浇注系统与冷却系统
- 格式:pptx
- 大小:1.93 MB
- 文档页数:40
第1章Moldflow简介1.1Moldflow产生的背景任何产品都是随着生产或生活的需要而产生的,Moldflow软件也不例外。
随着塑料工业的快速发展,塑料制品的结构越来越复杂,功能也越来越强,其成型方法有注射成型、挤出成型、吹塑成型等。
伴随而来的问题是塑料件的设计及其成型生产难度越来越大。
传统的塑料件生产中,对设计人员和一线工人的经验要求较高,当然这也是有其原因的。
如果经验不足,则可能产生较多的缺陷或废品。
应该指出,传统经验在模具设计中仍占有一定的位置。
但是,经验法的缺点也是很明显的,主要体现在:劳动强度偏大;周期长;产品的质量稳定性差。
为了解决这些问题,人们从多方面进行了探索。
基本想法是希望拿到产品的图纸或样品后,先对生产工艺和成型模具进行初步设计,然后利用仿真手段对产品成型的各工序半成品以及最终成品的生产效果(包括可否成型、质量如何、缺陷产生的类型与可能发生的位置等)进行预测。
如果模拟结果中,出现了以上这些问题,则能及时调整工艺参数的量值及模具的结构,重启仿真程序,重新考察模拟结果,直到得到满意答案为止。
仿真是一种重要的科学研究方法,有人称它是人们认识世界和改造世界的第三种方法。
尽管对这一论断仍有争议,但由于其便捷、低成本、高效等,故在理论分析和实验研究中占有重要的地位。
仿真方法多种多样,其中,借助计算机在有限单元理论的基础上,编制仿真程序或者应用软件,对分析对象进行仿真,是一种便捷且行之有效的仿真方法。
Moldflow就是一套针对上述塑料件生产中的常见问题进行仿真分析的软件。
它主要是以塑料件成型过程为对象,以塑料流动理论、有限单元和数值模拟等理论为支撑,以计算机为运行载体的仿真软件。
它可以以便捷高效的方式对塑料成型过程进行模拟,模拟的结果可为生产实践提供参考。
1.2Moldflow软件简介Moldflow软件是美国Moldflow公司开发的用于塑料注射成型分析的软件,在注射成型分析领域中享有很好的声誉,并且拥有大量的用户。
注塑制品的翘曲变形分析一、引言翘曲变形是指注塑制品的形状偏离了模具型腔的形状,它是塑料制品常见的缺陷之一。
随着塑料工业的发展,人们对塑料制品的外观和使用性能要求越来越高,翘曲变形程度作为评定产品质量的重要指标之一也越来越多地受到模具设计者的关注与重视。
模具设计者希望在设计阶段预测出塑料件可能产生翘曲的原因,以便加以优化设计,从而提高注塑生产的效率和质量,缩短模具设计周期,降低成本。
本文主要对在注塑模具设计过程中影响注塑制品翘曲变形的因素加以分析。
二、模具的结构对注塑制品翘曲变形的影响在模具设计方面,影响塑件变形的因素主要有浇注系统、冷却系统与顶出系统等。
1.浇注系统的设计注塑模具浇口的位置、形式和浇口的数量将影响塑料在模具型腔内的填充状态,从而导致塑件产生变形。
流动距离越长,由冻结层与中心流动层之间流动和补缩引起的内应力越大;反之,流动距离越短,从浇口到制件流动末端的流动时间越短,充模时冻结层厚度减薄,内应力降低,翘曲变形也会因此大为减少。
图1为大型平板形塑件,如果只使用一个中心浇口(如图1a所示)或一个侧浇口(如图1b所示),因直径方向上的收缩率大于圆周方向上的收缩率,成型后的塑件会产生扭曲变形;若改用多个点浇口(如图1c所示)或薄膜型浇口(如图1d所示),则可有效地防止翘曲变形。
a) 中心浇口b) 侧浇口c)多点浇口d) 薄膜型浇口当采用点浇进行成型时,同样由于塑料收缩的异向性,浇口的位置、数量都对塑件的变形程度有很大的影响。
图2为一箱形制件在不同浇口数目与分布下的试验图。
a)直浇口b)10个点浇口c)8个点浇口d)4个点浇口e) 6个点浇口f) 4个点浇口由于采用的是30%玻璃纤维增强PA6,而得到的是重量为4.95kg的大型注塑件,因此沿四周壁流动方向上设有许多加强肋,这样,对各个浇口都能获得充分的平衡。
实验结果表明,按图f设置浇口具有较好的效果。
但并非浇口数目越多越好。
实验证明,按图c设计的浇口比图a的直浇口还差。
名词解释脱模斜度:为了保证压铸件能够从压铸模具中顺利脱出,在压铸件沿脱出方向的所有内表面都要有一定的斜度,该斜度称为脱模斜度。
压射力:使金属液克服各种阻力,保证金属液达到一定的速度的压力。
充填速度:金属液通过内浇口的速度。
持压时间:持压时间是金属液充满型腔至内浇口完全凝固,压射系统继续保持压力的时间。
模具预热温度:压铸生产开始前,对压铸模具进行预热的温度。
分型面:-压铸机中可以分离部分的相互接触表面。
型腔:定模和动模合拢后,构成一个压铸件形状的空腔。
浇注系统:熔融金属由压铸机压室进入压铸模成型部分的通道,与成型部分和压室连接,由直浇道,横浇道和内浇口等组成。
排溢系统:是排除压室、浇道和型腔中气体的通道。
一般包括排气槽和溢流槽。
推出机构:将压铸件或浇注预料从模具上脱出的机构,包括推出和复位零件。
侧抽芯机构:当压铸件侧面有侧凹或侧凸结构时,能从侧面完成活动型芯抽出及插入动作的机构。
填空题薄壁压铸件的致密性好,可相对提高强度和耐磨度。
压铸件壁厚增加,金属料消耗和成本也随之增加,故在保证压铸件有足够强度和刚度的前提下,应尽量减少压铸件的壁厚,并使各截面壁厚均匀。
压射力分压射压力和增压压力。
不合适的模具温度会导致压铸件尺寸不稳定,并可能产生粘模、充填不足等缺陷。
冷压室压铸机的压射过程从冲头开始移动至型腔充满直至增压结束为止。
热压室压铸机的压铸过程从压射冲头开始移动至型腔充满保压结束。
压射速度分为压射速度和充填速度。
压射速度又称冲头速度。
充填速度又称内浇口速度。
压铸温度包括金属液的浇铸温度和压铸模具温度。
冷压室压铸时间分为填充时间,建压时间,持压时间和留模时间。
热压室压铸时间分为填充时间,保压时间和留模时间。
根据压铸机压室受热条件的不同,一般将压铸机分为冷压室压铸机和热压室压铸机两大类。
冷压室压铸机按压室和模具放置的位置和方向不同分为卧式,立式,全立式三大类。
压铸机的结构主要由开合模机构,压射机构,压力系统,控制系统四部分组成。
浇注系统1浇注系统浇注系统的构成: 浇注系统的构成如下图所⽰, 有主流道、分流道、浇⼝及冷料井组成。
从注射机喷嘴⾄模具模⽳的熔融塑料路径称之为流道,其中,浇⼝套内塑料流动称之为主流道,其余部分称之为分流道。
分流道末端通向模⽳的节流孔称之为浇⼝,在不通向模⽳的分流道的末端设置冷料井。
⼀、主浇道的设计⽅式:主流道的形状⼀般为圆形。
(1) 、垂直式主浇道及其设计参数:D-d =0.5~1.0 (mm) R>rα=1~3°(2) 、倾斜式主浇道a. 单倾斜式主浇道的设计参数主流道分流道冷料井浇⼝a的取值主要与塑料性能有关a=30°(对于PE.PP.PA)a=20°(对于PS.SAN.ABS.PC.POM.PMMA)b.双倾斜式主浇道的设计参数R的值由所选射出成型机决定a最⼤可取15°注:表中的注塑量指注塑机⼀次的注射量,d为主流道⼊⼝直径, D为主流道出⼝直径。
⼆、分浇道的设计⽅式:确定分流道尺⼨应考虑如下因素●制品的体积和壁厚●主流道⾄浇⼝的距离●流道的冷却⽅法●成型树脂的流动性●便于采⽤⾃动切除浇⼝装置●分流道的截⾯厚度要⼤于制品的壁厚●分流道的长度要尽量短, 不能短时, 其截⾯尺⼨应相应长度增⼤●对于含有玻璃纤维等流动性较差的树脂, 流道截⾯要⼤⼀些●流道⽅向改变的拐⾓处, 应适当设置冷料井(1)、成品布置⽅式(按浇道的形状分)a、―H‖形分布‖b、―I‖形分布:Cd、―O‖形分布:(3)B=1.25D Smax—制品最⼤壁厚常⽤塑料推荐的分流道直径:分流道直径还可以按以下公式计算:D =式中: D ――分流道直径mm;W ――制品塑料的质量,g; L ――流道长度,mm; 分流道直径还可以按图查取:分流道直径图表G – 制品质量,g; S – 制品⾁厚,mm; D –分流道参考直径 ,mm; (4) 各种截⾯形式的优缺点⽐较 a 、圆形截⾯流道:优点: 表⾯积与体积之⽐最⼩,压⼒损失及温度损失⼩,有利于塑料的流动及压⼒传递缺点: 必须在公母模上各分⼀半,给模具加⼯带来⼀定困难b、―U‖形截⾯流道:优点: 其截⾯形式接近圆形截⾯,同时只需在模具的⼀⾯加⼯缺点: 与圆形截⾯相⽐,热损失较⼤,流道废料多c.梯形截⾯流道优点: 便于流道的加⼯及⼑具选择缺点: 热量损失较⼤三、浇⼝的设计⽅式:(1)、各种浇⼝的优缺点⽐较(2)、各种浇⼝的设计参数值及其适⽤场合(3)、浇⼝位置的选择应注意的事项b.浇⼝应设在制品的最⼤壁厚处,使塑料从厚壁流向薄壁,并保持浇⼝⾄型腔处处的流程基本⼀致c.防⽌浇⼝产⽣喷射尔在充填过程中产⽣蛇形流d.浇⼝位置应设在制品的主要受⼒⽅向上,因为塑料的流动⽅向上所承受的拉应⼒和压应⼒最⾼.特别是带填料的增强塑料e.选择浇⼝位置时应考虑制品的尺⼨要求,因为塑料经浇⼝充填型腔时在塑料的流动⽅向与垂直于流动⽅向上的收缩不尽相同,所以应考虑到变形和收缩的⽅向性对于窄长成品,浇⼝位置常设在其长度2/3的位置对于有肋的制品,浇⼝应与肋的⽅向⼀致,且不能正对肋,要错开四、排⽓槽的设计⽅式:(2)在公模仁中割出对插形式的排⽓⼊⼦(3)将深肋或圆柱割成⼊⼦,以便排⽓五、热流道系统设计:选择冷流道与热流道系统的原则在冷﹑热流道系统的选择上, 应根据成型制品的⽣产总量, 成型树脂的特性, 制品的形状, 模具制造与维护费⽤等各个⽅⾯综合考虑,然后确定那种⽅式. ⼀般情况下, ⾸先考虑采⽤冷流道系统能否成型. 冷流道系统能否成型的条件如下:●成型制品是否在冷流道系统允许的成型树脂流动的距离范围之内●对成型后影响的程度如何●所产⽣的熔接痕影响制品的使⽤强度否,预定注塑⾯的开启⾏程和能否满⾜模具所需开启距离的要求若采⽤冷流道系统⽆法满⾜上述条件, 则考虑采⽤热流道系统, 对于冷﹑热流道系统都能满⾜成型要求时, 则需对⽐如下项⽬, 从经济⾓度确定采⽤那种⽅式●缩短成型周期产⽣的经济效益●节约树脂产⽣的经济效益●机械⼿取冷流道系统增加的模具制造与维护费⽤3.1.4 采⽤热流[道系统需考虑的事项●选择匹配成型⽬的系统●设计⽆树脂滞留, 流动通畅的集流腔歧系统●采取矫正;在热膨胀产⽣⼝错位的措施.●防⽌树脂泄漏的措施●吸收集流腔加热板膨胀量与应⼒处理的措施●采⽤阀式结构浇⼝时应桷保阀杆运动灵活且⽆树脂泄漏外加热⽅式的优点●流道内树脂可均匀加热●容易更换树脂, 容易抱⾊外加热⽅式的缺点●热损失⼤●热流道板的温度⾼, 需采取针对膨胀的对策●热浇⼝套采⽤处热⽅式时, 需要有加热器安装空间, 并会造成浇⼝端部温度不⾜的情况内加热⽅式的优点●热损失⼩●热流道板的温度低, ⼀般不需要采取热膨胀对策●浇⼝附近的温度容易控制内加热⽅式的缺点是●树脂流道壁⾯和加热器外表⾯的温度差⼤●树脂流路截⾯积不易过⼤, 树脂流道阻⼒较⼤●流道壁⾯容易产⽣固化层, 更换树脂及换⾊较困难●成型树脂必须清洁⽆杂物●浇⼝套的内加热装置需经常更换热流道板采⽤管状加热,器进⾏外热时应考虑如下事项●管状加热器与热流道配合孔的配合暗隙应⼩于0.2mm●应使⽤多个功率加热器做到热流道板整体温均衡, 不能造成局部过热●结构上要便于加热器更换●热流道板的加热器安装孔内不能存留油●需设置加热器电压控制装置●热电偶要设在热,扣失⼩的部位, 量接近流道六、主浇道的拉料形式:F>A*P式中: F――注塑机的锁模⼒,KN;A――包括流道在内的塑料总投影⾯积,C㎡P ――模⽳中塑料平均压⼒,Mpa;常⽤塑料模⽳中的平均压⼒/Mpa:注射周期为每两次闭模之间的时间间隔,其中包括:充模时间: Ti升压及保压时间: Tn冷却时间: Tc开闭模及取件时间: TrT = Ti + Tn +Tc + Tr (S)(1)、充模时间依塑件⼤⼩、塑件种类、每次注射量⽽异。
铸造的专业概念铸造是一种将熔融金属或其他材料倾注入模具中,使其冷却凝固并形成所需形状和结构的加工工艺。
它是实现金属零件制造的重要方法之一,应用广泛于汽车、机械、航空航天、电子等各个领域。
铸造的专业概念主要包括铸造工艺、材料和设备。
首先,铸造工艺是指将原料熔融并注入模具中,使其冷却凝固形成所需的零件或产品的加工过程。
铸造工艺根据原料的不同可以分为金属铸造和非金属铸造。
金属铸造是指采用金属作为原料的铸造工艺,主要包括砂型铸造、金属型铸造、低压铸造、压力铸造等。
非金属铸造是指采用非金属材料如塑料、陶瓷等作为原料的铸造工艺,如塑料铸造、陶瓷铸造等。
不同的铸造工艺有不同的特点和应用范围,可以满足不同行业和领域对零件和产品的需求。
其次,铸造材料是指在铸造过程中使用的原料,主要包括金属和非金属材料。
金属铸造的原料主要是各种金属合金,如铁、铝、镁、铜、锌等,这些金属合金的选择要根据零件的要求和应用环境来确定。
非金属铸造的原料主要是塑料和陶瓷,这些材料在铸造过程中可以通过加热软化或者通过化学反应使其凝固成型。
铸造材料的选择要考虑材料的熔点、熔化热、机械性能等因素,以确保铸件的质量和性能。
最后,铸造设备是指用于实现铸造工艺的各种设备和机器。
铸造设备包括熔炉、型芯设备、浇注系统、冷却系统等。
熔炉是将原料加热到熔化温度的设备,常见的有电阻炉、电弧炉、渣吹炉等。
型芯设备是用于制造铸型中内部空腔的设备,常见的有造型机、芯盒、芯棒等。
浇注系统是用于将熔融金属倾注到模型中的系统,包括浇注罐、浇杯、喷枪等。
冷却系统是用于冷却和固化铸件的设备,常见的有水冷却系统、气冷却系统等。
不同的铸造设备可以根据工艺的不同和生产需求进行选择和配置。
总的来说,铸造是一门复杂而又重要的工艺学科,涉及到铸造工艺、材料和设备等多个方面。
了解和掌握铸造的专业概念对于提高铸造质量和效率具有重要意义,并对于相关行业和领域的发展产生积极影响。
模具六大系統模具六大系统1﹕支撑系统在成型较大制品时﹐由于两模脚之间的跨度较大﹐在较高的注射压力下﹐公模板可能会发生弯曲变形﹐从而造成成型缺陷﹐为解决这一问题﹐就需增加支撑的东西﹐常见的有﹕A.模脚B.支撑柱(SP)2﹕成型系统用于成型﹐常见的有﹕A﹑公﹑母模仁 B﹑滑块 C﹑斜销 D﹑入子3﹕导向系统为便顶出平衡﹐合模顺畅﹐通常使用一些导向定位的东西.常见的有﹕1.导柱(导向公﹑母模板)2.顶板导柱(导向顶出板)3.定位块4.RP4﹕顶出系统A.顶出销B.顶出块C.套筒D.剥料板E.气体顶出5﹕浇注系统注塑机喷嘴中熔融的塑料﹐经过主流道﹑分流道﹐最后通过浇口进入模具型腔﹐然后经过冷却固化﹐得到所需成品。
因此浇注系统主要包括以下三项﹕A.主流道B.分流道C.浇口6﹕温控系统热塑性塑料和部分热固性塑料注塑成型的过程﹐是将温度较高的熔塑料﹐通过高压注射进入温度较低的模具中﹐经过冷却固化﹐从而得到所需要的制品。
首先﹐从生产效率的角度来看﹐成型周期是成型过程中一个重要的环节﹐成型周期中50%~~60%的时间用来对制品的冷却﹐因此﹐冷却时间长短的重要性不言而喻。
同时﹐制品应保证最好的尺寸稳定性﹐最小的变形量﹐最高的强度和韧性﹐最完美的外观﹐如何控制模具温度﹐使型腔和型芯保持在与被成型制质量量相适应的规定的温度范围之内﹐最大限度地消除絷应力﹐改善塑料的物理性能﹐得到高质量的制品﹐是模具冷却系统设计中的另一个重要环节。
模具冷却系统包括﹕冷却水温﹐模具温度控制器以及加热组件等。
它们工作的目地不仅仅是为使模具得到冷却﹐而且是要把在成型过程中﹐由于熔融塑料带给模具的高温不断地散发掉﹐使模具保持一恒定的温度﹐以便控制型腔塑料的冷却速度﹐从而提高制品的注塑性能和生产效率。
模具设计结构技巧公差隐含的成本要素注射成型制品不可能具有机械加工制品一样的。
虽然大多数人都意识到这一点,但还是常常被指定到无法达到的,或使具成本效益的生产变得不可能。
模具基本结构及分类:一、基本结构,根据部分起作用不同分类:〈一〉浇注系统将塑料由注射机喷嘴引向型腔的通道称浇注系统,其由主流道,分流道,内浇口,冷料穴等结构组成,由零件的浇注套,拉料杆等组成.〈二〉成型零件是直接构成塑料件形状及尺寸的各种零件,由型芯成型塑件内部形状,型腔成型塑料外部形状,成型杆,镶块等构成.〈三〉结构零件构成零件结构的各种零件,在模具中起安装,导向,机构动作及调温等作用.导向零件:导柱,导套.装配零件:定位隙,定模底板,定模板,动模板,动模垫板,模脚冷却加热系统主流道浇注系统内浇口分流道冷料穴注射型芯模成型零件型腔成型杆镶块导柱导向零件导套结构零件装配固定零件定位隙,定模底板,定模板,动模板,动模垫板,模脚冷却加热系统根据其运动特点均可分为两大部分:定模部分:一部份留于模具机座的定模板上,动模部分:随注射机动模板运动的部分定模部分与动模部分闭合则可形成型腔与浇注系统二、模具的分类〈一〉按注射机类型分:立式注射机,卧式注射机,直角式注射机上用的模具〈二〉按注射模具的总体结构特征分:1、单分型面模分流道位于分型面上,需切除流道凝料.2、点浇口脱出模具三板式模具3、带横向轴芯的分型模具4、自动卸螺纹注射成型模具注塑模基本组成注塑模具由动模和定模两部分组成,动模安装在注射成型机的移动模板上,定模安装在注射成型机的固定模板上.在注射成型时动模与定模闭合构成浇注系统和型腔,开模时动模和定模分离以便取出塑料制品.模具的结构虽然由于塑料品种和性能、塑料制品的形状和结构以及注射机的类型等不同而可能千变万化,但是基本结构是一致的.模具主要由浇注系统、调温系统、成型零件和结构零件组成.其中浇注系统和成型零件是与塑料直接接触部分,并随塑料和制品而变化,是塑模中最复杂,变化最大,要求加工光洁度和精度最高的部分.浇注系统是指塑料从射嘴进入型腔前的流道部分,包括主流道、冷料穴、分流道和浇口等.成型零件是指构成制品形状的各种零件,包括动模、定模和型腔、型芯、成型杆以及排气口等.典型塑模结构如图示.一.浇注系统浇注系统又称流道系统,它是将塑料熔体由注射机喷嘴引向型腔的一组进料通道,通常由主流道、分流道、浇口和冷料穴组成.它直接关系到塑料制品的成型质量和生产效率.1.主流道它是模具中连接注射机射嘴至分流道或型腔的一段通道.主流道顶部呈凹形以便与喷嘴衔接.主流道进口直径应略大于喷嘴直径O.8mm以避免溢料,并防止两者因衔接不准而发生的堵截.进口直径根据制品大小而定,一般为4-8mm.主流道直径应向内扩大呈3°到5°的角度,以便流道赘物的脱模.2.冷料穴它是设在主流道末端的一个空穴,用以捕集射嘴端部两次注射之间所产生的冷料,从而防止分流道或浇口的堵塞.如果冷料一旦混入型腔,则所制制品中就容易产生内应力.冷料穴的直径约8一lOmm,深度为6mm.为了便于脱模,其底部常由脱模杆承担.脱模杆的顶部宜设计成曲折钩形或设下陷沟槽,以便脱模时能顺利拉出主流道赘物.3.分流道它是多槽模中连接主流道和各个型腔的通道.为使熔料以等速度充满各型腔,分流道在塑模上的排列应成对称和等距离分布.分流道截面的形状和尺寸对塑料熔体的流动、制品脱模和模具制造的难易都有影响.如果按相等料量的流动来说,则以圆形截面的流道阻力最小.但因圆柱形流道的比表面小,对分流道赘物的冷却不利,而且这种分流道必须开设在两半模上,既费工又易对准.因此,经常采用的是梯形或半圆形截面的分流道,且开设在带有脱模杆的一半模具上.流道表面必须抛光以减少流动阻力提供较快的充模速度.流道的尺寸决定于塑料品种,制品的尺寸和厚度.对大多数热塑性塑料来说,分流道截面宽度均不超过8m,特大的可达10一12m,特小的2-3m.在满足需要的前提下应尽量减小截面积,以免增加分流道赘物和延长冷却时间.4.浇口它是接通主流道或分流道与型腔的通道.通道的截面积可以与主流道或分流道相等,但通常都是缩小的.所以它是整个流道系统中截面积最小的部分.浇口的形状和尺寸对制品质量影响很大.浇口的作用是:A、控制料流速度:.B、在注射中可因存于这部分的熔料早凝而防止倒流:C、使通过的熔料受到较强的剪切而升高温度,从而降低表观粘度以提高流动性:D、便于制品与流道系统分离.浇口形状、尺寸和位置的设计取决于塑料的性质、制品的大小和结构.一般浇口的截面形状为矩形或圆形,截面积宜小而长度宜短,这不仅基于上述作用,还因为小浇口变大较容易,而大浇口缩小则很困难.浇口位置一般应选在制品最厚而又不影响外观的地方.浇口尺寸的设计应考虑到塑料熔体的性质.型腔它是模具中成型塑料制品的空间.用作构成型腔的组件统称为成型零件.各个成型零件常有专用名称.构成制品外形的成型零件称为凹模又称阴模,构成制品内部形状如孔、槽等的称为型芯或凸模又称阳模.设计成型零件时首先要根据塑料的性能、制品的几何形状、尺寸公差和使用要求来确定型腔的总体结构.其次是根据确定的结构选择分型面、浇口和排气孔的位置以及脱模方式.最后则按控制品尺寸进行各零件的设计及确定各零件之间的组合方式.塑料熔体进入型腔时具有很高的压力,故成型零件要进行合理地选材及强度和刚度的校核.为保证塑料制品表面的光洁美观和容易脱模,凡与塑料接触的表面,其粗糙度Ra>0.32um,而且要耐腐蚀.成型零件一般都通过热处理来提高硬度,并选用耐腐蚀的钢材制造.2.调温系统为了满足注射工艺对模具温度的要求,需要有调温系统对模具的温度进行调节.对于热塑性塑料用注塑模,主要是设计冷却系统使模具冷却.模具冷却的常用办法是在模具内开设冷却水通道,利用循环流动的冷却水带走模具的热量;模具的加热除可利用冷却水通道热水或蒸汽外,还可在模具内部和周围安装电加热元件.3.成型部件成型部件由型芯和凹模组成.型芯形成制品的内表面,凹模形成制品的外表面形状.合模后型芯和型腔便构成了模具的型腔.按工艺和制造要求,有时型芯和凹模由若干拼块组合而成,有时做成整体,仅在易损坏、难加工的部位采用镶件.排气口它是在模具中开设的一种槽形出气口,用以排出原有的及熔料带入的气体.熔料注入型腔时,原存于型腔内的空气以及由熔体带入的气体必须在料流的尽头通过排气口向模外排出,否则将会使制品带有气孔、接不良、充模不满,甚至积存空气因受压缩产生高温而将制品烧伤.一般情况下,排气孔既可设在型腔内熔料流动的尽头,也可设在塑模的分型面上.后者是在凹模一侧开设深0.03-0.2mm,宽1.5-6mm的浅槽.注射中,排气孔不会有很多熔料渗出,因为熔料会在该处冷却固化将通道堵死.排气口的开设位置切勿对着操作人员,以防熔料意外喷出伤人.此外,亦可利用顶出杆与顶出孔的配合间隙,顶块和脱模板与型芯的配合间隙等来排气.4.结构零件它是指构成模具结构的各种零件,包括:导向、脱模、抽芯以及分型的各种零件.如前后夹板、前后扣模板、承压板、承压柱、导向柱、脱模板、脱模杆及回程杆等.1.导向部件为了确保动模和定模在合模时能准确对中,在模具中必须设置导向部件.在注塑模中通常采用四组导柱与导套来组成导向不见,有时还需在动模和定模上分别设置互相吻合的内、外锥面来辅助定位.2.推出机构在开模过程中,需要有推出机构将塑料制品及其在流道内的凝料推出或拉出.推出固定板和推板用以夹持推杆.在推杆中一般还固定有复位杆,复位杆在动、定模合模时使推板复位.3.侧抽芯机构有些带有侧凹或侧孔地塑料制品,在被推出以前必须先进行侧向分型,抽出侧向型芯后方能顺利脱模,此时需要在模具中设置侧抽芯机构.4.标准模架为了减少繁重的模具设计和制造工作量,注塑模大多采用了标准模架.设计方面1壁厚小,应加厚制件以免过早固化.2嵌件位置不当,应以调整.。
注塑模具之浇注系统的介绍注塑模具是制造塑料制品的重要工具,它的质量直接影响到成品的质量。
而注塑模具中的浇注系统对成品的质量也有着重要影响。
浇注系统是指将熔融塑料从注塑机的机筒中注入到模腔中的一系列设备和构造。
1.浇注系统的组成浇注系统由喷嘴、喷嘴喉管、进料口和冷却系统等构成。
其中,喷嘴是熔融塑料进入模腔的通道,它连接着机筒和模腔。
喷嘴内部通道的形状和尺寸会影响塑料的流动情况和填充时间。
喷嘴喉管和进料口是喷嘴和模腔之间的连接部分,起到塑料流动的引导作用。
冷却系统是为了在注塑过程中将模具中的热量迅速带走,确保产品成型的质量和效率。
2.浇注系统的工作原理注塑过程中,熔融塑料通过喷嘴进入模腔,填充整个模具的形状。
当模腔被充满后,喷嘴会迅速封闭,避免塑料溢出。
此时,熔融塑料开始冷却并变得固态,成型的产品在模具中逐渐形成。
冷却系统会通过喷淋冷却或冷却通道等方式将热量迅速带走,保证产品成型的质量。
3.浇注系统的设计要点为了保证产品的质量,并满足不同要求的注塑制品,浇注系统的设计需要注意以下要点:(1)喷嘴和模腔的连接处要保证密封,避免塑料溢出;(2)喷嘴通道的形状和尺寸要能够满足塑料的流动要求,避免注塑短流或短充问题;(3)选择适当的冷却方式和冷却介质,保证产品的尺寸和表面质量;(4)为了避免冷却系统的死角,需要合理配置冷却通道,确保整个模具在注塑过程中的温度分布均匀。
4.浇注系统的改进和优化为了提高产品的质量和生产效率,浇注系统的改进和优化是重要的课题。
一方面,可以通过模具部件的改进来优化浇注系统,例如喷嘴通道的优化、冷却通道的重新设计等。
另一方面,可以通过模具流道分析软件来模拟塑料在注塑过程中的流动情况,进一步优化浇注系统的设计。
此外,一些先进的浇注系统技术,如热流道系统、堆垛模腔技术等也可以运用到注塑模具中。
总结起来,注塑模具的浇注系统是注塑过程中至关重要的一部分,它的设计和优化对产品质量和生产效率有着直接影响。
铸造冶金炉的所有知识点本文以铸造冶金炉为例,简要介绍铸造炉的构造、工作原理、主要设备和主要特点,对铸造炉有全面深入系统介绍。
铸造炉是指铸造铁水的设备,包括铸造球墨铸铁炉(简称球墨铸铁炉)和铸钢炉等。
铸造炉是一种熔炼、冶炼过程中进行机械加工后使铁水形成球状(铸球状)铸锭并用熔融金属从熔池中浇注到铸件表面实现铸造操作和冶炼作业后经冷却、加工而成的冶金设备。
在我国铸造行业中应用最广、技术最先进的铸造冶金炉是 QTL (铸铁)铸造球墨铸铁炉(以下简称球墨铸铁炉)和 SMD (铸铁)铸造球墨铸铁炉(以下简称 SMD炉)。
其主要优点是:铸件内部结构紧凑、操作方便、设备简单、制造容易、生产率高、成本低;其特点是:使用寿命长(一般为10-15年)和消耗低;对环境污染小。
铸造球墨铸铁炉是以优质耐火材料为主,同时辅以机械加工零部件或采用其他工艺方法制成造型各异的铸件产品的现代化冶金炉;它能够提高钢的可铸性和韧性以及冶炼操作技术性能(耐火材料寿命)和钢种适应性(适钢性和适切度)。
目前我国铸造工业发展迅速,已成为国民经济中重要的基础工业之一。
一、铸造炉的组成铸造炉由炉体、炉盖、浇注系统和冷却系统组成。
铸件生产工艺过程主要分为:铁水铸造、浇注系统和冷却设施。
其中浇注系统是铸造炉的核心,它包括进料口、入口管道、出料口及出料管道与钢液循环管道等。
在实际生产中,需要增加出钢口处的进料口和出钢口处的冷却水阀或控制系统。
铁水铸造又分为:球墨铸铁炉和铸钢炉,如图1所示。
铸铁炉熔炼温度为850℃~950℃,有金属液从出料口流出或浇注到钢液循环管道的流动过程,浇注时需控制进料量以及浇注速度、质量和出钢温度。
铸钢炉熔炼冷却方式有金属直接冷却和机械冷却两种方式。
它主要包括水冷系统和电热系统两大类,常用的有以下几种方式:用水直接冷却;用电热管直接冷却;用电热管夹式冷却器等电-热耦合方式冷却塔(俗称电热管)冷却机来作为热源。
1、水冷系统铸钢炉在熔炼过程中,由于金属液被冷却到较低的温度(约70~80℃),从而减少了金属与热源的接触,因此金属冷却器),如冷却塔或冷却水器(循环水)是铸钢炉上水冷系统的核心设备。