电路设计:超宽带EMI滤波器的设计
- 格式:doc
- 大小:14.50 KB
- 文档页数:2
EMI滤波器的设计原理首先,要了解EMI滤波器的设计原理,我们需要了解电磁干扰的基本特性。
电磁干扰是指在电路中传输的电流和电压信号中引入噪声或干扰的现象。
电磁干扰可以分为传导干扰和辐射干扰两种类型。
传导干扰是指电磁干扰通过导线或电路板上的传输线传播的干扰信号,而辐射干扰则是指干扰信号通过电路中的元器件辐射到周围环境中。
为了抑制电磁干扰,EMI滤波器利用传输线理论来设计。
传输线理论是一种用于描述电磁波在导线或电缆中传播的理论。
根据传输线理论,电磁波在导线中的传播会受到电感和电容的影响。
因此,通过选择合适的电感和电容器,并将它们组合成适当的电路结构,可以实现对电磁干扰的滤波作用。
1.频率响应:根据电磁干扰的频率范围选择合适的滤波器类型。
常见的滤波器类型包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器等。
2.阻抗匹配:为了最大限度地抑制电磁干扰,滤波器需要具有与干扰信号源或受干扰设备之间的阻抗匹配。
阻抗匹配可以减少信号的反射和传输损耗。
3.电感和电容的选择:根据频率响应和阻抗匹配的要求选择合适的电感和电容器。
电感和电容器的数值越大,滤波器对干扰信号的抑制效果越好。
4.滤波网络的结构:根据具体的应用需求确定滤波器的电路结构。
常见的滤波器结构包括Pi型滤波器、T型滤波器、L型滤波器等。
在实际设计中,需要进行电路仿真和实验测试来评估滤波器的性能。
通过调整电感和电容的数值、调整滤波器的结构等方式,可以进一步优化滤波器的性能。
总结起来,EMI滤波器的设计原理是基于电磁干扰的特性和传输线理论,通过选择合适的电感和电容器,并将它们组合成适当的电路结构,来实现对电磁干扰的滤波作用。
在实际设计中,需要考虑频率响应、阻抗匹配、电感和电容器的选择以及滤波网络的结构等因素,通过电路仿真和实验测试来评估滤波器的性能并进行优化。
emi滤波器电路设计-回复EMI滤波器电路设计是电子工程中非常重要的一项工作,它的作用是降低或消除电磁干扰(Electromagnetic Interference,简称EMI),使电路正常运行。
本文将以EMI滤波器电路设计为主题,一步一步回答相关问题。
第一步:了解EMI滤波器的原理和分类EMI滤波器的基本原理是利用滤波器电路对电路信号进行处理,降低或消除电磁辐射、传导噪声对其他设备的影响。
根据滤波器的工作原理和频率响应,EMI滤波器可以分为三类:无源LC滤波器、有源滤波器和混合滤波器。
其中无源LC滤波器是应用最广泛的一种。
第二步:确定EMI滤波器的设计要求在设计EMI滤波器电路之前,需要根据具体应用场景和系统要求,确定一些设计参数和要求,例如带宽范围、最大允许的衰减等级、最大允许的漏电流等。
这些参数和要求将直接影响到滤波器电路的设计和性能。
第三步:选择合适的滤波器拓扑结构在选择滤波器的拓扑结构时,需要考虑滤波器的频率响应、带宽需求以及设计要求等多个因素。
常见的LC滤波器拓扑结构包括L型滤波器、π型滤波器和T型滤波器等。
此外,还可以根据实际需要选择有源滤波器或混合滤波器等。
第四步:计算滤波器的元件数值和参数在确定滤波器的拓扑结构后,需要根据具体的设计要求和滤波器电路的特性,计算滤波器的元件数值和参数。
这包括滤波器电感、电容和电阻等的数值选择和设计。
第五步:绘制EMI滤波器的电路图根据前面的设计计算结果,可以使用相应的电路设计软件或者手绘工具绘制EMI滤波器的电路图。
电路图应该清晰明了,标明每个元件的数值和型号,接线端口应该有合适的标记。
第六步:仿真和优化滤波器电路在绘制完电路图之后,可以使用电路仿真软件对滤波器电路进行仿真和优化。
通过仿真可以验证滤波器电路的设计是否符合要求,并进行必要的调整和优化。
第七步:制作滤波器电路原型并进行测试根据仿真结果,可以制作EMI滤波器电路的原型,并进行实际测试。
EMI滤波器的设计滤波器技术的基本用途是选择信号和抑制干扰,滤波器是是压缩信号回路干扰频谱的一种方法,当干扰频谱的成分不同于有用信号的频谱时,就可以用滤波器将无用的干扰信号过滤,减小到一定程度,使传出系统的干扰不甚于超出给定的规范;使传入系统的干扰不甚于引起系统的误动作。
滤波器将有用信号和干扰频谱隔离得越充分,它对减少有用信号回路干扰的效果越好。
因此恰当的设计滤波器,对抑制传导干扰是极其重要的。
EMI滤波器的设计原则滤波器的设计既可以用电抗性组件实现,也可用吸收组件实现。
前者将不要的干扰信号反射回去,后者将不需要的信号吸收掉。
反射式滤波器通常由电感和电容这两种电抗组件组成,使在通带内提供低的串联阻抗和高的并联阻抗;而在阻带内提供高的串联阻抗和低的并联阻抗。
反射式滤波器就是利用LC建立起一个高的串联阻抗和低的并联阻抗,把干扰频率成分的能量反射回信号源,而达到抑制干扰的目的。
滤波器的有效性取决于滤波器连接的前后网络的阻抗,要达到有效的抑制EMI 信号的目的,必须根据滤波器两端连接的EMI信号的源阻抗和负载阻抗合理连接。
如图1所示,当滤波器的输入阻抗Z OUT与负载电阻Z L相等时,两者匹配,此时负载无反射。
当Z L≠Z OUT时,电路失配,则终端会产生反射,我们定义反射系数Γ=(Z OUT-Z L)/(Z OUT+Z L)(1)Z L图1:滤波器的工作原理当负载电抗时,反射系数是复数。
反射系数与衰减的关系是:A r =-10lg(1-∣T∣2 ) (2)工程应用中常用反射系数Γ来表示通带内的最大适配情况。
图2中的滤波器网络是电源EMI 滤波器,ΓI 表示源端对滤波网络的反射系数; ΓZ 表示负载端对滤波网络的反射系数,分三种情况讨论:① 对电源频率50HZ、60HZ 或400HZ 的交流信号而言,要求滤波网络无损耗传送。
即:ΓI =ΓZ =0; Z S =Z IN ; Z L =Z OUT ;② 为了滤除电网传来的EMI 信号,要求:Z S =Z IN ; ΓI =0 ;电网上的干扰传入滤波网络;Z L >>Z OUT ; ΓZ =1滤波网络全部吸收干扰(从负载全反射)。
EMI滤波器电路原理及设计EMI滤波器(Electromagnetic Interference Filter)是一种用于抑制电磁干扰的电路。
电磁干扰是指电子设备之间相互干扰产生的电磁辐射或者干扰信号,会对设备的正常操作和性能产生负面影响。
EMI滤波器通过选择性地传递或者屏蔽指定频率范围内的信号,从而实现对电磁干扰的抑制。
一般来说,低通滤波器是指可以通过低于其中一特定频率的信号,而对高于该特定频率的信号进行滤波的电路。
低通滤波器常用于消除高频电磁干扰。
一个常见的低通滤波器电路是RC滤波器,由电容器和电阻器组成。
电容器对于高频信号具有很大的阻抗,从而将高频信号绕过电路,实现滤波作用。
选择合适的电容和电阻大小可以实现对于特定频率的信号滤波。
相比之下,高通滤波器是指可以通过高于其中一特定频率的信号,而对低于该特定频率的信号进行滤波的电路。
高通滤波器常用于消除低频电磁干扰。
一个常见的高通滤波器电路是RL滤波器,由电感器和电阻器组成。
电感器对于低频信号具有很大的阻抗,从而将低频信号绕过电路,实现滤波作用。
选择合适的电感和电阻大小可以实现对于特定频率的信号滤波。
除了RC和RL滤波器,还有其他各种类型的EMI滤波器电路,比如LC滤波器、二阶滤波器、传输线滤波器等,可以根据具体应用的需求进行选择和设计。
在EMI滤波器电路的设计中,首先需要确定需要滤波的频率范围,然后根据频率范围选择合适的滤波器类型。
其次,需要根据滤波器的阻抗特性和传输线的特性来选择适当的元件值。
还需要注意电路的功率和电流容量,以确保电路能够在正常工作范围内工作。
在实际应用中,EMI滤波器电路通常需要与其他电路结合使用,比如与电源、传输线路、信号线路等进行连接。
因此,需要特别注意电路的布局和接线,以减少电磁干扰的传播路径。
总之,EMI滤波器电路是一种用于抑制电磁干扰的重要电路,通过选择性地传递或者屏蔽指定频率范围内的信号,实现对电磁干扰的抑制。
在设计EMI滤波器电路时,需要根据具体应用需求选择合适的滤波器类型,并根据电路的阻抗特性和传输线的特性选择适当的元件值。
EMI滤波器电路原理及设计
EMI滤波器的原理是基于信号的频率特性和线路的阻抗匹配。
在设计EMI滤波器时,首先需要分析电路中的电磁干扰源,并根据干扰频率的不
同选择合适的滤波器类型。
常见的滤波器类型包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器。
在滤波器的设计中,核心是选择合适的元件参数以及电路拓扑结构。
其中电感和电容是常用的滤波元件,它们的选择需要考虑滤波器的频率响
应特性。
一般来说,电感可用于低频段的滤波,而电容则适用于高频段的
滤波。
在滤波器的设计中还需要考虑元件的阻抗匹配,以提高滤波效果。
除了滤波器,EMI滤波器还包括抑制器。
抑制器通过增加抑制网络,
进一步提高滤波器对电磁干扰的抑制效果。
抑制网络一般包括与电磁干扰
源之间的串联电感和并联电容。
它们通过改变电路的阻抗特性,减少电磁
干扰信号的传输和辐射。
在设计EMI滤波器时,还需要考虑电路的输入和输出特性以及滤波器
的功率损耗。
输入和输出特性的分析包括电压、电流和功率的测量与计算,以保证滤波器在工作范围内的性能。
而功率损耗则是指滤波器对信号的能
量损耗,需要控制在合理的范围内,以避免对整体电路性能的影响。
总之,EMI滤波器的设计原理是基于信号的频率特性和线路的阻抗匹配。
通过选择合适的滤波器类型、元件参数和抑制网络,可以实现对电磁
干扰的抑制。
设计时需要考虑电路的输入和输出特性以及滤波器的功率损耗,以保证滤波器正常工作并提供良好的滤波效果。
电源电路emi设计一、概述电源电路的EMI(电磁干扰)设计是确保电子设备稳定运行的关键环节。
以下介绍电源电路EMI设计的各个方面,包括输入滤波器设计、输出滤波器设计、接地设计、屏蔽设计、布局设计、电缆设计、去耦电容设计、电源模块选择、传导干扰抑制和辐射干扰抑制。
二、输入滤波器设计输入滤波器的主要目的是减小电源线上的传导干扰。
设计时应考虑使用低通滤波器,以减小高频率的噪声。
同时,要选择适当的元件参数,以在不影响正常工作电流的情况下,有效滤除噪声。
三、输出滤波器设计输出滤波器的目的是减小设备对外的电磁辐射。
应使用适当阶数和元件参数的滤波器,并根据设备的工作频率和可能的辐射频率来确定滤波器的特性。
四、接地设计良好的接地是EMI设计的关键。
应选择适当的接地方式,如单点接地、多点接地或混合接地,以减小接地阻抗,降低因地线导致的电压降,从而减小共模电流。
五、屏蔽设计屏蔽是减少电磁辐射的有效方法。
可以使用金属屏蔽材料对电源线和电源组件进行屏蔽,以减少外部电磁场对设备的影响和设备对外部的电磁辐射。
六、布局设计电源电路的布局设计对于EMI控制至关重要。
应合理安排电源电路中各元件的位置,尽量减小元件间的电磁耦合,降低噪声的传播。
七、电缆设计电缆是电磁干扰的主要传播途径之一。
应选择低阻抗、低感抗的电缆,并进行合理的电缆布局和捆扎,以减小电缆对电磁干扰的传播。
八、去耦电容设计去耦电容可以减小电源中的噪声,提高电路的稳定性。
在电路板上的关键元件附近应合理放置去耦电容,并选择适当的电容值和耐压值。
九、电源模块选择在电源模块的选择上,应优先考虑具有良好EMI性能的模块。
这可以大大简化EMI设计的难度,提高系统的稳定性。
十、传导干扰抑制传导干扰可以通过在设备的输入端加装滤波器来抑制。
根据干扰的频率和强度,可以选择使用各种不同类型的滤波器,如π型滤波器、级联滤波器等。
此外,合理选择和使用电容器、电感器等元件,也可以有效地抑制传导干扰。
开关电源EMI滤波器原理和设计研究开关电源EMI滤波器是用来减少开关电源产生的电磁干扰(EMI)的一种装置。
EMI是指开关电源工作时产生的高频干扰信号,可能会对其他电子设备、无线通信和无线电接收产生干扰,影响它们的正常工作。
EMI滤波器通过合理设计,能有效地抑制开关电源产生的EMI信号,从而减少对其他设备的干扰。
EMI滤波器的原理是基于电流和电压的相位关系来实现的。
开关电源在工作时会产生高频电流脉冲,而这些电流脉冲会通过开关电源输入端的电容等元件,从而形成高频电流回路。
EMI滤波器通过给开关电源输入端加上一个电感元件,阻断高频电流回路的形成,从而减小EMI信号的辐射。
设计EMI滤波器时需要考虑以下几个因素:1.工作频率范围:EMI滤波器需要在开关电源产生EMI信号的频率范围内有效工作。
根据具体的应用环境和要求,选择合适的滤波器工作频率范围。
2.滤波特性:滤波器需要具有良好的滤波特性,对于较高频率的EMI信号能够有较好的抑制效果。
常用的滤波器类型有低通滤波器、带通滤波器和带阻滤波器等。
3.过渡区域:滤波器在过渡区域需要平衡阻抗和频率之间的变化。
过渡区域越宽,滤波器的性能越好。
过渡区域的宽度需要根据具体要求进行设计。
4.安全和可靠性:EMI滤波器需要满足安全和可靠性的要求。
在设计过程中,需要考虑电源参数范围、电流和电压的安全范围等因素,以确保滤波器的稳定性和可靠性。
设计EMI滤波器的方法有多种,可以根据需求选择不同的设计方法。
常见的方法包括线性滤波器设计、Pi型滤波器设计和C型滤波器设计等。
其中,Pi型滤波器是应用最广泛的一种,它由两个电感和一个电容组成,能够对高频信号进行抑制。
总之,开关电源EMI滤波器的原理和设计研究是为了降低开关电源产生的电磁干扰,保证其他设备的正常工作。
通过合理的滤波器设计和选择合适的滤波器类型,可以有效地减少EMI信号对其他设备的干扰,提高系统的抗干扰性能。
EMI电源滤波器设计与测试引言:随着电子设备的广泛应用,电源滤波器的重要性日益突出。
由于电子设备会产生较大的电磁干扰(EMI),这些干扰信号会传播到电源网络中,可能会干扰其他设备的正常运行。
因此,正确设计和测试EMI电源滤波器对于电子设备的稳定运行至关重要。
一、EMI电源滤波器的设计1.确定滤波器的类型:常见的滤波器类型有低通滤波器、带通滤波器和带阻滤波器。
根据特定应用的需求,选择合适的滤波器类型。
2.确定滤波器的频率范围:根据所需的高频抑制能力,选择适当的频率范围。
一般来说,电源干扰的频率范围为100kHz至100MHz。
3.确定滤波器的元件:根据所选滤波器类型和频率范围,选择适当的元件。
常见的元件包括电容器、电感器和阻抗。
4.设计滤波器电路:根据所选元件的电感值和电容值,使用传统的电路设计方法设计滤波器电路。
5.进行仿真和优化:使用电路仿真软件,对设计的滤波器电路进行仿真和优化。
通过调整元件值,使得滤波器在所选频率范围内具有最佳的抑制效果。
6.制作和组装滤波器:根据设计的滤波器电路,制作电路板并组装滤波器。
二、EMI电源滤波器的测试完成滤波器设计后,需要进行测试以确保其设计和性能的有效性。
以下是几个常见的EMI电源滤波器测试方法:1.静态电源测试:在电源线输入端与滤波器间,使用功率分配器和示波器测试静态电源特性。
测试过程中,记录电源线的电压和电流波形,评估滤波器阻尼和节能能力。
2.功率线谐波测试:使用功率线谐波测量仪器,测试滤波器是否能够有效抑制功率线谐波干扰信号。
测试过程中,记录功率线的谐波波形,并与滤波器前后的谐波波形进行比较。
3.射频干扰测试:使用射频信号发生器和射频频谱分析仪,测试滤波器是否能够有效抑制射频干扰信号。
测试过程中,调整射频信号的频率和幅度,记录射频信号在滤波器前后的幅度和频谱。
4.整体性能测试:测试滤波器的整体性能,包括频率响应、损耗和抑制能力等。
测试过程中,使用信号发生器和示波器记录输入和输出信号,并计算滤波器的传递函数、损耗和抑制程度。
简述一款EMI滤波器的设计摘要:本文介绍了一款EMI滤波器电路,包括电路设计的原理,整体构架、电路的组成、特点及关键问题的解决等。
关键词:EMI;滤波器;混合集成1.概述某型号弹上装置的研究需要一款EMI滤波器电路,用于整机的滤波部位,在整机中提供电源滤波。
基于此需求,我们公司研制了一款实用的EMI滤波器电路。
本文详细介绍了该EMI滤波器电路的设计。
2.主要性能指标及外形尺寸2.1主要性能指标1.输入电压:0V~40V2.输入电流:0A~7A3.输出电流:0A~7A4.输出压降:小于等于0.6V(@7A)5.插入损耗:大于等于35dB(@500kHz~10MHz);6.绝缘电阻:不小于100MΩ(@250V DC)7.工作温度范围:-55℃ ~+125℃8.贮存温度范围:-65℃ ~+150℃2.2 外形尺寸该电路采用厚膜混合集成工艺,双列直插式金属外壳平行缝焊封装,严格按混合集成电路通用规范中的要求来设计产品的外壳尺寸:53×28×10mm33.设计与方案确定3.1 整体框架设计产品在设计初期首先与用户进行了充分的沟通,全面了解了用户对产品电性能指标、外形结构要求以及产品的实际使用环境和工作状态。
本产品的设计遵循可靠、够用、简洁、易用的原则,在全面满足用户提出的性能指标的前提下,产品的可靠性,优良的抗振能力、必要的降额设计及良好的热设计思想贯穿于整个设计中,集中保证了产品的高可靠性。
通过共模和差模滤波模式,实现设计要求。
3.2工作原理及电路设计该产品电路原理图见图1。
图1 电路原理图图中L1、L2为共模扼流圈,它是由绕在同一磁环上的两组独立线圈构成,也可以称为共模电感线圈,两个线圈绕制的圈数要一样,绕制方向相反。
具体工作原理为:电源滤波器是由电感和电容组成的低通滤波电路所构成,它允许直流电流通过,对频率较高的干扰信号则有较大的衰减。
由于干扰信号有差模和共模两种,因此该电源滤波器对这两种干扰都具有衰减作用。
电源EMI滤波器的设计方法1. 确定fcn的一般方法扼流圈截止频率fcn要根据电磁兼容性设计要求确定。
对于骚扰源,要求将骚扰电平降低到规定的范围;对于接收器,其接收品质体现在对噪声容限的要求上。
对于一阶低通滤波器截止频率可按下式确定:骚扰源:fcn=kT×(系统中最低骚扰频率);接收机:fcn=kR×(电磁环境中最低骚扰频率)。
式中,kT、kR根据电磁兼容性要求确定,一般情况下取1/3或1/5。
例如:电源噪声扼流圈或电源输出滤波器截止频率取fcn=20~30kHz(当开关电源频率f=100kHz时);信号噪声扼流圈截止频率取fcn=10~30MHz(对传输速率为100Mbps的信息技术设备)。
此外,对于输入电流有特殊波形的设备,例如接有直接整流-电容滤波的电源输入电路(未作功率因数校正(PFC)的开关电源和电子镇流器之类电器通常如此),要滤除2~40次电流谐波传导干扰,噪声扼流圈截止频率fcn可能取得更低一些。
例如,美国联邦通信委员会(FCC)规定电磁干扰起始频率为300kHz;国际无线电干扰特别委员会(CISPR)规定为150kHz;美国军标规定为10kHz。
2. 噪声滤波器电路当扼流圈插入电路后,其提供的噪声抑制效果,不但取决于扼流圈阻抗ZF大小,也与扼流圈所在电路前后阻抗(即源阻抗和负载阻抗)有关。
网络分析指出:在工作频率范围内,传输线输入输出阻抗匹配,可以最大限度传输信号功率;对于噪声,我们自然会想到插入噪声滤波器,使其输入输出阻抗在噪声频率范围内失配,以最大限度抑制噪声。
因此,噪声滤波器结构和构成元件的选择要由噪声滤波器所在电路的源阻抗和负载阻抗而定。
从这个意义上说抗EMI滤波器实际上是噪声失配滤波器。
这里,我们特别提出噪声失配概念有利于对噪声与噪声滤波器相互作用的分析(见后面应用原理部分)。
噪声滤波器电路通常采用π形、T形、L形电路结构及他们的组合等,作成低通滤波器,基本电路结构形式如图1所示。
电源滤波器的电磁兼容性设计0 引言电磁兼容性(EMC)是指电子、电器设备共处一个环境中能互不干扰、兼容工作的能力。
一个现代电子和电器产品(设备、系统)的电磁兼容性对保证产品正常功能的发挥起着至关重要的作用,这已是国内外业界公认的事实。
本文结合国军标的电磁兼容实验传导干扰项目及实验中遇到的问题分析了传导干扰产生的原因及测试方法,介绍了电源滤波器的设计及设备的电磁兼容设计中滤波器的选择方法。
首先介绍传导干扰产生的原因。
1 传导干扰在对某设备的电磁兼容实验中发现,传导干扰项目CE102 超标,测试结果如图1 所示。
产品电源线上的噪声电流是产生传导干扰的原因,因为一旦这些电流传到供电网上,它们将有效辐射,产生干扰。
传导干扰的耦合途径是直接相通的电路,干扰信号正是通过此电路由干扰源耦合到敏感设备。
解决传导耦合的办法是防止导线感应噪声,即采用适当的屏蔽并将导线分离,或者在干扰进入敏感电路之前,用滤波方法从导线上除去噪声。
图1 某设备CE102 测试图1. 1 设备的传导干扰进入供电网络被测设备电源线上的噪声电流进入供电网络的路径如图2 所示。
图2 在一个装置中产生的噪声链通过电源线图1. 2 利用阻抗稳定网络测量传导干扰利用阻抗稳定网络测量传导干扰的布置图如图3 所示。
图3 利用阻抗稳定网络测量传导发射图典型的阻抗稳定网络电原理图如图4 所示。
图4 典型FCC 阻抗稳定网络电原理图测量的电压由差模和共模电流两部分组成,用这些电流表示的相电压和中线电压为:用理想的L ISN 测量的共模和差模电流对传导干扰的影响见图5 .图5 用理想L ISN 测量的共模和差模电流对传导干扰的影响图从图5 中可看出共模噪声电流可对测量的传导干扰做出贡献,而且它们是通过地线返回,这一事实给出了减小传导干扰的一种有效方法,就是在地线中放一个电感来抑制共模电流,如图6 所示。
图6 利用安全地线电感阻隔共模电流双线制产品不采用地线连接,因此可认为没有共模电流,然而机壳与场地金属墙之间的电容也会构成共模电流回路。
电磁干扰(EMI)滤波器电路1、功能定义所谓电磁干扰(EMI),是因电磁波造成设备、传输通道或系统性能降低的一种电磁现象。
EMI以辐射和传导两种方式传播。
辐射方式:能量通过磁场或电场耦合,或以干扰源与受扰设备间的电磁波形式传播。
传导方式:能量通过电源线、数据线、公共地线等而产生或接收。
传导干扰有差模(DM对称模式)和共模(CM非对称模式)两种类型。
目前抑制EMI的技术措施有屏蔽、接地(浮地、单点接地和接地网)与滤波。
我这里所说的即为滤波电路,它主要用于高频开关电源和电子镇流器的输入回路及电源的输出回路中中。
该电路用于滤除电源的输入和输出的噪声(150kHz~30MHz),消减对直流稳压电源的传导干扰。
2、适用范围A、CISPR标准(电机、家用电器、照明设备等射频干扰设备)B、VDE0871标准(有目的的高频波发生器的电磁兼容标准)C、FCC标准(工业、科学、医疗设备的电磁兼容标准)D、VCCI标准(在工业和商业区使用的家用电器及其类似装置)3、设计规范3.1 电路原理图及其描述该电路主要对输入进行滤波,削弱对稳压电源或电子镇流器的输入的传导干扰。
其中,C1、C2和C4、C5及Lc用于滤除共模噪声,C3和C6用于滤除差模噪声。
输出端一般接一电解电容,负载电流大时还需接高频电容,用于消除负载端对输入的噪声干扰。
C1=C2、C4=C5、C3=C6,Lc=(7~30)mH、磁材使用铁氧体材料。
EMI滤波器有C型(纯电容)、L型(一个电感和一个电容)、T型(两只电感和一个电容)、π型(一个电感和两只电容)、双π型(对称绕在同一磁芯上的两个电感和两只电容)等。
上图中电路为最常用的电路(至少对我来说,呵呵~~。
EMI电源滤波器的设计EMI电源滤波器通常由三部分组成:差模滤波部分、共模滤波部分和终端滤波部分。
差模滤波器主要用于滤除差模模式的干扰信号,共模滤波器主要用于滤除共模模式的干扰信号,而终端滤波器用于进一步滤除残余的高频干扰信号。
在设计EMI电源滤波器时,首先需要确定所需的滤波频率范围以及所能容忍的最大干扰水平。
然后,选择合适的滤波器拓扑结构和元件。
常用的拓扑结构包括RC滤波器、LC滤波器、Pi型滤波器、T型滤波器等。
具体的设计步骤如下:1.确定滤波频率范围:根据应用需求和电磁兼容性(EMC)标准要求,确定滤波器应该滤除的频率范围。
2.选择滤波器拓扑结构:根据滤波频率范围选择合适的滤波器拓扑结构。
RC滤波器适用于低频滤波,LC滤波器适用于高频滤波,Pi型滤波器和T型滤波器适用于中频滤波。
3.计算元件数值:根据滤波器的拓扑结构和所需的滤波频率范围,计算出所需的电阻、电容和电感元件的数值。
这些元件的数值可以通过经验公式或者电路仿真工具进行计算。
4.选取合适的元件:根据计算的元件数值,选取合适的电阻、电容和电感元件。
在选取电感元件时,需要考虑元件的电流和电压容量,以保证滤波器的可靠性和稳定性。
5.组装滤波器电路:根据设计的滤波器电路图,组装电阻、电容和电感元件。
在组装过程中,需要确保元件的良好焊接和连接,以避免电流或电压泄漏。
6.测试和优化:组装完成后,对滤波器进行测试和优化。
通过使用示波器或者频谱分析仪等测试设备,可以检测滤波器的滤波效果和性能,并进行必要的优化调整。
总结起来,EMI电源滤波器的设计需要经过确定滤波频率范围、选择滤波器拓扑结构、计算元件数值、选取合适的元件、组装滤波器电路和测试优化等步骤。
通过合理的设计和优化,可以有效降低电源中的电磁干扰,提高电子设备的可靠性和稳定性。
EMI滤波器的设计原理随着电子设备、计算机与家用电器的大量涌现和广泛普及,电网噪声干扰日益严重并形成一种公害。
特别是瞬态噪声干扰,其上升速度快、持续时间短、电压振幅度高(几百伏至几千伏)、随机性强,对微机和数字电路易产生严重干扰,常使人防不胜防,这已引起国内外电子界的高度重视。
电磁干扰滤波器(EMI Filter)是近年来被推广应用的一种新型组合器件。
它能有效地抑制电网噪声,提高电子设备的抗干扰能力及系统的可靠性,可广泛用于电子测量仪器、计算机机房设备、开关电源、测控系统等领域。
1 电磁干扰滤波器的构造原理及应用1.11 构造原理电源噪声是电磁干扰的一种,其传导噪声的频谱大致为10kHz~30MHz,最高可达150MHz.根据传播方向的不同,电源噪声可分为两大类:一类是从电源进线引入的外界干扰,另一类是由电子设备产生并经电源线传导出去的噪声。
这表明噪声属于双向干扰信号,电子设备既是噪声干扰的对象,又是一个噪声源。
若从形成特点看,噪声干扰分串模干扰与共模干扰两种。
串模干扰是两条电源线之间(简称线对线)的噪声,共模干扰则是两条电源线对大地(简称线对地)的噪声。
因此,电磁干扰滤波器应符合电磁兼容性(EMC)的要求,也必须是双向射频滤波器,一方面要滤除从交流电源线上引入的外部电磁干扰,另一方面还能避免本身设备向外部发出噪声干扰,以免影响同一电磁环境下其他电子设备的正常工作。
此外,电磁干扰滤波器应对串模、共模干扰都起到抑制作用。
1。
2 基本电路及典型应用电磁干扰滤波器的基本电路如图1所示。
该五端器件有两个输入端、两个输出端和一个接地端,使用时外壳应接通大地.电路中包括共模扼流圈(亦称共模电感)L、滤波电容C1~C4。
L对串模干扰不起作用,但当出现共模干扰时,由于两个线圈的磁通方向相同,经过耦合后总电感量迅速增大,因此对共模信号呈现很大的感抗,使之不易通过,故称作共模扼流圈。
它的两个线圈分别绕在低损耗、高导磁率的铁氧体磁环上,当有电流通过时,两个线圈上的磁场就会互相加强。
EMI电源滤波器的设计EMI(Electromagnetic Interference)电源滤波器是一种用来减少或阻止电源上的电磁干扰的设备。
电磁干扰可能会来自电源本身,也可能是外部电源信号通过电源线传播进来。
在电气和电子设备中,EMI电源滤波器的设计是非常重要的,它可以有效地减少电磁干扰对电子设备正常运行的干扰。
本文将介绍EMI电源滤波器的设计过程和相关考虑因素。
首先,EMI电源滤波器的设计需要明确滤波器的目标和要求。
不同的应用场景和要求可能需要不同类型或不同参数的滤波器,因此在设计之前需要明确这些要求。
一般来说,EMI电源滤波器的主要目标是滤除电源线上的高频干扰信号,保证电源线上的电能传输稳定和可靠。
接下来,设计者需要考虑滤波器的工作频率范围。
EMI电源滤波器一般工作在几十kHz至几十MHz的范围内,设计时需要选择适当的频率范围,并且根据实际应用场景确定滤波器的通带和阻带要求。
在设计过程中,选择合适的滤波器拓扑结构是非常重要的。
常见的EMI电源滤波器拓扑结构包括低通滤波器、带通滤波器和带阻滤波器等。
低通滤波器用于滤除高频干扰信号,常见的结构包括RC低通滤波器和LC低通滤波器等。
带通滤波器可以滤除一定范围的频率信号,常见的结构包括LC带通滤波器和RL带通滤波器等。
带阻滤波器可以滤除一些特定频率范围的信号,常见的结构包括LC带阻滤波器和RL带阻滤波器等。
根据实际应用需求,选择合适的滤波器结构。
在滤波器的具体参数设计中,设计者还需要考虑滤波器的阻抗匹配问题。
滤波器与电源或负载间的阻抗匹配是保证滤波器正常工作的重要因素。
通过合适的阻抗匹配,可以最大限度地减小传输线上的能量反射,提高滤波器的传输效率,并减少干扰信号的发射和接收。
此外,设计者还需要根据实际应用场景确定滤波器的输入和输出连接方式。
常见的连接方式包括串联连接、并联连接和混合连接等。
选择合适的连接方式可以提高滤波器的实际性能和可靠性。
最后,为了确保EMI电源滤波器的正确设计和工作,设计者需要进行相关的测试和验证。
EMI电源滤波器设计与测试
EMI(电磁干扰)电源滤波器是用于减少电源中的噪声和电磁干扰的一种装置。
在电源系统中,由于电源设备的运行,会产生电磁干扰并向电源线路传播。
这些干扰信号可能会影响其他设备的正常运行,因此需要采取措施来减少这些干扰。
首先,需要确定滤波器的频率范围。
根据要滤除的干扰信号的频率范围,可以选择适当的滤波器类型。
常见的滤波器类型包括:低通滤波器、带通滤波器和带阻滤波器。
其次,需要选择合适的滤波器参数。
滤波器参数包括:滤波器的截止频率、阻抗特性和衰减特性等。
这些参数的选择需要根据具体的应用需求和电源系统的特点来确定。
然后,需要进行EMI电源滤波器的设计。
可以使用模拟电路设计软件进行电路设计和模拟仿真,以验证滤波器的性能。
设计时需要考虑电容和电感的选择、滤波器电路的布局和组成部分之间的连接方式等。
设计完成后,需要进行EMI电源滤波器的测试。
测试可以使用仪器设备来进行,如频谱分析仪、信号发生器和示波器等。
测试时需要验证滤波器的频率响应、衰减特性和滤波效果等。
在测试中,可以通过调整滤波器参数和组成部分,进一步优化滤波器的性能。
如果测试结果不理想,可以尝试采取其他设计方法或更换滤波器元件。
总之,EMI电源滤波器的设计与测试是一项复杂的工作,需要综合考虑多个因素。
通过合理的设计和精确的测试,可以实现对电源中噪声和电磁干扰的有效滤除,提高电源系统的稳定性和可靠性。
EMI 滤波器的精确设计
本文介绍了一种精确设计EMI 滤波器的方法。
为了得到合适的滤波器插入损耗,滤波器设计中不但要考虑电路的干扰特性还要考虑电路的输入阻抗特性。
随着电子技术的发展,电磁兼容性问题成为电路设计工程师极为关注和棘手的问题。
根据多年的工程经验,大家普遍认为电磁兼容性标准中最重要的也是最难解决的两个项目就是传导发射和辐射发射。
为了满足传导发射限制的要求,通常使用电磁干扰(EMI)滤波器来抑制电子产品产生的传导噪声。
但是怎幺选择一个现有的滤波器或者设计一个能满足需要的滤波器?工程师表现得很盲目,只有凭借经验作尝试。
首先根据经验使用一个滤波器,如果不能满足要求再重新修改设计或者换另一个新的滤波器。
因此,要找到一个合适的EMI 滤波器就成为一个费时且高成本的任务。
电子系统产生的干扰特性
解决问题首先要了解电子系统产生的总干扰情况,需要抑制多少干扰电压才能满足标准要求?共模干扰是多少,差模干扰是多少?只有明确了这些干扰特性我们才能根据实际的需要提出要求。
从被测物体的电流路径来看,干扰信号回流路径可能通过地线,或者通过其它电网,如图1 所示。
通过地线的干扰电流在电源网上产生同相位的共模干扰电压。
通过其它线在两根电源线上产生反相的差模干扰电压。
干扰电流的路径如图2 所示。
图1 干扰信号的回流路径。
电路设计:超宽带EMI滤波器的设计
文章介绍超宽带EMI滤波器的设计思路,该滤波器的滤波频率可以达到40GHz甚至更高,在频率低端采用LC反射式滤波原理,在频率高端采用高性能吸波材料的吸收式滤波原理。
由于引入吸波材料,大于10GHz频段的滤波器仍然可以保证100dB 以上的插入损耗,克服了传统LC滤波器在频率高端由于电路分布参数的影响导致滤波性能下降甚至完全失效的弊端。
1.引言近十几年来,作为微波实验基础设施的屏蔽室,其应用的频率范围不断扩展,频率高端已由1GHz增加到18GHz,甚至40GHz,预计未来的趋势还会增加到60GHz,甚至100GHz。
为保证屏蔽室在整个适用频段范围的屏蔽效能,即不因电源线或信号线的引入而使干扰信号也被引入或引出屏蔽室,这就要求屏蔽室的电源滤波器和信号滤波器在同样的频段范围具有规定的插入损耗。
文中介绍的超宽带电磁干扰EMI滤波器在频率高端的处理方法是利用电介质或磁介质的电损耗或磁损耗将高频干扰信号转变成热量,从而实现滤波的效果。
我们在滤波器中填充的电磁介质对于低频电磁波的吸收作用较弱,不会造成有用信号的大幅度衰减。
2.超宽带EMI滤波器的设计思路超宽带EMI滤波器在频率低端采用LC反射式滤波原理,在频率高端采用高性能吸波材料的吸收式滤波原理。
滤波器设计过程中,先根据需求方提供的通带截止频率、阻带插入损耗和额定电流以及漏电流的规定对滤波器的低频端进行计算机建模,这样就可以得到所需电感和电容的数目以及相应的元件值,进而画出相应的电路图。
由于EMI滤波器只需满足要求的截止频率和插入损耗,没有特别的频率响应限制,因而低频端建模采用的是电路简单并且元器件较少的切比雪夫滤波响应,可减小滤波器的体积和重量。
低频端仅能解决100MHz以下的频段,100MHz以上的频段由于电路中导线的分布电感和电感线圈的分布电容等分布参数的影响导致LC滤波电路性能下降甚至完全失效。
高频端的处理方法是加工一段空心同轴线,在同轴线的内外导体之间填充磁损耗和电损耗很高的吸波材料,将高频干扰信号在传播路径中衰减掉。
同轴线内外导体之间填充的电介质或磁介质,如铁氧体、导电碳黑等多为导体,会导致同轴线内外导体短路,为此需要在内外导体之间增加一层绝缘层。
低频端的LC滤波电路在100MHz以下的频段具有较好的插入损耗性能,但是由于。