主成分分析
- 格式:ppt
- 大小:1.32 MB
- 文档页数:40
一、主成分分析基本原理概念:主成分分析是把原来多个变量划为少数几个综合指标的一种统计分析方法。
从数学角度来看,这是一种降维处理技术。
思路:一个研究对象,往往是多要素的复杂系统。
变量太多无疑会增加分析问题的难度和复杂性,利用原变量之间的相关关系,用较少的新变量代替原来较多的变量,并使这些少数变量尽可能多的保留原来较多的变量所反应的信息,这样问题就简单化了。
原理:假定有 n 个样本,每个样本共有p 个变量,构成一个n ×p 阶的数据矩阵,x11x12 x1px21 x22 x2p Xxn 1xn2xnp记原变量指标为x1,x2,,,xp ,设它们降维处理后的综合指标,即新变量为 z1,z2,z3,,,zm(m ≤p),则z 1l11x 1 l 12x 2l1p xpz 2 l 21x1 l22x2l2p xp ............ z mlm1x 1 l m2x 2lmp xp系数lij 的确定原则:①zi 与zj (i ≠j ;i ,j=1,2,,,m )相互无关;②z 是x 1 ,x ,,,x 的一切线性组合中方差最大者,z 是与z 不相关的x ,x ,,,1 2P2 1 1 2 xP 的所有线性组合中方差最大者;zm 是与z1,z2,,,, zm -1都不相关的x1,x ,,x P ,的所有线性组合中方差最大者。
2新变量指标z1,z2,,,zm 分别称为原变量指标x1,x2,,,xP 的第1,第2,,,第m 主成分。
从以上的分析可以看出,主成分分析的实质就是确定原来变量xj (j=1,2 ,,,p )在诸主成分zi (i=1,2,,,m )上的荷载lij (i=1,2,,,m ;j=1,2,,,p )。
从数学上可以证明,它们分别是相关矩阵m个较大的特征值所对应的特征向量。
二、主成分分析的计算步骤1、计算相关系数矩阵r11 r12 r1 pr21 r22 r2 pRrp1 rp2 rpprij(i,j=1,2,,,p)为原变量xi与xj的相关系数,rij=rji,其计算公式为n(x ki x i)(x kj x j)r ijk1n n(x ki2(x kj x j)2 x i)k1k12、计算特征值与特征向量解特征方程I R0,常用雅可比法(Jacobi)求出特征值,并使其按大小顺序排列1 2 p0;p 分别求出对应于特征值i的特征向量e i(i1,2,L,p),要求ei=1,即e ij21j1其中e ij表示向量e i的第j 个分量。
主成分分析法什么事主成分分析法:主成分分析(principal components analysis , PCA 又称:主分量分析,主成分回归分析法主成分分析也称主分量分析,旨在利用降维的思想,把多指标转化为少数几个综合指标。
在统计学中,主成分分析(principal components analysis,PCA)是一种简化数据集的技术。
它是一个线性变换。
这个变换把数据变换到一个新的坐标系统中,使得任何数据投影的第一大方差在第一个坐标(称为第一主成分)上,第二大方差在第二个坐标(第二主成分)上,依次类推。
主成分分析经常用减少数据集的维数,同时保持数据集的对方差贡献最大的特征。
这是通过保留低阶主成分,忽略高阶主成分做到的。
这样低阶成分往往能够保留住数据的最重要方面。
但是,这也不是一定的,要视具体应用而定。
主成分分析的基本思想:在实证问题研究中,为了全面、系统地分析问题,我们必须考虑众多影响因素。
这些涉及的因素一般称为指标,在多元统计分析中也称为变量。
因为每个变量都在不同程度上反映了所研究问题的某些信息,并且指标之间彼此有一定的相关性,因而所得的统计数据反映的信息在一定程度上有重叠。
在用统计方法研究多变量问题时,变量太多会增加计算量和增加分析问题的复杂性,人们希望在进行定量分析的过程中,涉及的变量较少,得到的信息量较多。
主成分分析正是适应这一要求产生的,是解决这类题的理想工具同样,在科普效果评估的过程中也存在着这样的问题。
科普效果是很难具体量化的。
在实际评估工作中,我们常常会选用几个有代表性的综合指标,采用打分的方法来进行评估,故综合指标的选取是个重点和难点。
如上所述,主成分分析法正是解决这一问题的理想工具。
因为评估所涉及的众多变量之间既然有一定的相关性,就必然存在着起支配作用的因素。
根据这一点,通过对原始变量相关矩阵内部结构的关系研究,找出影响科普效果某一要素的几个综合指标,使综合指标为原来变量的线性拟合。
主成分分析(principal component analysis, PCA)如果一组数据含有N个观测样本,每个样本需要检测的变量指标有K个, 如何综合比较各个观测样本的性质优劣或特点?这种情况下,任何选择其中单个变量指标对本进行分析的方法都会失之偏颇,无法反映样本综合特征和特点。
这就需要多变量数据统计分析。
多变量数据统计分析中一个重要方法是主成份分析。
主成分分析就是将上述含有N个观测样本、K个变量指标的数据矩阵转看成一个含有K维空间的数学模型,N个观测样本分布在这个模型中。
从数据分析的本质目的看,数据分析目标总是了解样本之间的差异性或者相似性,为最终的决策提供参考。
因此,对一个矩阵数据来说,在K维空间中,总存在某一个维度的方向,能够最大程度地描述样品的差异性或相似性(图1)。
基于偏最小二乘法原理,可以计算得到这个轴线。
在此基础上,在垂直于第一条轴线的位置找出第二个最重要的轴线方向,独立描述样品第二显著的差异性或相似性;依此类推到n个轴线。
如果有三条轴线,就是三维立体坐标轴。
形象地说,上述每个轴线方向代表的数据含义,就是一个主成份。
X、Y、Z轴就是第1、2、3主成份。
由于人类很难想像超过三维的空间,因此,为了便于直观观测,通常取2个或者3个主成份对应图进行观察。
图(1)PCA得到的是一个在最小二乘意义上拟合数据集的数学模型。
即,主成分上所有观测值的坐标投影方差最大。
从理论上看,主成分分析是一种通过正交变换,将一组包含可能互相相关变量的观测值组成的数据,转换为一组数值上线性不相关变量的数据处理过程。
这些转换后的变量,称为主成分(principal component, PC)。
主成分的数目因此低于或等于原有数据集中观测值的变量数目。
PCA最早的发明人为Karl Pearson,他于1901年发表的论文中以主轴定理(principal axis theorem)衍生结论的形式提出了PCA的雏形,但其独立发展与命名是由Harold Hotelling于1930年前后完成。
1 主成分分析定义在许多实际问题中,我们经常用多个变量来刻画某一事物,但由于这些变量之间往往具有相关性,很多变量带有重复信息,这样就给分析问题带来了很多不便,同时也使分析结论不具有真实性和可靠性,因此,人们希望寻找到少量几个综合变量来代替原来较多的变量,使这几个综合变量能较全面地反映原来多项变量的信息,同时相互之间不相关。
主成分分析正是满足上述要求的一种处理多变量问题的方法。
主成分分析(Principal Component Analysis,PCA),将多个变量通过线性变换以选出较少个数重要变量的一种多元统计分析方法。
又称主分量分析。
2 主成分分析基本思想主成分分析是考察多个变量间相关性的一种多元统计方法。
它是研究如何通过少数几个主分量来解释多个变量间的内部结构。
也就是说,从原始变量中导出少数几个主分量,使它们尽可能多地保留原始变量的信息,且彼此间互不相关。
主成分分析的应用目的可以被简单归结为两句话:数据的压缩、数据的解释。
它常被用来寻找判断某种事物或现象的综合指标,并且给综合指标所包含的信息以适当的解释,从而更加深刻的揭示事物的内在规律。
但是在实际应用中,主成分分析更多的只是一种达到目的的中间手段,而并非目的本身,它往往会被作为许多大型研究的中间步骤,在对数据进行浓缩后继续采用其他多元统计方法以解决实际问题。
主成分分析是把原来多个变量化为少数几个综合指标的一种统计分析方法,从数学角度来看,这是一种降维处理技术。
假定有n个地理样本,每个样本共有p个变量描述,这样就构成了一个n×p阶的地理数据矩阵:如何从这么多变量的数据中抓住地理事物的内在规律性呢?要解决这一问题,自然要在p维空间中加以考察,这是比较麻烦的。
为了克服这一困难,就需要进行降维处理,即用较少的几个综合指标来代替原来较多的变量指标,而且使这些较少的综合指标既能尽量多地反映原来较多指标所反映的信息,同时它们之间又是彼此独立的。
什么是主成分分析
主成分分析(Principal Component Analysis,PCA)是一种常用的统计分析方法,主要用于数据降维和特征提取。
通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,这些线性不相关的变量称为主成分。
每个主成分都是原始变量的线性组合,且主成分按照其反映的原始变量的方差大小依次排序。
在实际应用中,主成分分析首先对数据进行标准化处理,然后计算出变量间的协方差矩阵,通过特征值分解或者奇异值分解得到特征值和特征向量。
选取前几个特征值最大的主成分,这些主成分能够解释大部分的方差,从而实现对高维数据的降维处理。
主成分分析有助于简化复杂问题的分析,揭示事物的本质,被广泛应用于多个领域,如经济学、生物学、医学、心理学等。
4,主成分分析法主成分分析(Principal Component Analysis,PCA),是一种统计方法。
通过正交变换将一组可能存在相关性的变量转换为一组线性不相关的变量,转换后的这组变量叫主成分。
主成分分析首先是由K.皮尔森(Karl Pearson)对非随机变量引入的,尔后H.霍特林将此方法推广到随机向量的情形。
信息的大小通常用离差平方和或方差来衡量。
②主成分的解释其含义一般多少带有点模糊性,不像原始变量的含义那么清楚、确切,这是变量降维过程中不得不付出的代价。
因此,提取的主成分个数m通常应明显小于原始变量个数p(除非p本身较小),否则维数降低的“利”可能抵不过主成分含义不如原始变量清楚的“弊”。
③当主成分的因子负荷的符号有正有负时,综合评价函数意义就不明确。
4.4主成分分析法的运用叶晓枫,王志良,【2】在介绍主成分分析方法的基本思想及计算方法基础上,对水资源调配评价指标进行了降维计算. 结果显示筛选出的指标对原指标具有较好的代表性,简化了水资源评价问题的难度。
傅湘,纪昌明【3】,针对模糊综合评判法在综合评价中存在的主观随意性问题,提出采用主成分分析法进行区域水资源承载能力综合评价。
对各区域的灌溉率、水资源利用率、水资源开发程度、供水模数、需水模数、人均供水量和生态环境用水率达七个主要因索进行了分析;根据主成分分析法的原理,运用少数几个新的综合指标对原来的七个指标所包含的信息进行最佳综合与简化,研究其在各区域水资源开发利用过程中的不同贡献及综合效应。
周莨棋,徐向阳等【4】,针对传统主成分分析法用于水资源综合评价中存在一些问题,包括指标评价中的“线性”问题、无法体现评价指标主观重要性以及评价范围无法确定。
进行了改进,采用改进的极差正规方法对数据进行规格化,用规格化后的数据加入了主观重要性权进行协方差计算,对协方差特征向量采用正负理想点进行检验。
陈腊娇,冯利华等【5】,将主成分分析方法引入到水资源承载力研究中,并以浙江省为例,在现有资料的基础上,利用主成分分析的方法,定量分析影响水资源承载力变化的最主要的驱动因子。
主成分分析数据主成分分析(PCA,Principal Component Analysis)是一种最常用的降维技术和数据探索方法。
通过主成分分析,可以将高维的数据集转换为低维的数据集,同时最大程度地保留原始数据的信息。
主成分分析的核心思想是将原始的高维数据转换为一组新的正交变量,称为主成分。
这些主成分是原始数据中的线性组合,其按照方差递减的顺序排列,保留了原始数据中最多的方差。
因此,通过选择前几个主成分,我们可以捕获数据中最重要的变化。
主成分分析的步骤如下:1. 数据预处理:首先,需要对原始数据进行预处理。
常见的预处理技术包括去除异常值、标准化数据(使其均值为0,方差为1)等。
2. 计算协方差矩阵:将预处理后的数据计算协方差矩阵。
协方差矩阵度量了数据之间的线性相关性。
其元素C(i, j)表示第i个变量与第j个变量之间的协方差。
3. 计算特征值和特征向量:通过对协方差矩阵进行特征值分解,可以得到特征值和对应的特征向量。
特征值表示各个主成分的重要性,而特征向量则定义了主成分的方向。
4. 选择主成分:根据特征值,选择前k个主成分。
通常,我们选择特征值较大的前几个主成分,因为它们保留了较多的原始数据的方差。
5. 转换数据:通过特征向量对原始数据进行转换,得到降维后的数据集。
转换后的数据集可以用于后续的数据分析任务,如数据可视化、聚类分析等。
主成分分析在各个领域都有广泛的应用。
在数据可视化中,主成分分析可以将高维数据集转换为二维或三维空间,以便更好地理解数据的结构。
在数据探索中,主成分分析可以揭示数据之间的潜在关系,帮助我们找到数据中的重要特征。
此外,主成分分析还可以用于数据降维。
通过选择前几个主成分,我们可以将高维数据集转换为低维数据集,从而减少计算的复杂性,并提高模型的表现和效率。
这在机器学习和模式识别任务中尤为重要。
然而,主成分分析也有一些限制和注意事项。
首先,主成分分析是基于数据的线性关系假设,因此对于非线性数据,效果可能不佳。