同位素丰度表
- 格式:doc
- 大小:222.00 KB
- 文档页数:7
地球表层化学元素丰度一、丰度的概念:即为该元素在自然体中的丰富程度abundance of elements),是指一种化学元素在某个自然体中的重量占这个自然体总重量的相对份额(如百分数)。
丰度表示方法主要分为重量丰度、原子丰度和相对丰度。
二、定义:同位素在自然界中的丰度,又称天然存在比,指的是该同位素在这种元素的所有天然同位素中所占的比例。
丰度的大小一般以百分数表示;人造同位素的丰度为零。
周期表上所列的原子量实际上是各种同位素按丰度加权的平均值,这是因为各种同位素在自然界中往往分布的比较均匀,取平均值计算比较准确。
一种化学元素在某个自然体中的重量占这个自然体总重量的相对份额(如百分数),称为该元素在自然体中的丰度。
三、研究地球表层化学元素丰度的意义研究元素丰度是研究地球化学基础理论问题的重要素材之一。
宇宙天体是怎样起源的?地球又是如何形成的?地壳与地幔中的主要元素有什么不一样?生命体是怎么产生和演化的?这些研究都离不开地球化学体系中元素丰度分布特征和规律。
元素丰度是每一个地球化学体系的基本数据,可在同一或不同体系中用元素的含量值来进行比较,通过纵向(时间)、横向(空间)上的比较,了解元素动态情况,从而建立起元素集中、分散、迁移活动等一些地球化学概念。
从某种意义上来说,也就是在探索和了解丰度这一课题的过程中,逐渐建立起近代地球化学。
四、发现历史自从1889年F.W.克拉克发表元素在地壳中的平均含量的资料以来,人们已经积累了大量有关陨石、太阳、恒星、星云等各种天体中元素及其同位素分布的资料。
1937年,戈尔德施米特首次绘制出太阳系的元素丰度曲线。
1956年,修斯和尤里根据地球、陨石和太阳的资料绘制出更详细、更准确的元素丰度曲线。
1957年,伯比奇夫妇、福勒和霍伊尔就是以该丰度曲线为基础,提出他们的核合成假说的。
四十年代,人们只知道大多数恒星的化学组成与太阳相似,因而就认为分布在整个宇宙的元素丰度可能是一样的。
同位素测定报告#12732.05“PMU”型铜粉批号#3/05-07由TAG GIREDMET抽样。
原子分率的测定使用了火花源质谱分析法。
应用了日本电子公司(日本)制造的JMS-01-BM2双聚焦质谱分析仪。
高分辨率质谱是在Ilford-Q板上摄取的。
Joyce Loebl(英国)的MDM6测微密度计和NOVA 4(美国)在线微型计算机被用于识别质谱线。
产生量估算由原版的MS&GC实验室软件计算得出。
同位素丰度测量的相对标准偏差为0.01-0.05。
稀有气体和超铀元素没有制进表格中,因为它们的浓度低于百万分之0.001的检测极限。
结果用原子百分比表示“PMU”型铜粉的化学成分证书批号#3/05-07净重 199,785kg装于14个箱子中的1392个玻璃安瓿实验室MS&GC Lab任何对于此样本的参考均要引用以上的名称和号码。
铜粉中杂质(镁、铝、钛、铁、镍、钼、钶、锑)的总含量不超过重量的0.002%。
铜粉的纯度级别为99.998%。
此数据由100%铜粉和杂质总量的差额计算得出。
杂质列表与TU 1793-001-56993504-2004相一致。
铜粉在放射性方面是安全的。
铜粉的总放射性不超过1.10-11 Ci/g。
样品由TAG Giredmet抽样。
抽样程序报告始于2005年5月16日。
箱子由TAG Giredmet “GAC-68”铅垂探测。
铜粉中杂质含量与检测技术列于报告#12732.05中(请翻页)。
杂质检测报告#12732.05球状铜粉批号#3/05-07样品由TAG GIREDMET抽样。
总杂质分析采用火花源质谱分析法。
应用了日本电子公司(日本)制造的JMS-01-BM2双聚焦质谱分析仪。
高分辨率质谱是在Ilford-Q板上摄取的。
Joyce Loebl(英国)的MDM6测微密度计和NOVA 4(美国)在线微型计算机被用于识别质谱线。
产生量估算由原版的MS&GC 实验室软件计算得出。
第四章:质谱法第一节经验1)在正离子模式下,样品主要以[M+H]+、[M+Na]+、[M+K]+准分子离子被检测;在负离子模式下,样品则大多以[M-H]-、[M+Cl]-准分子离子被检测。
2)正离子模式下,样品还会出现M—1(M-H),M—15(M-CH3), M—18(M-H2O),M—20(M—HF), M-31(M—OCH3)等的峰.分子离子峰应具有合理的质量丢失。
也即在比分子离子质量差在4—13,21—26,37-,50-53,65,66 是不可能的也是不合理的,否则,所判断的质量数最大的峰就不是分子离子峰,。
因为一个有机化合物分子不可能失去4~13个氢而不断键。
如果断键,失去的最小碎片应为CH3,它的质量是15个质量单位.3)分子离子峰应为奇电子离子,它的质量数应符合氮规则:在有机化合物中,凡含有偶数氮原子或不含氮原子的,相对分子质量一定为偶数,反之,凡今吸奇数氮原子的,相对分子质量一定是奇数,这就是氮规则。
运用氮规则将有利于分子离子峰的判断和分子式的推定,经元素分析确定某化合物的元素组成后,若最高质量的离子的质量与氮规则不符,则该离子一定不是分子离子。
如果某离子峰完全符合上述3项判断原则,那么这个离子峰可能是分子离子峰;如果3项原则中有一项不符合,这个离子峰就肯定不是分子离子峰.应该特别注意的是,有些化合物容易出现M-1峰或M+1峰。
基峰研究高质量端离子峰, 确定化合物中的取代基M-15(CH3); M-16(O, NH2M-17(OH, NH3); M-18(H2O);M-19(F); M-26(C2H2);M-27(HCN, C2H3); M-28(CO, C2HM-29(CHO, C2H5); M-30(NO);M-31(CH2OH, OCH3); M-32(S, CHM-35(Cl); M-42(CH2CO, CH M-43(CH3CO, C3H7); M-44(CO2, CS15 (。
第四章:质谱法第一节: 概述1.1 发展历史1.1886年,E. Goldstein在低压放电实验中观察到正电荷粒子.2. 1898年,W. Wen发现正电荷粒子束在磁场中发生偏转.3.现代质谱学之父: J. J. Thomson(获1906年诺贝尔物理奖).4.1922年, F.W.Aston[英]因发明了质谱仪等成就获诺贝尔化学奖. 1942年, 第一台商品质谱仪.5.50年代起,有机质谱研究(有机物离子裂解机理, 运用质谱推断有机分子结构)6.各种离子源质谱, 联机技术的研究及其在生物大分子研究中的应用(CI, FD, FAB, ESI-MS等)1.2 特点:1.灵敏度高(几微克甚至更少的样品, 检出极限可达10-14克)2.是唯一可以确定分子式的方法.3.分析速度快(几秒)4.可同色谱联用.第二节: 基本原理2.1基本原理质谱是唯一可以确定分子式的方法。
而分子式对推测结构是至关重要的。
质谱法的灵敏度远远超过其它方法,测试样品的用量在不断降低,而且其分析速度快,还可同具有分离功能的色谱联用。
具有一定压力的气态有机分子,在离子源中通过一定能量(70ev)的电子轰击或离子分子反应等离子化方式,使样品分子失去一个电子产生正离子, 继而还可裂解为一系列的碎片离子,然后根据这些离子的质荷比(m/z e)的不同,用磁场或磁场与电场等电磁方法将这些正离子进行分离和鉴定。
由此可见质谱最简单形式的三项基本功能是:(1)气化挥发度范围很广的化合物;(2)使气态分子变为离子(除了在气化过程中不产生中性分子而直接产生离子的化合物);(3)根据质荷比(m/z e)将它们分开,并进行检测、记录。
由于多电荷离子产生的比例比单电荷离子要小得多,通常取z等于1,e为常数(1个电子的电荷),因而就表征了离子的质量。
这样,质谱就成为了产生并称量离子的装置。
由于各化合物所形成的离子的质量以及各种离子的相对强度都是各化合物所特有的,故可从质谱图形中确定分子量及其结构。
硫同位素地球化学硫有四种稳定同位素:32S,33S,34S,36S,其大致丰度为95.02%,0.75%,4.21%,0.02%。
以S34S/32S来表示硫同位素的分馏。
硫同位素标准是CDT。
自然界硫同位素组成范围大,最重的硫酸盐的δ34S为95‰,最轻的硫化物为-65‰。
等亚稳定络合物,不同价态含硫原子团富集34S的能力不同。
硫化物和硫酸盐之间的氧化还原作用,地表条件下微生物的还原作用,以及硫酸盐和硫化物的溶解度的极大差异,是造成硫的轻、重同位素分馏的重要原因。
7.4.1硫同位素分馏硫同位素的分馏过程主要有:各种硫化合物(硫酸盐、硫化物)之间的同位素交换反应,是一种平衡的同位素分馏;硫化合物发生价态改变的单向化学反应,是一种不可逆的氧化还原反应,具有动力分馏的性质,它既可是无机环境改变引起,也可是生物细菌的有机作用,而且生物细菌的作用往往能引起大的动力分馏。
岩浆环境和250℃以上热液流体中的硫酸盐和溶解的硫化氢、火山喷气口的二氧化硫和硫化氢气体、热液流体中溶解的硫化氢和沉淀的硫化物等是同位素平衡交换的典型体系,平衡条件下硫的重同位素倾向于富集在具有较强硫键的化合物中,由高价到低价,δ34S依次降低,因此各种含硫原子团7.3表示了一些含硫化合物和H2S之间的同位素分馏曲线,硫化物—H2S达到平衡时各种硫化物富34S的顺序大致如下:辉钼矿>黄铁矿>闪锌矿(磁黄铁矿)>H2S>黄铜矿>(HS1-)>铜蓝>方铅矿>辰砂>辉铜矿(辉锑矿)>辉银矿>S2-。
实测数据和理论计算结果大致相符。
低很小。
硫化合物的无机氧化还原作用是一种非平衡的单向化学反应。
硫化物氧化为硫酸盐是一种动力分馏过程,但分馏不明显。
硫酸盐无机还原为硫化物制,它的同位素效应比较明显。
但硫酸盐的无机还原作用需要较高的活化能,低温下参与反应的物质数量很少,因而有实际意义的反应多发生在约250℃以上的热液体系和地壳深部环境,如热液流体中水溶性硫酸盐被还原成水溶硫化物,火山气体中SO2被H2S还原底火山作用条件下,反应是海水演化成为成矿热液的重要反应。
第四章 质谱(Mass Specrometry)早在1921年,就已经出现了质谱仪,那时UV 、IR 、NMR 、GC 及HPLC 等分析技术都还没有出现。
早期质谱仪的最大成功是同位素的发现及其相对丰度的测量。
所以,那时的质谱仪主要用来作同位素的研究,随着石油化工的发展,到了40~50年代,质谱的应用开始向石油化工转移,1951年Brown 发表了测定汽油烃类组成的质谱法。
1957年I. Holms 和F. Moreell 首次实现了色谱-质谱联用。
50年代末,Beyon 、Bienann 和Mclafferty 都提出:官能团对分子中化学键的断裂有引导作用,因此有机质谱得到迅速发展。
4.1 概述质谱用于结构分析有点像:»¨»»ò»é»é»(»»»»»»÷»»¬»»»»)(»»»»»»÷»»¬»»»»)»»»ó»»¨»即:»»ö«»¬»»»¬»é»»«»¬»»¬»(M)( M )+根据各种碎片离子的质荷比及其相对丰度,就可以进行结构分析。
4.1.1定义质谱——按照离子的质荷比的大小依次排列的谱图。
从本质上讲,质谱并非电磁波谱,而是物质的质量谱,因而质谱中并无透光率、吸光度、波长等概念。
第六章同位素地球化学第一节基本概念一、同位素的定义核素:是由一定数量的质子(P)和中子(N)构成的原子核。
核素具有质量、电荷、能量、放射性和丰度5中主要性质。
.同位素:原子核内质子数相同而中子数不同的一类原子叫做同位素(isotope),他们处在周期表上的同一位置二、同位素的分类– 放射性同位素(radioactive isotope):原子核是不稳定的,它们能够白发地衰变成其他的同位素。
最终衰变为稳定的放射性成因同位素。
目前已知的放射性同位素达1200种左右,由于大部分放射性同位素的半衰期较短,目前已知自然界中存在的天然放射性同位素只有60种左右。
放射性同位素例子:238U→234Th+4He(α)+Q→206Pb;235U→207Pb;232Th→208Pb– 稳定同位素(stable isotope):原子核是稳定的,迄今还未发现它们能够自发衰变形成其他的同位素。
自然界中共有1700余种同位素,其中稳定同位素有260余种。
z轻稳定同位素,又称天然的稳定同位素,是核合成以来就保持稳定。
其特点是①原子量小,同—元素的各同位素间的相对质量差异较大;②轻稳定同位素变化主要原因是同位素分馏作用所造成的,其反应是可逆的。
如氢同位素(1H和2H)、氧同位素(16O和18O)、碳同位素(12C和13C)等。
z重稳定同位素,又称放射成因同位素(radiogenic isotope):稳定同位素中部分是由放射性同位素通过衰变后形成的稳定产物。
其特点是①原子量大,同—元素的各同位素间的相对质量差异小(0.7%~1.2%)环境的物理和化学条件的变化通常不导致重稳定同位素组成改变;②重稳定同位素变化主要原因是放射性同位素衰败引起,这种变化是单向的不可逆的。
如87Sr是由放射性同位素87Rb衰变而来的;三、同位素丰度同位素丰度(isotope abundance):可分为绝对丰度和相对丰度绝对丰度是指某一同位素在所有各种稳定同位素总量中的相对份额,常以该同位素与1H(取1H=1012)或28Si(取28Si=106)的比值表示。
地质标准物质中铂族元素的同位素稀释法定值项目完成单位:国家地质实验测试中心项目完成人:胡明月吕彩芬何红蓼一前言铂族元素包括钌、铑、锇、铱、铂、钯六个元素,有很高的经济价值,并且在地球科学、空间科学、环境科学等领域具有较高的科研价值。
准确分析地质样品中的铂族元素一直是一项难度很大的任务,迫切需要可靠的标准物质对分析质量进行监控和溯源。
但是由于铂族元素分析本身难度大,各个实验室提交的分析数据往往离散程度很大,造成铂族元素标准物质定值的困难。
例如我中心承担研制的海洋沉积物标准物质,铂族元素是要求定值的重点项目,而来自不同国家十几个实验室的数据相差达数十倍。
同位素稀释法被公认为最可靠的分析方法,一定量的浓缩同位素一旦加入到样品中与被测同位素充分平衡,就不要求其后化学处理的完全回收,也不受测定过程中仪器漂移的影响,从而保证了分析结果的准确性。
同位素稀释法测定铂族元素不仅可为标样定值提供可靠数据,还可为铂族元素仲裁分析和铂族矿产开发品位确定等提供关键数据。
二稀释法原理2.1 基本原理天然的样品中,一般同位素组成是相对稳定的。
稀释法就是向某种样品中加入已知量的经过同位素富集的稳定同位素稀释剂,使样品中该元素同位素组成改变,从而计算样品中该元素的量。
“稀释剂”是指含有已知浓度的某一特定元素的溶液,而此元素的同位素组成已经由于其中一种天然同位素得到富集而发生了变化。
在被分析的样品中,这种元素的同位素成分是已知的,而浓度却不知道。
因而,已知量的样品溶液和已知量的“稀释剂”混合时,混合物的同位素组成就能用来计算样品溶液中该元素的量。
同位素稀释分析可以应用于具有两个以上天然同位素的元素。
2.2 样品中元素含量的计算进行同位素稀释法分析,要具备富集了待测元素的某种同位素的稀释剂溶液,在一定量的样品中加入一定量的这种稀释剂溶液,使天然样品与稀释剂充分混合达到平衡,然后彻底分解样品,使之转化为可以为质谱仪测定的形式,最后用质谱测定样品中的新的同位素组成,并计算样品中待测元素的含量。
第六章同位素地球化学——稳定同位素第一节基本概念一、同位素的定义核素:是由一定数量的质子(P)和中子(N)构成的原子核。
核素具有质量、电荷、能量、放射性和丰度5中主要性质。
元素:具有相同质子数和中子数的核素.同位素:原子核内质子数相同而中子数不同的一类原子叫做同位素(isotope),他们处在周期表上的同一位置二、同位素的分类– 放射性同位素(radioactive isotope):原子核是不稳定的,它们能够白发地衰变成其他的同位素。
最终衰变为稳定的放射性成因同位素。
目前已知的放射性同位素达1200种左右,由于大部分放射性同位素的半衰期较短,目前已知自然界中存在的天然放射性同位素只有60种左右。
放射性同位素例子:238U→234Th+4He(α)+Q→206Pb;235U→207Pb;232Th→208Pb– 稳定同位素(stable isotope):原子核是稳定的,迄今还未发现它们能够自发衰变形成其他的同位素。
自然界中共有1700余种同位素,其中稳定同位素有260余种。
z轻稳定同位素,又称天然的稳定同位素,是核合成以来就保持稳定。
其特点是①原子量小,同—元素的各同位素间的相对质量差异较大;②轻稳定同位素变化主要原因是同位素分馏作用所造成的,其反应是可逆的。
如氢同位素(1H和2H)、氧同位素(16O和18O)、碳同位素(12C和13C)等。
z重稳定同位素,又称放射成因同位素(radiogenic isotope):稳定同位素中部分是由放射性同位素通过衰变后形成的稳定产物。
其特点是①原子量大,同—元素的各同位素间的相对质量差异小(0.7%~1.2%)环境的物理和化学条件的变化通常不导致重稳定同位素组成改变;②重稳定同位素变化主要原因是放射性同位素衰败引起,这种变化是单向的不可逆的。
如87Sr是由放射性同位素87Rb衰变而来的;三、同位素的丰度和原子量1.同位素丰度(isotope abundance) :可分为绝对丰度和相对丰度绝对丰度是指某一同位素在所有各种稳定同位素总量中的相对份额,常以该同位素与1H(取1H=1012)或28Si(取28Si=106)的比值表示。
同位素比例质谱1 同位素有关概念同位素:两个原子质子数目相同,但中子数目不同,则他们仍有相同的原子序,在周期表是同一位置的元素。
同位素可分为两大类:放射性同位素(radioactive isotope)和稳定同位素(stable isotope)。
放射性同位素指某些同位素的原子核很不稳定,会不间断地、自发地放射出射线,直至变成另一种稳定同位素。
稳定同位素指某元素中不发生或极不易发生放射性衰变的同位素,常用的有34种,已实现规模生产的稳定同位素及化合物有235U、重水、6Li、10B,而常用于质谱分析的主要是12C和13C、18O和16O、34S和32S、D/H等。
2 同位素丰度绝对丰度:指某一同位素在所有各种稳定同位素总量中的相对份额,常以该同位素与1H(取1H=1012)或28Si(28Si=106)的比值表示。
相对丰度:指同一元素各同位素的相对含量。
例如12C=98.892%,13C=1.108%。
大多数元素由两种或两种以上同位素组成,少数元素为单同位素元素,例如19F=100%。
3 R值和δ值同位素比值R为某一元素的重同位素原子丰度与轻同位素原子丰度之比. 例如 D/H、13C/12C、34S/32S等,由于轻元素在自然界中轻同位素的相对丰度很高,而重同位素的相对丰度都很低,R值就很低且冗长繁琐不便于比较,故在实际工作中通常采用样品的δ值来表示样品的同位素成分。
样品(se)的同位素比值Rse与一标准物质(st)的同位素比值(Rst)比较,比较结果称为样品的δ值。
其定义为:δ(‰)=(Rse/Rst -1)×1000(即样品的同位素比值相对于标准物质同位素比值的千分差)。
氢同位素标准物质:分析结果均以标准平均大洋水(Standard Mean Ocean Water,即SMOW)为标准报导,这是一个假象的标准,以它作为世界范围比较的基点,其D/H SMOW =(155.76±0.10)×10-6。