y轴,函数的图像无论用哪种方法旋转,都能使其与原图像一致,即不会改变原函数的形状。
函数的奇偶性说课稿尊敬的各位评委老师:大家好!我说课的课题是函数的奇偶性,下面我将从以下几个方面对我的教学设计进行分析。
一、教学内容与任务分析本节内容选自普通高中标准实验教科书A版必修第一册第一章第三节,属于数与代数领域的知识,在此之前,学生已学习了函数的概念与单调性,这为过渡到本节的学习起着铺垫作用,函数是中学数学教学中的基本概念,函数的思想方法贯穿整个高中数学课程.奇偶性是函数的一个重要性质,是学生在学习函数的概念和单调性的基础上进行学习的,学习本节课对巩固之前所学的知识,以及为后续进一步学好指数、对数、幂函数和三角函数等内容都具有很重要的意义.教材从具体到抽象,从感性到理性,从实践到理论,层次分明,循序渐进地引导学生回顾自然界和日常生活中具有对称美的事物,进入数学领域观察、归纳,同时渗透数形结合,从特殊到一般的数学思想,形成函数奇偶性概念。
所以函数奇偶性概念及其判断方法是本节的一个重点。
二、学情分析由于学生刚进入高中,虽然具有一定的分析问题和解决问题的能力,逻辑思维能力也初步形成,但由于年龄的原因,思维尽管活跃,敏捷,却缺乏冷静,深刻,因此片面,不严谨。
从学生的思维特点看,学生很难从前面所学的函数的单调性联系到函数图形的对称性所反映的函数的奇偶性,这对学生的思维是一个突破。
也就是对函数奇偶性的概念的理解及如何判定函数奇偶性是本节课的一个难点。
三、教学目标鉴于以上分析,根据普通高中数学课程标准,我确定了如下教学目标:1、首先是知识与技能目标:使学生理解奇函数、偶函数的概念,掌握判断函数奇偶性的方法;2、其次是过程与方法目标:引导学生通过观察、归纳、抽象、概括,自主建构奇函数、偶函数等概念;能运用函数奇偶性概念解决简单的问题;体验数形结合的思想方法,培养学生养成发现问题、分析问题、解决问题的能力.3、最后是情感态度与价值观目标:在函数奇偶性的学习过程中,使学生体验数学的科学价值和应用价值,培养学生善于观察、勇于探索的良好习惯和严谨的科学态度。
函数的奇偶性说课稿龙湖中学柯旭娜一、教材分析1、说课内容:函数的奇偶性2、教材的编写意图:教材从具体到抽象,从感性到理性,从实践到理论,层次分明,循序渐进地引导学生回顾自然界和日常生活中具有对称美的事物,进入数学领域观察、归纳,同时渗透数形结合,从特殊到一般的数学思想,形成函数奇偶性概念。
3、教学目标(1)、从形和数两个方面进行引导,使学生理解奇偶性的概念,回会利用定义判断简单函数的奇偶性.(2)、在奇偶性概念形成过程中,培养学生的观察,归纳能力,同时渗透数形结合和特殊到一般的数学思想方法.(3)、在学生感受数学美的同时,激发学习的兴趣,培养学生乐于求索的精神.4、教学重点函数奇偶性概念的形成与函数奇偶性的判断5、教学难点对函数奇偶性的概念的理解二、教法选择根据本节教材内容和编排特点,为了更有效地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,采用以引导发现法为主,直观演示法、设疑诱导法为辅。
教学中,教师精心设计一个又一个带有启发性和思考性的问题,创设问题情景,诱导学生思考,使学生始终处于主动探索问题的积极状态,从而培养思维能力。
三、学法指导根据学法指导自主性和差异性原则,让学生在“观察一归纳一检验一应用”的学习过程中,自主参与知识的发生、发展、形成的过程,使学生掌握知识。
四、教学过程的设计:课堂教学是学生数学知识的获得、技能技巧的形成、智力、能力的发展以及思想品德的养成的主要途径。
为了达到预期的教学目标,我对整个教学过程进行了系统地规划,设计了四个主要的教学程序是:(一)创设情境,引入课题。
(二)归纳探索,形成概念。
(三)掌握方法,适当延展。
(四)归纳小结,提高认识。
五、说课过程:(一)、创设情境,引入课题。
1、让学生感受生活中的美:对称美学生举例,出示一组图片:喜字、蝴蝶、建筑物、麦当劳的标志)(通过让学生观察教学楼导入新课,既激发了学生浓厚的学习兴趣,又为新知作好铺垫。
函数的奇偶性说课稿——获奖说课稿尊敬的评委、各位老师、亲爱的同学们:大家好!今天我要说课的内容是函数的奇偶性。
这节课将从教学内容、教学目标、教学重难点、教学方法和教学过程五个方面来展开。
一、教学内容本节课主要学习函数的奇偶性,包括奇函数和偶函数的概念、性质及其应用。
二、教学目标1.掌握奇函数和偶函数的概念和性质;2.学会判断函数的奇偶性;3.能运用函数的奇偶性解决实际问题;4.培养学生的数学思维能力和创新意识。
三、教学重难点1.教学重点:掌握奇函数和偶函数的概念和性质,学会判断函数的奇偶性。
2.教学难点:运用函数的奇偶性解决实际问题,培养学生的数学思维能力和创新意识。
四、教学方法本节课将采用以下教学方法:1.直观演示法:通过实例演示,让学生直观地了解函数的奇偶性,加深对概念的理解。
2.讨论法:组织学生分组讨论,引导学生深入思考,自主解决问题。
3.讲练结合法:通过讲解例题,让学生了解如何运用函数的奇偶性解决实际问题。
4.类比法:通过比较不同类型函数的奇偶性,总结规律,培养学生的数学思维能力和创新意识。
五、教学过程本节课将分为以下五个环节展开:1.导入新课通过展示一些具有对称性的图片,引导学生思考对称性与数学的联系,进而引出函数的奇偶性这一主题。
这样的导入旨在激发学生的学习兴趣和探究欲望。
2.学习新课(1)概念引入通过具体实例的演示,让学生初步感知函数的奇偶性。
例如,展示一些中心对称和轴对称图形的函数图像,让学生了解具有这些对称性的函数的特点。
(2)奇函数和偶函数的概念定义:对于函数f(x),如果对于任意实数x,都有f(-x)=-f(x),则称f(x)为奇函数;如果对于任意实数x,都有f(-x)=f(x),则称f(x)为偶函数。
(3)性质介绍介绍奇函数和偶函数的一些基本性质,例如:奇函数的图像关于原点对称;偶函数的图像关于y轴对称等。
通过这些性质的介绍,让学生深入理解奇偶性的本质。
(4)判断函数的奇偶性学习如何判断一个函数的奇偶性。
2024函数的奇偶性说课稿范文今天我说课的内容是《2024函数的奇偶性》,下面我将就这个内容从以下几个方面进行阐述。
一、说教材1、《2024函数的奇偶性》是高中数学必修一第二章第4节的内容。
在学生已经学习了函数及常见函数的性质和图像的基础上进行教学的,是高中数学中的重要知识点,而函数的奇偶性在解题中有着广泛的应用。
2、教学目标根据新课程标准的要求以及教材的特点,结合学生现有的认知结构,我制定以下三点教学目标:①认知目标:理解函数的奇偶性及奇偶函数的性质,掌握奇偶函数的图像特点和运算方法。
②能力目标:在函数的奇偶性分析中,培养学生推理和判断的能力,提高解决实际问题的能力。
③情感目标:通过函数的奇偶性的学习,让学生体会数学的严谨性和应用性,增强对数学的兴趣和信心。
3、教学重难点在深入研究教材的基础上,我确定了本节课的重点是:理解函数的奇偶性的概念和性质,能判断函数的奇偶性。
难点是:掌握奇偶函数的图像特点和运算方法。
二、说教法学法根据学生的特点和学习内容的要求,本节课我采用的教法:示范演示法,讨论探究法;学法是:自主学习法,合作交流法。
三、说教学准备在教学过程中,我将准备一些函数的图像和相关的习题,以直观呈现教学素材,从而更好地激发学生的学习兴趣,增大教学容量,提高教学效率。
四、说教学过程新课标指出:“教学活动是师生积极参与、交往互动、共同发展的过程”本着这个教学理念,我设计了以下教学环节。
环节一、导入新课,引发学生思考。
课堂开始时,我会给学生举个简单的例子:如果一个函数关系图像在y 轴对称,那么它有什么特点?引导学生思考函数的对称性及奇偶性的联系。
由此引入本节课的课题:函数的奇偶性。
设计意图:通过简单的例子引发学生的思考,在学生中产生一种“奇偶性与对称性有关系”的预期,为后面奇偶函数的性质及图像特点打下基础。
环节二、介绍奇偶函数的定义及性质。
在学生已有对称性概念的基础上,我将引导学生自己发现奇偶函数的定义及性质,并通过示范演示法展示一些典型的奇偶函数图像。
函数的奇偶性的说课稿一、教学目标1、知识与技能目标:理解函数奇偶性的概念。
掌握判断函数奇偶性的方法。
能利用函数奇偶性的性质解决相关问题。
2、过程与方法目标:通过观察函数图象,引导学生发现函数奇偶性的特征,培养学生的观察能力和归纳能力。
通过对函数奇偶性的定义的探究,培养学生的逻辑推理能力和抽象概括能力。
通过函数奇偶性的应用,提高学生的分析问题和解决问题的能力。
3、情感态度与价值观目标:让学生感受数学的对称美,激发学生学习数学的兴趣。
通过探究函数奇偶性的过程,培养学生勇于探索、创新的精神。
二、教学重难点1、教学重点:函数奇偶性的判断方法。
2、教学难点:函数奇偶性概念的形成过程。
利用函数奇偶性的性质解决较复杂的问题。
三、教学方法1、讲授法:讲解函数奇偶性的概念、性质和判断方法。
2、探究法:引导学生通过观察函数图象、分析函数表达式,探究函数奇偶性的特征。
3、练习法:通过课堂练习和课后作业,巩固学生对函数奇偶性的理解和应用。
四、教学过程1、导入新课展示一些函数的图象,如 y = x²,y =|x|,y = sin x 等,让学生观察这些图象的特点。
提问:这些图象有什么共同的特征?引导学生发现图象关于 y 轴对称或关于原点对称。
2、讲授新课给出函数奇偶性的定义:设函数 f(x) 的定义域为 D,如果对于定义域 D 内的任意一个 x,都有 x ∈ D,且 f(x) = f(x),则称函数 f(x) 为偶函数;如果对于定义域 D 内的任意一个 x,都有 x ∈ D,且 f(x) = f(x),则称函数 f(x) 为奇函数。
强调定义中的关键条件,如定义域的对称性、f(x) 与 f(x) 的关系等。
判断函数的奇偶性举例说明如何判断函数的奇偶性,如判断函数f(x) =x²的奇偶性。
总结判断函数奇偶性的步骤:①确定函数的定义域;②计算f(x);③比较 f(x) 与 f(x) 的关系。
函数奇偶性的性质讲解函数奇偶性的性质,如偶函数的图象关于 y 轴对称,奇函数的图象关于原点对称;偶函数在对称区间上的单调性相反,奇函数在对称区间上的单调性相同等。
函数的奇偶性说课稿-(精选五篇)第一篇:函数的奇偶性说课稿 -函数的奇偶性说课稿各位评委老师好:我今天说课的题目是《函数的奇偶性》接下来我从以下几个环节进行说课。
教材分析、学情分析、目标分析、教学目标、教学方法、教学设计、板书设计。
一.教材分析《函数奇偶性》是选自人教版中等职业教育课程改革国家规划新教材,数学基础模块上册第三章第四节的内容。
它的主要内容是函数奇偶性的概念,判断函数奇偶性的方法与步骤。
在此之前,学生已经学习了函数的概念、函数的表示方法、函数的单调性,为这一节的学习起到了铺垫作用,同时又是后面学习具体函数的基础。
《函数的奇偶性》是高中数学的一个重要内容,它不仅与现实生活中对称性密切相关联,而且是历年高考的热点,重点和必考点,它是函数概念的深化,学习函数奇偶性,能使学生再次体会数型结合思想,初步学会用数学的眼光去看待事物,感受数学的对称美。
二.学情分析认知水平与能力:高一学生具备了一定的观察、类比、分析、归纳能力,已初步具有数形结合思维能力,能在教师的引导下解决问题。
任教班级特点:这个班是医护班,学生数学基础较薄弱,上课注意力不够集中,理解能力不够强,可利用数形结合解决简单问题,但归纳转化的能力与观察讨论能力有待加强。
改进与提高:让学生利用图形直观感受;让学生“归纳、总结、运用”,重视学生的主动参与,注重信息反馈,通过引导学生多思多说多练,使认识得到深化。
三、教学目标根据对教学大纲、教材内容的分析,结合学生已有的认识能力,心理特征及知识水平,我制定教学目标如下。
知识和技能:使学生从形与数两方面理解函数奇偶性的定义,初步掌握利用函数图象和奇偶性定义判断函数奇偶性的方法。
过程与方法:通过对函数奇偶性定义的探究,渗透数形结合思想方法,培养学生的直观想象素养与数学抽象素养;提高学生的逻辑推理素养与运算素养。
情感、态度、价值观:通过知识的探究过程培养学生细心观察、认真分析、严谨论证的良好思维习惯;让学生经历从具体到抽象,从特殊到一般,从感性到理性的认知过程.重点与难点重点:函数奇偶性的概念及判断。
函数的奇偶性说课稿——获奖说课稿尊敬的评委、各位老师、亲爱的同学们:大家好!今天我要说课的内容是函数的奇偶性。
这节课将从教材分析、教学目标、教学方法、教学过程和教学反思五个方面来展开。
一、教材分析本节课主要学习函数的奇偶性,它是函数的重要性质之一。
通过学习函数的奇偶性,可以更好地理解函数的图像和性质,为后续学习打下基础。
二、教学目标1.理解函数奇偶性的概念,掌握判断函数奇偶性的方法。
2.会利用函数奇偶性解决实际问题,感受数学的应用价值。
3.培养观察、分析和归纳的能力,提高数学素养。
三、教学方法本节课将采用以下教学方法:1.讲授法:通过教师讲解,使学生掌握函数奇偶性的基本概念和判断方法。
2.案例分析法:通过典型案例的分析和解决,提高学生解决实际问题的能力。
3.多媒体辅助教学法:利用多媒体手段,直观展示函数的奇偶性图像和性质。
4.合作探究法:组织学生进行小组讨论和合作探究,共同发现和解决学习中遇到的问题。
四、教学过程1.导入新课(5分钟)通过展示一些具有对称性的自然景观和几何图形,引出函数奇偶性的概念。
同时,回顾初中阶段学习的轴对称和中心对称知识,为后续学习做好铺垫。
2.学习新课(30分钟)(1)函数奇偶性的概念及判断方法介绍函数奇偶性的定义,即对于函数f(x),如果对于任意x∈D,都有f(-x)=f(x)(对称),则称f(x)为偶函数;如果对于任意x∈D,都有f(-x)=-f(x)(反对称),则称f(x)为奇函数。
同时,展示判断函数奇偶性的方法:一看定义域是否关于原点对称;二看f(-x)与f(x)的关系。
通过例题演示,让学生掌握如何判断一个函数的奇偶性。
(2)奇偶函数图像和性质展示一些常见函数的奇偶性图像和性质,如一次函数、二次函数、反比例函数等,让学生直观感受不同函数的奇偶性及其特点。
引导学生观察图像,自主发现和总结函数奇偶性的性质。
通过讨论和交流,进一步加深学生对奇偶性的理解。
(3)奇偶函数的应用通过一些实际问题的解决,让学生感受到奇偶性在生活和工作中的广泛应用。
函数的奇偶性尊敬的评委、各位老师、亲爱的同学们:大家好!今天我要说课的内容是《函数的奇偶性》。
在这堂课中,我们将一起探讨函数的奇偶性这一重要概念。
一、教学目标1.理解奇函数和偶函数的概念,掌握判断函数奇偶性的方法;2.会根据函数的奇偶性对函数进行分类;3.培养学生观察、分析、归纳和解决问题的能力。
二、教学内容与过程1.导入新课我们通过观察一些生活中的实例,如车轮、时钟等,可以发现这些物体的形状具有对称性。
那么,这种对称性在数学中是否也有对应的概念呢?答案是肯定的。
今天我们将一起探讨函数的奇偶性这一数学概念。
2.概念引入首先,我们来看一下函数的概念。
函数是一种关系,它将一个数集中的每一个元素映射到另一个数集中唯一确定的值。
为了更好地理解函数的概念,我们可以从以下几个方面进行探讨:(1)函数的定义域和值域定义域是指输入的数的范围,而值域是指输出的数的范围。
在函数的定义域中,每一个数都唯一对应着值域中的一个数。
(2)函数的对应关系函数的对应关系是函数的核心。
它描述了如何将输入转化为输出。
在定义域中,每一个数都对应着值域中唯一确定的一个数。
现在,我们来看一个函数的基本性质:奇偶性。
如果一个函数f(x)对于定义域内的任意x,都有f(-x)=f(x),那么这个函数就是偶函数;如果对于定义域内的任意x,都有f(-x)=-f(x),那么这个函数就是奇函数。
现在我们知道了如何判断一个函数的奇偶性,接下来我们来探讨奇偶性在数学中的应用。
3.奇偶性的应用(1)简化计算利用函数的奇偶性,我们可以简化一些复杂的计算。
例如,对于一个偶函数,它的图像是关于y轴对称的,因此我们只需要计算一半区域内的值就可以得到整个区域的值。
(2)对称性的应用函数的奇偶性反映了函数的对称性。
例如,我们可以利用函数的奇偶性来判断一个函数的图像是否具有对称性。
对于一个奇函数,它的图像是关于原点对称的;对于一个偶函数,它的图像是关于y轴对称的。
(3)化归思想的应用化归思想是一种非常重要的数学思想方法,它将复杂的问题转化为简单的问题进行处理。
教师资格证说课——函数的奇偶性(共五则)第一篇:教师资格证说课——函数的奇偶性函数的奇偶性——说课稿尊敬的各位评委、老师们:大家好!今天我说课的课题是高中数学人教A版必修一第一章第三节“函数的基本性质中”的“函数的奇偶性”。
下面我将从教材分析,教法、学法分析,教学过程,教辅手段,板书设计等方面对本课时的教学设计进行说明。
一、教材分析1、教材特点、教材的地位与特点“奇偶性”是人教A版第一章“集合与函数概念”的第3节“函数的基本性质”中的第2小节。
奇偶性市函数的一条重要性质,教材从学生熟悉的f(x)=x和f(x)=1及f(x)=x2和xf(x)=x入手,从特殊到一般,从具体到抽象,注重信息系统的应用,比较系统的介绍的函数的奇偶性。
从知识结构看它既是函数概念的拓展和深化,又是后续研究指数函数、对数函数、幂函数、三角函数的基础。
因此,本节课起着承上启下的重要作用。
2、教学重难点(1)本课时的教学重点是:函数的奇偶性及其几何意义。
虽然“函数奇偶性”这一节知识点并不是很难理解,但知识点掌握不全面的学生容易出现下面的错误。
他们往往流于表面形式,只根据奇偶性的定义检验f(x)=f(-x)或f(-x)=-f(x)成立即可,而忽视了考虑函数定义域的问题。
因此,在介绍奇、偶函数的定义时,一定要揭示定义的隐含条件,从正反两方面讲清定义的内涵和外延。
因此,我把“函数的奇偶性概念”设计为本节课的重点。
在这个问题上我除了注意概念的讲解,还特意安排了一道例题,来加强本节课重点问题的讲解。
(2)本课时的教学难点是:判断函数奇偶性的方法及格式。
3、教学目标基于以上对教材和学生的分析,以及新课标理念,我设计了这样的教学目标:【知识与技能】(1)能奇偶性的概念,初步掌握判断函数奇偶性的方法。
(2)能运用函数奇偶性的代数特征和几何意义解决一些简单的问题。
【过程与方法】经历奇偶性概念的形成过程,提高观察抽象能力以及从特殊到一般的归纳概括能力。
函数奇偶性说课稿在数学中,函数的奇偶性是一个重要的概念,它描述了函数图像的对称性。
在本次说课中,我们将详细探讨函数奇偶性的定义、性质以及如何判断一个函数是奇函数还是偶函数。
首先,我们定义什么是奇函数和偶函数。
如果一个函数\( f(x) \)满足\( f(-x) = -f(x) \),那么我们称\( f(x) \)为奇函数。
相反,如果\( f(-x) = f(x) \),则称\( f(x) \)为偶函数。
这些定义反映了函数图像在y轴两侧的对称性。
奇函数的图像关于原点对称,而偶函数的图像关于y轴对称。
接下来,我们探讨函数奇偶性的性质。
对于奇函数,其图像在原点处的值总是0,即\( f(0) = 0 \)。
这是因为将\( x \)替换为0,我们得到\( f(0) = -f(0) \),唯一满足这个等式的是\( f(0) = 0 \)。
对于偶函数,其图像在y轴上是对称的,这意味着对于任意的\( x \)值,函数值在\( x \)和\( -x \)处是相同的。
为了判断一个函数是奇函数还是偶函数,我们可以通过检查函数的定义域和函数值的对称性来进行。
首先,确保函数的定义域是关于原点对称的,即如果\( x \)在定义域内,那么\( -x \)也应该在定义域内。
然后,通过代入\( -x \)并比较\( f(-x) \)和\( -f(x) \)或\( f(x) \)的值来确定函数的奇偶性。
此外,我们还可以通过函数的图像来直观地判断其奇偶性。
奇函数的图像会穿过原点,并且关于原点对称;而偶函数的图像会关于y轴对称。
在实际应用中,函数的奇偶性对于解决数学问题和理解函数的行为至关重要。
例如,在物理学中,描述力和位移关系的函数往往是奇函数,因为力和位移是相反的量。
在工程学中,偶函数的性质可以用来简化问题,因为它们在y轴两侧的行为是相同的。
总结来说,函数的奇偶性是数学中一个基础而重要的概念,它不仅帮助我们理解函数的对称性,而且在解决实际问题时提供了重要的工具。
函数的奇偶性——说课稿
尊敬的各位评委、老师们:
大家好!今天我说课的课题是高中数学人教A 版必修一第一章第三节“函数的基本性质中”的“函数的奇偶性”。
下面我将从教材分析,教法、学法分析,教学过程,教辅手段,板书设计等方面对本课时的教学设计进行说明。
一、教材分析
1、教材特点、教材的地位与特点
“奇偶性”是人教A 版第一章“集合与函数概念”的第3节“函数的基本性质”中的第2小节。
奇偶性市函数的一条重要性质,教材从学生熟悉的()x x f =和()x x f 1=及()2x x f =和()x x f =入手,从特殊到一般,从具体到抽象,注重信息系统的应用,比较系统的介绍的函数的奇偶性。
从知识结构看它既是函数概念的拓展和深化,又是后续研究指数函数、对数函数、幂函数、三角函数的基础。
因此,本节课起着承上启下的重要作用。
2、教学重难点
(1)本课时的教学重点是:函数的奇偶性及其几何意义。
虽然“函数奇偶性”这一节知识点并不是很难理解,但知识点掌握不全面的学生容易出现下面的错误。
他们往往流于表面形式,只根据奇偶性的定义检验()()x f x f -=或()()x f x f -=-成立即可,而忽视了考虑函数定义域的问题。
因此,在介绍奇、偶函数的定义时,一定要揭示定义的隐含条件,从正反两方面讲清定义的内涵和外延。
因此,我把“函数的奇偶性概念”设计为本节课的重点。
在这个问题上我除了注意概念的讲解,还特意安排了一道例题,来加强本节课重点问题的讲解。
(2)本课时的教学难点是:判断函数奇偶性的方法及格式。
3、教学目标
基于以上对教材和学生的分析,以及新课标理念,我设计了这样的教学目标:
【知识与技能】
(1)能奇偶性的概念,初步掌握判断函数奇偶性的方法。
(2)能运用函数奇偶性的代数特征和几何意义解决一些简单的问题。
【过程与方法】
经历奇偶性概念的形成过程,提高观察抽象能力以及从特殊到一般的归纳概括能力。
【情感、态度与价值观】
通过自主探索,体会数形结合的思想,培养学生善于观察、勇于探索的良好习惯。
二、教法与学法分析
1、教法
根据本节教材内容和编排特点,为了更有效地突出重点,突破难点,按照学生的认知规律,遵循教师为主导,学生为主体,训练为主线的指导思想,采用以引导发现法为主,直观演示法、类比法为辅。
教学中,精心设计一个又一个带有启发性和思考性的问题,创设问题情景,诱导学生思考,使学生始终处于主动探索问题的积极状态,从而培养思维能力。
2、学法
让学生在“观察一归纳一检验一应用”的学习过程中,自主参与知识的发生、发展、形成的过程,从而使学生掌握知识。
三、教学过程
为了达到具体的教学目标,我对整个教学过程进行了系统的规划,设计了主要的五个教学程序:设疑导入、观图激趣;指导观察、形成概念;学生探索、领会定义;知识应用,巩固提高;归纳小结,分层训练。
(一)设疑导入、观图激趣
由于本节内容相对独立,专题性较强,所以我采用了“开门见山”导入方式,直接点明要学的内容,使学生的思维迅速定向,达到开始就明确目标突出重点的效果。
用多媒体展示一组图片,使学生感受到生活中的对称美。
再让学生观察几个特殊函数图象。
通()x
x f 1=过让学生观察图片导入新课,既激发了学生浓厚的学习兴趣,又为学习新知识作好铺垫。
(二)指导观察、形成概念
在这一环节中共设计了2个探究活动。
探究1 、2 数学中对称的形式也很多,这节课我们就以函数2)(x x f =和()x x f -=2以及()x x f =和为例展开探究。
这个探究主要是通过学生的自主探究来实现的,由于有图片的铺垫,绝大多数学生很快就说出函数图象关于Y 轴(原点)对称。
接着学生填表,从数值角度研究图象的这种特征,体现在自变量与函数值之间有何规律? 引导学生先把它们具体化,
再用数学符号表示。
借助课件演示(令11
-==x x , 比较()1f 和()1-f 得出等式 , 令22-==x x , 得到()2f =()2-f ) 让学生发现两个函数的对称性反应到函数值上具有的特性, ()()x f x f -=或()()x f x f -=-然后通过解析式给出严格证明,进一步说明这个特性对定义域内任意一个 都成立。
最后给出偶函数(奇函数)定义(板书)。
在这个过程中,学生把对图形规律的感性认识,转化成数量的规律性,从而上升到了理性认识,切实经历了一次从特殊归纳出一般的过程体验。
(三) 学生探索、领会定义
探究3 下列函数图象具有奇偶性吗?
设计意图:深化对奇偶性概念的理解。
强调:函数具有奇偶性的前提条件是——定义域关于原点对称。
(突破了本节课的难点)
(四)知识应用,巩固提高
在这一环节我设计了4道题
例1判断下列函数的奇偶性
(1)()4x x f = (2)()5x x f = (3)()x x x f 1+= (4)()21x x f =
选例1的第(1)及(3)小题板书来示范解题步骤,其他小题让学生在下面完成。
例1设计意图是归纳出判断奇偶性的步骤:
(1) 先求定义域,看是否关于原点对称;
(2) 再判断 ()()x f x f -=还是()()x f x f -=-。
例2 判断下列函数的奇偶性:
()x x x f +=2
例3 判断下列函数的奇偶性:
()0=x f
例2、3设计意图是探究一个函数奇偶性的可能情况有几种类型?
例4(1)判断函数()x x x f +=3的奇偶性。
(2)如果给出函数图象的一部分,你能根据函数的奇偶性画出它在y 轴左边的图象吗?
例4设计意图加强函数奇偶性的几何意义的应用。
在这个过程中,我重点关注了学生的推理过程的表述。
通过这些问题的解决,学生对函数的奇偶性认识、理解和应用都能提升很大一个高度,达到当堂消化吸收的效果。
(五)归纳小结,分层训练
(1)课程总结
在以上课堂实录中充分展示了教法、学法中的互动模式,“问题”贯穿于探究过程的始终,切实体现了启发式、问题式教学法的特色。
在本节课的最后对知识点进行了简单回顾,并引导学生总结出本节课应积累的解题经验。
知识在于积累,而学习数学更在于知识的应用经验的积累。
所以提高知识的应用能力、增强错误的预见能力是提高数学综合能力的很重要的策略。
(2)分层训练
必做题:课本第36页练习第1-2题。
选做题:课本第39页习题1.3A 组第6题。
思考题:课本第39页习题1.3B 组第3题。
设计意图:面向全体学生,注重个人差异,加强作业的针对性,对学生进行分层作业,既使学生掌握基础知识,又使学有余力的学生有所提高,进一步达到不同的人在数学上得到不同的发展。
四、板书设计
为了简洁明了的给出本节课的知识点及讲解,我将黑板版面分为四部分:第一部分是本节课的主要知识点:函数的奇偶性定义;
第二部分用来演练例题;
第三部分用来学生黑板演练习题;
第四部分用来进行课堂总结及布置作业。
以上就是我说课的全部内容,谢谢各位评委老师!
说课完毕。