常见电子元件选型方法
- 格式:docx
- 大小:25.07 KB
- 文档页数:8
电子行业电子元器件选型与电路设计原则随着科技的不断发展和进步,电子行业也得到了快速的发展和壮大。
而在电子设备的开发和制造过程中,电子元器件的选型和电路设计是至关重要的环节。
本文将介绍电子行业电子元器件选型和电路设计的原则、步骤和注意事项。
一、电子元器件选型原则电子元器件是电子产品中最基本的组成部分,包括电阻、电容、电感、二极管、三极管等等。
在选择电子元器件时,应遵循以下原则:1. 了解产品需求:在选型之前,需要充分了解所需产品的功能和性能要求。
明确产品的功能、性能指标以及工作环境等因素,才能更好地选择适合的电子元器件。
2. 参考数据手册:对于每一种电子元器件,都有相应的数据手册提供各项参数和性能指标。
选型过程中,应仔细阅读和比较不同厂家的数据手册,选择性能最合适的电子元器件。
3. 可靠性和稳定性:电子元器件的可靠性和稳定性对产品的性能和寿命有直接影响。
选择具有高可靠性和稳定性的电子元器件,能够提高产品的质量和可靠性。
4. 成本和供应商可靠性:在选型过程中,需要综合考虑电子元器件的成本和供应商的可靠性。
选择价格适中且有良好信誉的供应商,能够保障电子元器件的质量和供货的稳定性。
二、电路设计原则电路设计是实现电子产品功能的关键步骤,合理的电路设计能够提高产品性能和稳定性。
以下是一些电路设计的原则和注意事项:1. 功能需求与结构划分:在设计电路之前,应明确产品的功能需求,将电路划分为各个模块,进行逻辑和结构上的合理组织。
2. 选用合适的电子元器件:根据产品的功能需求和选型原则,选择合适的电子元器件,并遵循元器件的规格和参数要求。
3. 电路拓扑和信号传输:合理的电路拓扑可以减少电路中的噪声和干扰,提高信号的传输质量。
应采用合适的布局和线路连接方式,降低电路的交叉干扰。
4. 控制和保护电路设计:在设计电路时,应考虑到产品的控制和保护功能。
合理设置电路的控制系统和保护电路,保证电路的正常工作和防止意外损坏。
5. 散热与敏感部位处理:一些功耗较大的电子元器件会产生热量,需设计合理的散热系统,确保元器件的正常工作温度。
电气元件选型
1.接触器
(1)无感或微感负载,接触器按负载的额定电流来选
(2)鼠笼式电动机接触器额定电流应大于电动机额定电流的1.3倍即de e I I 3.1≥
(3)反复短时工作且坏境较差的,则适当降低容量使用。
2.低压断路器
(1)低压断路器的电流≥线路的计算电流(按1.3倍的电动机额定电流来计算)
(2)短延时或瞬时动作的脱扣器的整定电流m de I k I ≥(image 为电动机的启动电流)。
K=1.7-2 S
T S T 02.002.0>< K=1.35 (3)长延时脱扣器的整定电流de zd I I ≥
3.热继电器的选择
(1)类型 三角形-选带断相保护的FR
电动机接法
星形-可选也可不选带断相保护的FR
(2)电流选择-M FR I I ≥
(3)整定选择-整定电流=电动机额定电流
4.功率电流速算
三相电机-------2A/KW
三相电热设备----1.5A/KW
单相220V----------4.5A/KW
单相380V-----------2.5A/KW
5.导线电流估算
2.5以下乘以9,往上减一顺号走
35乘3.5,双双成组减点5
条件有变加折算,高温九折铜升级
穿管根数二三四,八七六折满载流。
电气工程中的电子元器件选型与应用电气工程广泛应用于各种工业和民用领域,离不开电子元器件的选型与应用。
电子元器件是电路中的基本构成要素,正确的选型与应用可以确保电路的性能和可靠性。
本文将从电气工程中的电子元器件选型和应用两个方面进行论述。
一、电子元器件选型在电气工程中,正确选择电子元器件至关重要。
电子元器件的选型需要根据电路的要求和特性来决定,主要包括以下几个方面:1. 电气参数:电气参数是评价电子元器件性能的重要指标,例如电阻器的电阻值、电容器的容量、电感器的电感等。
在选型时,需要根据电路的工作电压、电流大小和频率等参数来选择合适的电子元器件。
2. 工作环境:不同的工作环境对电子元器件有不同的要求。
例如,工业领域的电子元器件需要具有较高的耐高温、耐振动、耐腐蚀等性能;而在民用电器中,电子元器件的体积和重量可能是一个考虑因素。
3. 可靠性:电子元器件的可靠性是评价其使用寿命和性能稳定性的指标。
在选型时,需要选择具有较高可靠性的电子元器件,以确保电路的正常运行和长期稳定性。
4. 成本:成本是电子元器件选型的重要考虑因素。
不同品牌和型号的电子元器件可能有不同的成本,需要综合考虑性能与成本之间的关系,选择合适的电子元器件。
二、电子元器件应用电子元器件在电气工程中有多种应用场景,下面将介绍几个典型的应用示例:1. 滤波器:滤波器是电子电路中常用的元器件,用于去除非期望频率的信号,保留期望频率的信号。
在电气工程中,滤波器广泛应用于音频设备、通信设备和电源等领域,以确保信号的准确传输和干净的电源供应。
2. 变压器:变压器是电气工程中常见的元器件,用于实现电压的变换和传输。
在电力系统中,变压器用于将高电压的电能传输到远距离并降低损耗;在电子设备中,变压器用于将电源高压转换为适合电路工作的低压。
3. 集成电路:集成电路是电子工程领域中应用广泛的元器件,它将大量的电子功能集成到一个芯片中。
在电气工程中,集成电路可用于控制系统、计算机硬件、嵌入式系统等,提供复杂的功能和高效的性能。
电子元器件选型技术手册一、引言随着现代科技的快速发展,电子产品的普及已成为人们生活的重要组成部分。
而电子元器件,则作为电子产品中的重要核心,其选型技术成为了电子工程师必备的技能之一。
本手册将介绍电子元器件选型的基本原则、常见元器件的选型要点以及选型注意事项,帮助读者在电子元器件选型过程中获得更准确、高效的结果。
二、电子元器件选型的基本原则1. 了解产品需求:在进行电子元器件选型之前,首先要充分了解产品的功能需求、工作环境、电气特性等信息。
只有清楚了解产品需求,才能更好地找到适合的元器件。
2. 研究元器件规格:查阅元器件的规格书,了解元器件的电气参数、尺寸、频率响应等特性,并与产品需求进行对比,筛选出合适的元器件。
3. 鉴别元器件品质:元器件品质直接影响产品的可靠性和性能,因此要选择有口碑、信誉好的供应商,并注意元器件的认证标准和质量保证体系。
4. 市场价格考量:在选型过程中,除了关注元器件性能,还要考虑市场价格因素。
价格较高的元器件不一定就是最适合的选择,需要在性能与成本之间做出权衡。
5. 相关支持与服务:关注供应商提供的技术支持、售后服务等方面,尤其是在产品设计和调试阶段,供应商的专业支持可以帮助解决问题,提高工作效率。
三、常见元器件的选型要点1. 电阻器的选型要点a. 需要确认电阻值、功率、偏差等要求。
b. 根据工作环境及可靠性需求选择焊接方式和封装形式。
c. 根据电路特性选择合适的温度系数。
d. 注意电阻器的温升及功率因数等参数。
e. 考虑体积、重量以及成本等因素。
2. 电容器的选型要点a. 根据电容值、容差、工作电压等参数进行筛选。
b. 选择合适的封装形式和结构类型,如电解电容、陶瓷电容等。
c. 根据工作温度和频率范围选择合适的电容器系列。
d. 注意电容器的损耗因子、漏电流等参数。
3. 二极管的选型要点a. 根据工作电压、最大正向电流等参数选择适合的二极管类型。
b. 根据反向恢复时间、开关速度等参数选择合适的用途。
电子行业电子元件选型规范模板一、引言在电子行业中,电子元件的选型是一个至关重要的环节。
合理选择适合的电子元件,能够提高产品的性能、可靠性和稳定性。
本文将介绍电子行业电子元件选型的规范模板,以帮助从业人员进行准确、科学的选型。
二、选型依据1. 功能需求:根据产品的功能需求,明确所需的电子元件类型和性能指标。
2. 环境适应性:考虑产品所处的工作环境,选择能够适应环境温度、湿度等要求的电子元件。
3. 可靠性要求:根据产品的可靠性要求,选择具有较高可靠性的电子元件,如长寿命、低故障率等。
4. 成本控制:在满足功能和可靠性要求的前提下,考虑成本因素,选择性价比较高的电子元件。
三、选型流程1. 确定功能需求:明确产品的功能需求,包括输入输出特性、工作频率、电流电压等。
2. 了解市场情况:了解市场上同类产品所使用的电子元件类型和品牌,进行市场调研。
3. 查阅资料:通过查阅电子元件的技术手册、数据手册等资料,了解各种电子元件的性能指标和特性。
4. 进行筛选:根据功能需求和市场情况,筛选出几种符合要求的电子元件。
5. 进行评估:对筛选出的电子元件进行评估,比较其性能指标、可靠性、价格等因素。
6. 进行试验:选取几种电子元件进行试验,验证其性能和可靠性。
7. 最终选择:根据试验结果和评估,选择最合适的电子元件。
四、选型报告1. 报告目的:选型报告旨在记录选型过程和结果,为后续工作提供参考依据。
2. 报告内容:(1) 选型依据:对选型依据进行详细说明,包括功能需求、环境适应性、可靠性要求和成本控制等。
(2) 选型流程:详细描述选型流程,包括确定功能需求、了解市场情况、查阅资料、进行筛选、进行评估、进行试验和最终选择等步骤。
(3) 选型结果:列出最终选择的电子元件型号和品牌,并附上选型依据和评估结果。
(4) 总结和建议:对选型过程进行总结,并提出后续工作的建议。
五、选型验证1. 试验验证:根据选型报告中选择的电子元件型号,进行试验验证,包括性能测试、可靠性测试等。
电子元器件的选型指南随着科技的不断发展,电子元器件在各个领域的应用越来越广泛。
在设计电子产品或进行电路设计时,选型正确的电子元器件至关重要。
本文将为您提供一些选型电子元器件的指南,帮助您进行准确的选型。
一、了解电子元器件的种类和功能电子元器件可以分为被动元器件和主动元器件两种。
被动元器件包括电阻、电容、电感等,它们主要用于对电流、电压等信号进行控制和传递。
主动元器件则有晶体管、集成电路等,它们能够放大信号、产生信号等。
在选型过程中,需要根据具体需求和电路设计来选择合适的被动元器件和主动元器件。
二、考虑元器件的参数和性能在选型电子元器件时,需要考虑其参数和性能。
对于被动元器件来说,电阻值、电容值、电感值等是重要的参数,需要根据电路需求选择合适数值的元器件。
而对于主动元器件来说,输出功率、工作电流、频率响应等是需要考虑的性能指标。
选型时,根据项目需求仔细比较各个型号之间的参数和性能,选择最符合要求的元器件。
三、了解元器件的封装形式电子元器件的封装形式有多种,常见的有贴片式、插件式、针脚式等。
不同的封装形式适用于不同的应用场景。
贴片式封装适用于空间有限的场合,插件式封装适用于需要插拔的场合,针脚式封装适用于需要稳固连接的场合。
在选型时,需要考虑元器件的封装形式是否符合设计要求,确保元器件能够顺利安装到电路板上。
四、参考元器件的可靠性和供货情况在选型电子元器件时,可靠性和供货情况也是需要考虑的因素。
可靠性指元器件的寿命、稳定性等特性,选择可靠性较高的元器件可以提高产品的质量和可靠性。
供货情况指该元器件是否容易获得和采购,以免后续项目因元器件短缺而受到延误。
在选型时,建议选择有一定知名度的品牌和型号,以确保元器件的可靠性和供货问题。
五、借助工具和参考资料辅助选型在电子元器件的选型过程中,可以借助一些工具和参考资料来辅助选择。
例如,可以使用在线元器件选型工具,根据输入的参数和需求,快速筛选出符合要求的元器件型号。
电子元器件的选型与使用电子元器件是电子设备中不可或缺的组成部分,它们承担着信号传输、能量转换、控制等任务。
正确选配和使用电子元器件,能够提高电子设备的性能和可靠性。
下面将介绍电子元器件的选型与使用的步骤和注意事项。
一、了解电子元器件的分类和特性1.1 电阻、电容、电感等被动元器件:了解其基本原理、特性和参数。
1.2 晶体管、集成电路等有源元器件:了解其工作原理、类型和应用范围。
1.3 功率器件、传感器等特殊用途元器件:了解其特殊功能和注意事项。
二、根据设计需求选择适当的电子元器件2.1 确定电子设备的功能和性能要求。
2.2 根据功能需求,选择合适的被动元器件,如电阻、电容和电感等。
2.3 根据信号处理、功率放大等需求,选择适当的有源元器件,如晶体管和集成电路等。
2.4 根据特殊用途和环境条件,选择特殊用途元器件,如功率器件和传感器等。
三、考虑电子元器件的参数和性能3.1 电阻、电容的阻值、容值和精度等参数。
3.2 电感的电感值、电阻值和频率特性等参数。
3.3 晶体管的最大功率、最大电流和频率特性等参数。
3.4 集成电路的工作电压、功耗和速度等参数。
3.5 功率器件的最大功率、最大电流和散热特性等参数。
3.6 传感器的测量范围、精度和稳定性等参数。
四、考虑电子元器件的封装和安装方式4.1 了解不同封装类型的优缺点,如贴片、插孔、DIP等。
4.2 根据设备尺寸和可靠性要求,选择适当的封装类型。
4.3 考虑焊接方式和焊接工艺,如手工焊接、波峰焊接等。
五、进行电子元器件的试验和验证5.1 验证电子元器件是否符合设计要求。
5.2 进行电子元器件的参数测试和性能测试。
5.3 根据测试结果,评估电子元器件是否满足设备要求。
六、按照规范使用和维护电子元器件6.1 遵守元器件的使用、储存和运输规范。
6.2 定期检查电子设备中的元器件是否正常工作。
6.3 防止元器件受到静电、高温、湿度等不良环境的影响。
6.4 注意保护电子元器件的引脚、封装和焊接质量。
电子元器件的选型与应用资料引言:电子元器件广泛应用于各行各业,对于各种电子设备的性能和功能发挥起着至关重要的作用。
良好的元器件选型以及正确的应用资料是保证电子设备稳定运行和性能优越的基础。
本文将就电子元器件的选型和应用资料进行详细探讨。
1. 电子元器件的选型1.1 电容器电容器是一种常见的电子元器件,用于储存电荷并具有通流和隔离的特性。
选型电容器时,首先需确定所需的电容值、电压和尺寸等参数。
根据电路的需求,可以选择钽电容器、电解电容器或陶瓷电容器等。
钽电容器适用于高质量音频系统等对音质要求较高的场合,而电解电容器则适用于需要较大容量的场合。
1.2 电感器电感器主要用于在电路中储存能量,起到滤波、隔离和功率传输等作用。
选型电感器时,需要考虑电感值、电流和频率等因素。
根据需求,可选择铁氧体电感器、线圈电感器或陶瓷电感器等。
铁氧体电感器适用于高频调谐电路,而线圈电感器适用于低频电路。
1.3 可变电阻器可变电阻器也称为电位器,用于调节电路中的电阻值。
在选型时,需要考虑电阻范围、精度和转动方式等参数。
常见的可变电阻器有旋转式电位器和推轨式电位器。
旋转式电位器适用于控制亮度、音量等参数,并且旋转角度较大,而推轨式电位器适用于微调电阻值。
2. 应用资料的准备2.1 数据手册数据手册是电子元器件的重要资料,提供了元器件的规格、性能曲线、尺寸和引脚定义等详细信息。
在选型和使用过程中,数据手册是不可或缺的参考资料。
应在选型前事先准备好数据手册,并认真研读其中的内容。
2.2 电路设计良好的电路设计是高效使用电子元器件的保障。
在应用资料中,需准备清晰的电路图纸,标注元器件的数值、型号和连接方式等。
电路设计应考虑到电压、电流、功率和频率等参数的要求,确保元器件能够正常工作并达到预期的效果。
2.3 元器件样品在选型和设计确定后,建议获取元器件的样品进行实际测试和验证。
通过样品测试,可以更直观地了解元器件的特性,并进行必要的调整和改进,以确保选型和应用资料的准确性。
常用元器件选型指南在电子产品的设计和制造过程中,元器件的选择是至关重要的。
合适的元器件能够确保产品的性能稳定和可靠性,同时也对成本和制造周期产生重要影响。
以下是一些常用元器件的选型指南,帮助您在设计中做出明智的选择:1.电容器电容器用于储存和释放电荷,是电子电路中常见的元器件。
在选型时,需要考虑以下几个方面:-容值:根据电路需求选择合适的容值,一般应预留一定的余量。
-电压等级:应该选择比电路中最高电压高一些的电容器,以确保电容器能够正常工作。
-介质类型:有钽电解、铝电解、陶瓷等不同的介质可供选择,根据应用场景来决定。
-ESR:等效串联电阻,选择较低的ESR可提高电容器的效果。
2.电阻器电阻器用于限制电流、分压等功能。
在选型时应考虑以下几个方面:-阻值:根据电路需求,选择适当阻值的电阻器。
-功率:根据电阻器在电路中的功率消耗来选择适当的功率等级。
-精度:高精度电路应选择精度较高的电阻器。
-温度系数:选择温度系数较小的电阻器。
3.二极管二极管是允许电流在一个方向上流动的器件,具有整流和开关功能。
在选型时需考虑以下几个方面:-正向电压降:根据电压降的大小选择适当的二极管。
-最大正向电流:根据电路中的最大电流来选择合适的二极管。
-反向损耗:选择反向损耗较小的二极管可提高效率。
- 反向恢复时间(Trr):根据需求选择反向恢复时间较短的二极管。
4.三极管三极管广泛应用于放大、开关和稳压等电路中。
在选型时需考虑以下几个方面:-集电极最大电压:选择比电路中最大电压高一些的三极管。
-集电极最大电流:根据电路中的最大电流来选择合适的三极管。
-功率:根据三极管在电路中的功率消耗来选择适当的功率等级。
-增益:根据电路需求选择合适的放大倍数。
5.微控制器微控制器是一种高度集成的芯片,包含了中央处理器、内存、输入/输出接口等功能。
在选型时需考虑以下几个方面:-存储空间:根据应用需求选择合适的存储空间。
-处理器性能:根据应用需求选择合适的处理器速度和性能。
20个电气元件选型口诀,决断收藏Part.1、已知三相电动机容量,求其额定电流口诀:容量除以千伏数,商乘系数点七六。
三相二百二电机,千瓦三点五安培。
常用三百八电机,一个千瓦两安培。
低压六百六电机,千瓦一点二安培。
高压三千伏电机,四个千瓦一安培。
高压六千伏电机,八个千瓦一安培。
容量大一点的减一点,小一点的加一点精准明确计算电流I=P/U×√3×cosφ(A)补充:精准的说,还应乘上电机效率,一般为0.9。
我们常见的三相电机额定电压(U)是380v。
功率因数(COSφ)一般是0.85,电机铭牌上有标注。
10KW的三相电机额定电流的实在算法:I=10000÷(380×1.73×0.85×0.9)=19.8A。
Part.2、测知电力变压器二次侧电流,求算其所载负荷容量口诀:已知配变二次压,测得电流求千瓦。
电压等级四百伏,一安零点六千瓦。
电压等级三千伏,一安四点五千瓦。
电压等级六千伏,一安整数九千瓦。
电压等级十千伏,一安一十五千瓦。
电压等级三万五,一安五十五千瓦。
Part.3、测知白炽灯照明线路电流,求算其负荷容量口诀:照明电压二百二,一安二百二十瓦。
不论供电还是配电线路,只要用钳型电流表测得某相线电流值,然后乘以220系数,积数就是该相线所载负荷容量。
测电流求容量数,可帮忙电工快速调整照明干线三相负荷容量不平衡问题,可帮忙电工分析配电箱内保护熔体常常熔断的原因,配电导线发热的原因等等。
Part.4、测知无铭牌380V单相焊接变压器的空载电流,求算额定容量口诀:三百八焊机容量,空载电流乘以五。
变压器的空载电流一般约为额定电流的6%~8%(国家规定空载电流不应大于额定电流的10%)。
这就是口诀和公式的理论依据。
Part.5、已知380V三相电动机容量,求其过载保护热继电器元件额定电流和整定电流口诀:电机过载的保护,热继电器热元件;号流容量两倍半,两倍千瓦数整定。
电子元器件行业的电子元器件选型指南一、引言随着科技的不断发展,电子元器件在我们日常生活和工业生产中扮演着越来越重要的角色。
正确选择适合的电子元器件是确保电子产品性能稳定和可靠运行的关键。
本文旨在为电子元器件行业提供一个选型指南,帮助读者了解电子元器件的选型原则和注意事项。
二、电子元器件的分类电子元器件按照其功能和用途可以分为多个不同的类别,包括但不限于:1. 传感器:用于感知和检测环境信息,如温度、湿度、光强等。
2. 芯片和集成电路:包括处理器、存储器等,是电子设备的核心。
3. 电阻器和电容器:用于调节和控制电路中的电流和电压。
4. 电感器和变压器:用于储能和变换电流和电压。
5. 过滤器和放大器:用于对信号进行处理和优化。
6. 开关和继电器:用于控制电路的开关状态。
7. 连接器和插座:用于连接电子元器件和电路板。
8. 电池和电源:为电子设备提供持续的电力。
三、电子元器件选型原则正确的电子元器件选型对于电子产品的性能和稳定性至关重要。
以下是一些选型原则供参考:1. 功能需求:明确电子产品的功能需求,包括工作电压、工作频率、输入输出接口等,选型应满足这些需求。
2. 可靠性和稳定性:选用质量可靠、经过严格测试和认证的品牌产品,确保电子产品的长期稳定运行。
3. 成本和性价比:在满足功能需求和可靠性的前提下,选择性价比更高的产品,合理控制成本。
4. 供应链和售后服务:考虑供应商的供应能力、交货周期以及售后服务体系,确保供应链的可靠性与稳定性。
四、电子元器件选型注意事项在进行电子元器件选型时,需要注意以下事项:1. 数据手册:详细阅读电子元器件的数据手册,了解产品的参数、性能指标以及工作条件等。
2. 可替代性:对于某些特殊的电子元器件,需要考虑其可替代性,以便在供应出现问题时能够及时替换。
3. 散热和封装:对于功耗较高的电子元器件,需要考虑其散热和封装方式,以确保电子设备的稳定工作。
4. 周边支持:对于一些复杂的电子元器件,需要考虑其周边支持的问题,包括开发工具、软件支持等。
电气元件选型及应用电气元件是电力系统和电子电路中不可或缺的基础构成部分,其选型及应用的选择对于电路性能和设备稳定性具有重要影响。
以下将从常见的电气元件进行选型及应用方面进行详细介绍。
1. 电阻器(Resistor)电阻器是一种被设计用来提供电阻的被动元件。
其功能是控制电流、电压和功率的流动以及提供稳定的电阻值。
常见的电阻器有固定电阻器、可变电阻器和特殊电阻器。
在电路设计中,电阻器可以被用来分压、限流、提供倒数倍和过载保护等功能。
在功率电子电路中,电阻器通常用来限制电流,防止过大的电流损坏设备。
2. 电容器(Capacitor)电容器是一种能够存储电荷并在需要时释放电荷的元件。
其由两个导体之间的绝缘材料(电介质)隔开而形成。
常见的电容器有固定电容器、可变电容器和电解电容器。
电容器在电路中的应用非常广泛。
它可以用来存储电能、平滑电压、隔离电路和滤波等。
在直流电源中,电容器可以用来存储能量以提供电流的稳定性。
在信号处理电路中,电容器可以用来滤除噪声信号。
在通信电路中,电容器用来隔离直流和交流信号。
3. 电感器(Inductor)电感器是一种用来储存磁能并且阻碍电流变化的元件。
它由导线绕成线圈而形成,一般绕在铁芯或者空芯上。
常见的电感器有固定电感器和可变电感器。
电感器主要用来储存能量、平滑电流和阻隔高频信号。
在电源电路中,电感器可以用来降低高频噪声。
在电子变压器中,电感器可以用来改变电流和电压之间的关系。
在无线电调谐电路中,电感器用来调节频率。
4. 二极管(Diode)二极管是一种允许电流以一个方向通过的电子组件。
它具有正向电压降和反向电压封锁的特性。
常见的二极管有整流二极管、肖特基二极管和发光二极管。
二极管在电路中主要用于整流、限流和保护等应用。
在整流电源中,二极管将交流电信号转换为直流电信号。
在开关电源中,二极管用来限制负载电流。
在电子设备中,二极管用来保护IC不受反向电压损坏。
5. 可控硅(Thyristor)可控硅是一种可以控制电流流动的特殊二极管。
超详细的电子元器件选型攻略
一、元器件选型基本原则
a、普遍性原则:
所选的元器件要是被广泛使用验证过的,尽量少使用冷门、偏门芯片,减少开发风险。
b、高性价比原则:
在功能、性能、使用率都相近的情况下,尽量选择价格比较好的元器件,降低成本。
c、采购方便原则:
尽量选择容易买到、供货周期短的元器件。
d、持续发展原则:
尽量选择在可预见的时间内不会停产的元器件。
e、可替代原则:
尽量选择pin to pin兼容芯片品牌比较多的元器件。
f、向上兼容原则:
尽量选择以前老产品用过的元器件。
g、资源节约原则:
尽量用上元器件的全部功能和管脚。
芯片的选型过程是对各个维度考量的折衷。
二、全流程关注芯片属性
1、我们在选型的时候,需要考虑试产的情况、同时需要考虑批量生产时的情况
小批量采购的价格、供货周期、样片申请;同时需要关注,大批量之后的价格和供货周期。
有可能批量变大之后,供货的价格没有优势、或者批量大了之后,产能不足。
另外,根据自己的实际采购情况,找对应的量级的供应商。
例如,原厂往往不直接供货,需要通过代理商,有些代理商的供货量级都是有要求的。
同时由于整个行业使用该芯片的场景不是很多,所以导致淘宝价格非常贵,根本没法接受。
各类电子元器件选型原则一、电感选型电感选型时考虑的因素如下:1、体积大小;2、电感值所在工作频率;3、开关频率下的电感值为实际需要的电感值;4、线圈的直流阻抗(DCR)越小越好;5、工作电流应降额至额定饱和电流的0.7倍以下,额定rms电流;6、交流阻抗(ESR)越小越好;7、Q因子越大越好;8、屏蔽类型:屏蔽式或非屏蔽式,优先选择屏蔽式;9、工作频率和绕组电压不可降额。
二、二极管选型二极管参数需降额使用,具体参考《GJB/Z 35元器件降额准则》发光二极管:1、发光二极管优选直径为5mm的插脚型号.贴片发光二极管优选选用有焊接框架的型号,ESD/MSL等级遵循上述的标准;2、发光二极管优选有边、短脚的;为了保持公司产品的一致性,红发红、绿发绿等型号优选,白发红、白发绿等型号慎选;如果没有特殊要求,尽量不要使用长脚、无边的;3、发光二极管优选品牌为“亿光”。
快恢复二极管:1、低电压(耐压值200V以下)下,高时间特性时选肖特基二极管;2、肖特基管热阻和电流都较大,优选分立式封装。
通常3A以下可以选择SOD-123或D-64封装;3~8A可以选择D2-PAK封装;8A以上DO-201、TO-220、TO-3P;3、在高电压时选择PIN结构快恢复二极管。
整流二极管:1、主要考虑最大整流电流、最大反向工作电流、截止频率及反向恢复时间等参数;2、开关电源整流、脉冲整流用整流二极管,宜选工作频率较高、反向恢复时间较短、或选快恢复二极管;3、低电压、大电流时整流,选肖特基二极管;4、同电流等级优先选择反压最高的型号.如1A以下选用1N4007(M7),3A的选用IN5408。
肖特基二极管:同电流档次的保留反压最高的等级,如:1N5819保留,1N5817禁选,SS14保留,SS12禁选;B340A保留。
稳压二极管:1、稳定电压值应与应用电路的基准电压值相同;2、最大稳定电流高于应用电路的最大负载电流50%左右;3、稳压管在选型时务必注意器件功率的降额处理。
电子元件的选型与参数优化电子元件是电子设备中不可或缺的基础元素,正确选型和参数优化可以提高电子设备的性能和可靠性。
本文将详细介绍电子元件的选型与参数优化的步骤和方法。
1. 确定应用需求在选择和优化电子元件之前,首先需要明确电子设备的应用需求。
这包括电子设备的功能要求、工作环境、性能指标等。
只有明确了应用需求,才能有针对性地选择和优化电子元件。
2. 了解元件的基本参数在选型和优化电子元件之前,需要了解元件的基本参数。
常见的电子元件包括电阻、电容、电感、二极管、晶体管等。
需要了解的基本参数包括元件的阻值、容值、电流、电压等。
3. 根据需求选择元件类型根据应用需求,选择合适的电子元件类型。
例如,在设计电源电路时,可以选择高稳压性能的电容和电感;在设计放大电路时,可以选择低噪音系数的晶体管等。
4. 确定元件的工作电压和电流根据应用需求和电路设计,确定电子元件的工作电压和电流。
选取合适的电子元件,使其能够在工作电压和电流范围内正常工作,并具有足够的裕度。
5. 选择元件的精度和稳定性在某些特殊应用中,元件的精度和稳定性非常重要。
例如,在精密测量仪器中,需要选择具有高精度和稳定性的电阻、电容等元件。
根据需求选择相应的元件精度和稳定性。
6. 考虑元件的尺寸和焊接方式电子设备中的元件通常需要进行焊接,因此需要考虑元件的尺寸和焊接方式。
选择合适尺寸的元件,使其能够方便地焊接在电路板上,并保证焊接的可靠性。
7. 考虑元件的价格和供应渠道在选型和优化电子元件时,还需要考虑元件的价格和供应渠道。
选择经济实惠的元件,同时要确保元件的供应渠道稳定可靠,以避免元件短缺和价格波动对项目造成影响。
8. 进行参数优化和性能验证在选型和优化电子元件之后,需要进行参数优化和性能验证。
通过仿真软件或实际测试,验证元件的性能是否满足设计需求,并进行必要的参数调整和优化。
9. 考虑元件的可靠性和寿命在选型和优化电子元件时,还需要考虑元件的可靠性和寿命。
电子元器件的选型与替代原则随着科技的不断发展,电子元器件在各个领域的应用越来越广泛。
在设计电子设备和电路时,选型与替代是非常重要的环节。
本文将详细介绍电子元器件的选型与替代原则,并分点列出步骤。
选型原则:1. 功能要求:首先明确电子元器件在设计中的功能需求,包括输入输出特性、工作电压、功率等。
根据具体要求来选择元器件。
2. 规格要求:根据设计的电路实际需求,确定元器件的具体规格,如尺寸、容量、阻值等。
需考虑元器件在整个系统中的匹配问题。
3. 性能指标:根据元器件的性能指标,如精度、稳定性、响应速度等,来选择合适的元器件。
4. 质量和可靠性:考虑元器件的质量和可靠性,选择有良好信誉的供应商和品牌,以确保系统的稳定性和长期可靠性。
选型步骤:1. 研究需求:仔细研究电子设备或电路的设计需求,包括功能、规格、性能和质量要求。
2. 查阅资料:查阅相关资料,了解市场上可用的元器件品牌、型号和性能参数。
3. 对比分析:根据需求和资料进行对比分析,筛选出符合要求的元器件。
4. 参考经验:借鉴相关领域的经验,学习其他类似设计中所使用的元器件。
5. 考虑成本:根据预算和成本要求,选择性价比最高的元器件。
6. 供应渠道:考虑元器件的供应渠道和供货周期,确保能够按时获得所需元器件。
7. 采购策略:根据选定的元器件,与供应商进行沟通,确定价格和交货条件。
替代原则:1. 尺寸替代:当原有元器件的尺寸已经停产或无法满足要求时,可以选择具有相同功能但尺寸不同的替代元器件。
2. 参数替代:当原有元器件的参数无法满足需求时,可以选择具有相似功能但参数不同的替代元器件。
需进行电路模拟和性能测试,确保替代品能够正常工作。
3. 品牌替代:当原有元器件的供应商没有货源或无法满足质量要求时,可以选择其他品牌的替代元器件。
需注意品牌的信誉和质量。
4. 功能替代:当原有元器件已停产或无法满足特殊功能要求时,可以选择具有类似功能但不同工作原理的替代元器件。
电子元件的选型和使用注意事项导语:随着科技的不断进步,电子元件在我们的生活中扮演着越来越重要的角色。
正确的选型和使用电子元件对于电子设备的性能和寿命都有着关键的影响。
本文将详细介绍电子元件的选型和使用注意事项,以帮助读者更好地了解和应用电子元件。
一、电子元件的选型1. 元件功能需求:首先,我们需要明确所需元件的功能需求。
电子元件按照功能可以分为电源元件、信号处理元件、通信元件等等。
不同的功能需求需要选择不同类型的元件。
2. 特性参数:根据元件的特性参数选择合适的型号是非常重要的。
这些参数包括电压容量、电流、频率响应范围等等。
正确匹配这些参数可以提高元件的工作效能。
3. 品牌和质量:在选购电子元件时,选择一个可靠的品牌是很重要的。
知名品牌的元件通常质量较好,具有较长的使用寿命。
4. 成本因素:成本也是选型的一个重要因素。
我们需要在性能和价格之间取得一个平衡。
有时,选购价格稍高的元件也是一个不错的选择,因为它们往往能够提供更好的性能和质量。
二、电子元件的使用注意事项1. 阅读和理解规格书:在使用电子元件之前,我们务必要仔细阅读和理解元件的规格书。
规格书中包含了元件的详细信息和使用要求,包括最大工作电压、最大工作温度、引脚连接等等。
只有正确理解这些信息,我们才能正确配置和使用元件。
2. 使用适当的工作条件:电子元件的工作环境和条件对于元件的性能和寿命至关重要。
如避免潮湿环境、避免超额载荷、避免过高的温度等,这些都可以减少元件损坏的风险,并提高设备的性能和稳定性。
3. 避免静电和电磁干扰:静电和电磁干扰是元件常见的敌人。
避免长时间接触金属导体、使用合适的防静电工具和设备、保持电路的良好接地都是预防和减少静电和电磁干扰的有效方法。
4.正确的焊接和连接:在焊接和连接元件时,我们需要确保焊点牢固可靠。
注意避免过多的热量和过长的焊接时间,以免对元件造成热损坏。
同时,使用合适的连接工具和技术也可以帮助保护元件。
5. 进行质量检测:在使用电子元件之前或者在设备维护过程中,进行必要的质量检测是很重要的。
电气工程中的电子元件规范要求与选型指南电子元件是电气工程中不可或缺的一部分,其质量和性能直接影响到电气设备的工作效果和可靠性。
为了确保电气工程的顺利进行,合适的规范要求和选型指南是必不可少的。
本文将介绍电气工程中电子元件的规范要求和选型指南,以帮助工程师更好地进行元件选择和设计。
一、电子元件规范要求1. 电子元件的标准化要求为了确保电子元件的互换性和通用性,各种元件需要符合一定的标准化要求。
例如,常用的二极管符号必须遵循国际电工委员会(IEC)的标准规定,这样在不同厂家的元件中,相同的符号代表相同的功能,方便工程师进行选型和替换。
同时,元件的封装也需要符合一定的标准,以便与电路板和其他元件进行连接。
例如,表面贴装元件(SMD)的标准化尺寸和引脚排布,使得元件可以方便地焊接到电路板上,提高生产效率。
2. 电子元件的可靠性要求在电气工程中,电子元件的可靠性是至关重要的。
工程师在选型时需要考虑元件的寿命和工作环境,以确保设备的长期稳定运行。
元件的可靠性要求包括工作温度范围、耐电压、耐电流等参数。
例如,如果元件需要在高温环境下工作,选型时需要选择耐高温的元件,以避免因过热造成元件损坏。
此外,一些元件还需要符合特定的可靠性认证标准,如国际电工委员会IEC第60068系列标准,这些标准规定了元件在各种不同环境条件下的可靠性要求。
3. 电子元件的安全要求电气工程中的电子元件还需要满足一定的安全要求,以避免因元件故障导致的安全事故和人员伤害。
例如,一些元件需要通过安全认证,如欧洲联盟的CE认证和美国的UL认证,这些认证要求元件符合一系列的安全标准,包括电气安全、防火阻燃等要求。
此外,一些具有防水、防尘等特殊要求的元件也需要满足相关的防护等级,以适应各种特殊环境下的应用。
二、电子元件选型指南1. 根据电路要求选择合适的元件在电气工程中,工程师需要根据电路的需求来选择合适的电子元件。
例如,如果电路中需要一个放大功能的元件,可以选择三极管或运放芯片;如果需要一个稳压功能的元件,可以选择稳压二极管或集成稳压芯片。
电子元器件选型目录一、集成电路 (1)二、二极管 (2)三、功率MOS (2)四,三极管 (3)五,电解电容 (3)六,瓷片电容 (4)七,薄膜电容 (4)八,电阻 (5)九,磁性元件 (6)十,金属氧化物压敏电阻MOV (7)十一,印刷电路板 (7)十二,保险丝 (8)十三,光耦 (8)电子元器件选型主要注意的几个参数和标准,大家可以参考一下,这些都是比较保守的值,在实际使用中还可以根据需要适当提高。
一、集成电路因为集成电路的复杂性和保密性,一般我们只能根据半导体结温来推断集成电路的可靠性了。
我们通常规定:1,最大工作电压,不超过额定电压80%2,最大输出电流,不超过额定电流75%3,结温,最大85摄氏度,或不超过额定最高结温的80%二、二极管二极管种类繁多,特性不一。
故而,有通用要求,也有特别要求:通用要求:长期反向电压<70%~90%×VRRM(最大可重复反向电压)最大峰值反向电压<90%×VRRM正向平均电流<70%~90%×额定值正向峰值电流<75%~85%×IFRM正向可重复峰值电流对于工作结温,不同的二极管要求略有区别:信号二极管< 85~150℃玻璃钝化二极管< 85~150℃整流二极管和快恢复、超快恢复二极管(<1000V)<85~125℃整流二极管和快恢复、超快恢复二极管(≥1000V)<85~115℃肖特基二极管< 85~115℃稳压二极管(<0.5W)<85~125℃稳压二极管(≥0.5W)<85~100℃Tcase(外壳温度)≤0.8×Tjmax-2×θjc×P,2×θjc×P<15℃,θjc是从结到壳的热阻,P是功率损耗。
这是一个可供参考的经验值。
这里很多指标给的是个范围,因为不同的可靠性要求和成本之间有矛盾。
所以给出一个相对比较注重可靠性的和一个比较注重成本的两个值供参考。
下面同理。
三、功率MOSVGS<85%×VGSmax(最大栅极驱动电压)ID_peak<80%×ID_M(最大漏极脉冲电流)VDS<80~90%×额定电压dV/dt<50%~90%×额定值结温<85℃~80%×Tjmax(最大工作结温)Tcase(外壳温度)≤0.8×Tjmax-2×θjc×P,2×θjc×P<15℃,θjc是从结到壳的热阻,P是功率损耗。
这是一个可供参考的经验值。
四,三极管所有的电压指标都要限制在85%的额定值之下功率损耗不超过70%~90%额定值IC必须在RBSOA(反偏安全工作区)与FBSOA(正偏安全工作区)范围内降额30%(就是额定的70%)结温不超过85~125℃Tcase(外壳温度)≤0.75×Tjmax-2×θjc×P,2×θjc×P<15℃,θjc是从结到壳的热阻,P是功率损耗。
这是一个可供参考的经验值。
五,电解电容铝电解电容是开关电源中一个非常重要的元件。
而很多开关电源的故障率偏高,都是因为对铝电解的使用不当造成的。
由于铝电解的重要性,我们对他的研究比较多,因而制定出来的规则也比较多。
1,Vdc+Vripple<90%×额定电压2,在电容体之下,PCB正面,尽量不要有地线之外的其他走线。
3,纹波电流,这个问题比较复杂,因为开关电源中,纹波电流的频谱是非常丰富的,所以必须把纹波电流折算一下:频率因子,供应商应该可以提供的。
纹波电流必须保证在供应商的额定值的70%~90%之内。
4,电解电容的初始容量要保证20%的裕量。
同时,要保证额外的20%的容量裕量,以应对寿命快到时的容量衰减。
5,电解电容的寿命温度加速因子为2每10℃,也就是说,温度每升高10度,寿命减半。
6,壳温Tcase受限于设计寿命。
7,自温升<5℃,所谓自温升,是指电容实际工作时,完全因为自身发热导致的温升。
六,瓷片电容工作电压<60%~90%×额定电压表面温度<105℃自温升<15℃或由规格书定义,以低的为准。
七,薄膜电容1,在开关电源中,不要使用聚苯乙烯电容,因为聚苯乙烯电容耐热比较差。
2,表面温度<85℃,超过85℃耐压按照下图降额使用。
此处的电压指的是直流电压叠加交流峰值电压。
3,聚酯电容自温升<8℃或由规格书定义,以低的为准4,聚丙烯电容自温升<5℃或由规格书定义,以低的为准5,薄膜电容的使用寿命取决于电压值和电压脉冲的上升速率。
允许的脉冲数量和电压值以及脉冲斜率的关系,如下式:其中:Npulse为脉冲总数Vr,max最大额定直流电压Vapplied实际使用峰峰值电压(dv/dt)max最大额定脉冲斜率(dv/dt)applied实际使用脉冲斜率八,电阻电阻可以分为三大类:固定线性电阻、固定非线性电阻、可变电阻固定线性电阻包括:碳膜、金属膜、金属氧化膜、金属釉、碳质等电阻和绕线电阻。
固定非线性电阻包括:NTC、PTC电阻的可靠性主要取决于电阻的温度,而温度则是环境温度和自身功率损耗产生热量后叠加的效果。
功率和电压都对电阻的选择与使用产生限制:从图中可以知道,对于阻值低于临界阻值的电阻,使用是受功率限制,而对于高于临界阻值的电阻,使用上是受耐压的限制。
对于单个脉冲的功率限制,取决于脉冲的形状。
同时脉冲的峰值电压必须不能超过额定限制。
电阻的降额使用规则:1,在有瞬间高压脉冲的电路中使用金属釉电阻2,在有大的冲击电流的场合使用绕线电阻3,连续功率<50%×额定功率4,不要使用>1MΩ的碳膜电阻,因为长期稳定性太差5,高阻值长期稳定性好的电阻应采用金属釉电阻6,在热冲击试验后,电阻的阻值必须在±5%的额定范围内7,可熔断电阻,比如保险丝电阻,不要靠PCB太近,以免PCB过热8,尽量不要将矩形的贴片电阻用在ESD保护电路,因为矩形的尖角容易放电9,在电压、电流采样时,如果用贴片电阻,尽量使用尺寸在1206以上的。
10,耐压的降额使用:对于碳膜、金属膜、金属氧化膜电阻:R>100K时,VRMS<50%×额定最大连续工作电压R≤100K时,VRMS<90%×额定最大连续工作电压或90%×(P×R)0.5,以低的为准。
对于碳质电阻、金属釉电阻和绕线电阻:VRMS<90%×额定最大连续工作电压或90%×(P×R)0.5,以低的为准。
11,电路中有冲击电流的时候的瞬时功率可以按照下面的经验公式计算:P=I2×R×t/4,其中,t是电流跌落到最大值38%时的时间。
九,磁性元件磁性元件中,线对线之间的最大电压不能超过下表:将AWG线规可以按照此式转换为mm单位线径:d=25.4×0.005×92((36-AWG)/39)漆包线的使用寿命加速因子约为2.5每10℃。
线包的温度降额规定:CLASS B:95℃~110℃注:额定温度是130℃CLASS F:110℃~125℃注:额定温度是155℃CLASS H:125℃~150℃注:额定温度是180℃磁芯的降额规定:Bmax<80%×Bsat 在任何条件下。
Bsat是磁芯的饱和磁感应强度TCORE<70%×Tcurie-10℃Tcurie是磁芯居里点温度十,金属氧化物压敏电阻MOV Tcase ≤85℃,在任何条件下具体选型推荐为:AC120V/127V 选用150VrmsAC220V 选用275Vrms(此项尚存争议)AC277V 选用320VrmsAC347V 选用420Vrms十一,印刷电路板PCB材料和最高可用表面温度如下:FR2 75℃FR3 90℃FR4 125℃CEM1 125℃CEM3 125℃此外,有以下一些规则:可以使用过孔帮助散热每个过孔流过电流不超过2A布线之间的间距与电压的关系参考UL935FR1的导热率是FR4的两倍,但FR1不适合做双面板十二,保险丝对保险丝的降额使用,是对电路保护可靠性和保险丝使用寿命之间的妥协。
降额使用保险丝,并不能直接带来产品可靠性的提升。
环境温度和电流是影响保险丝寿命的主要因素。
在25℃下,保险丝的电流应该降额25%使用。
在环境温度升高时,慢熔断的保险丝,要按照0.5%/℃来增加降额。
而快融断保险丝则按照0.1%/℃来增加降额。
十三,光耦最大工作电压<70%~90%×额定电压最大工作电流<25%~90%×额定电流电流传输比,按照产品寿命时间,保留20%裕量结温<85℃~100℃另外,更主要的测试是看温度。
因为温度是最终导致寿命变短的关键。