WCDMA系统网络结构图
- 格式:docx
- 大小:68.92 KB
- 文档页数:5
WCDMA空中接口协议结构及信道映射在3G标准化论坛中,WCDMA技术已经成为了被广泛采纳的第三代空中接口,其规范已在3GPP中制定,WCDMA被称作UTRA(Universal Terrestrial Radio Access,通用地面无线接入)FDD和UTRA TDD两种操作模式。
FDD方案可能用在亚洲、欧洲和美洲,TDD解决方案可能主要用在亚洲,本文主要涉及FDD方案。
在FDD方案中,在上行和下行链路中用的是5MHz带宽的载波,而且上行链路分配的频段为1920~1980MHz,下行链路分配的频段为2110~2170MHz。
这样,使用FDD方式的工作模式运行时,在上行链路和下行链路之间就有190MHz的频率间隔。
尽管5MHz是正常的载波间隔,但在载波间隔4.4MHz~5MHz之间的频带间隙中可有几个200kHz的间隔。
这些间隔可以用来避免相邻信道之间产生相互干扰。
对于TDD方案,分配的频段为1900~1920MHz和2010~2025MHz。
一个确定的载波要同时用于上行链路和下行链路,因此不需要载波间隔。
在任何CDMA系统中,通过应用扩频码,用户数据被扩展到比用户数据本身大得多得带宽上去,此处扩频码是具有很宽的伪随机比特序列,称为码片。
每个用户的传送信息用不同的扩频码进行扩频,并且所有用户在相同时间用相同的频率传送信息。
在接收终端,通过应用该用户的相应扩频码来对接收到的信号进行解扩,把该用户的信号从一系列接收到的信号中分离出来。
解扩操作的结果是重新得到该用户的数据,这些数据要附加上来自其他用户传输引起的噪声。
扩频码速率与用户数据速率的比率称为扩频增益。
扩频增益越大,从其他用户信号中提取该用户信号的能力就越强。
换句话说,对于一个给定的用户数据速率,码片速率越高,可支持的用户数越多。
同样,对于一定数量的用户,码片速率越高,对于每一个用户能够支持的数据速率也越高。
在WCDMA中的码片速率为3.84Mchip/s,它所需要的载频带宽在4.4MHz~5MHz之间。
WCDMA系统网络结构图1.Uu:UE和UTRAN(陆地无线接入网)之间的接口,用户终端。
2.UE: 3G网络中,用户终端就叫做UE包含手机,智能终端,多媒体设备,流媒体设备等。
3.ME:4.UTRAN:陆地无线接入网。
UTRAN由NODE B和无线网络控制器(RNC)构成,NODE B相当于GSM BTS,RNC相当于GSM BSC。
3g由核心网(CN)、UMTS 陆地无线接入网(UTRAN)、用户设备(UE)三大部分组成,CN主要完成用户认证、位置管理、呼叫连接控制、用户信息传送等功能。
UTRAN 分为无线不相关和无线相关两部分,前者完成与CN 的接口,实现向用户提供QOS 保证的信息处理和传送以及用户和网络控制信息的处理和传送;无线相关部分处理与UE 的无线接入(用户信息传送、无线信道控制、资源管理等)。
UE 主要完成无线接入、信息处理等。
Node B:无线收发信机。
主要功能是扩频、调制、信道编码及解扩、解调、信道解码、还包括基带信号和射频信号的转化。
5.Lub:逻辑单元块6.RNC:无线网络控制器是3G网络的一个关键网元。
它是接入网的组成部分,用于提供移动性管理、呼叫处理、链接管理和切换机制。
7.Lu:逻辑单元(LU)连接陆地无线接入网(UTRAN)和CN(核心网)8.Lur:用于呼叫切换的RNC到RNC连接,通常通过OC-3链路实现。
:核心网将业务提供者与接入网,或者,将接入网与其他接入网连接在一起的网络。
通常指除接入网和用户驻地网之外的网络部分。
10.Msc: 移动交换中心。
核心网CS域功能节点。
MSC/VLR的主要功能是提供CS域的呼叫控制、移动性管理、鉴权和加密等功能。
11.VLR: 拜访位置寄存器, VLR动态地保存着进入其控制区域内的移动用户的相关数据,如位置区信息及补充业务参数等,并为已登记的移动用户提供建立呼叫接续的必要条件。
VLR从该移动用户归属的HLR中获取并保存用户数据,并在MSC处理用户的移动业务时向MSC提供必要的用户数据。
三种主流3G标准概述与前两代系统相比,第三代移动通信系统的主要特征是可提供丰富多彩的移动多媒体业务,其传输速率在高速移动环境中支持144kb/s,步行慢速移动环境中支持384kb/s,静止状态下支持2Mb/s。
其设计目标是为了提供比第二代系统更大的系统容量、更好的通信质量,而且要能在全球范围内更好地实现无缝漫游及为用户提供包括话音、数据及多媒体等在内的多种业务,同时也要考虑与已有第二代系统的良好兼容性。
目前国际电联接受的3G标准主要有以下三种:WCDMA、CDMA2000与TD-SCDMA。
CDMA是Code Division Multiple Access(码分多址)的缩写,是第三代移动通信系统的技术基础。
第一代移动通信系统采用频分多址(FDMA)的模拟调制方式,这种系统的主要缺点是频谱利用率低,信令干扰话音业务。
第二代移动通信系统主要采用时分多址(TDMA)的数字调制方式,提高了系统容量,并采用独立信道传送信令,使系统性能大为改善,但TDMA的系统容量仍然有限,越区切换性能仍不完善。
CDMA系统以其频率规划简单、系统容量大、频率复用系数高、抗多径能力强、通信质量好、软容量、软切换等特点显示出巨大的发展潜力。
1.1 WCDMA概述全称为Wideband CDMA,中文译名为“宽带分码多工存取”,这是基于GSM网发展出来的3G技术规范,是欧洲提出的宽带CDMA技术,它与日本提出的宽带CDMA技术基本相同,目前正在进一步融合。
该标准提出了GSM(2G)—GPRS—EDGE—WCDMA(3G)的演进策略。
GPRS是General Packet Radio Service(通用分组无线业务)的简称,EDGE是Enhanced Data rate for GSM Evolution(增强数据速率的GSM演进)的简称,这两种技术被称为2.5代移动通信技术。
目前中国移动正在采用这一方案向3G过渡,并已将原有的GSM网络升级为GPRS网络。
W C D M A系统网络结构图WCDMA系统网络结构图1.Uu:UE和UTRAN(陆地无线接入网)之间的接口,用户终端。
2.UE:3G网络中,用户终端就叫做UE包含手机,智能终端,多媒体设备,流媒体设备等。
3.ME:4.UTRAN:陆地无线接入网。
UTRAN由NODE B和无线网络控制器(RNC)构成,NODE B相当于GSM BTS,RNC相当于GSM BSC。
3g由核心网(CN)、UMTS 陆地无线接入网(UTRAN)、用户设备(UE)三大部分组成,CN主要完成用户认证、位置管理、呼叫连接控制、用户信息传送等功能。
UTRAN分为无线不相关和无线相关两部分,前者完成与CN 的接口,实现向用户提供QOS 保证的信息处理和传送以及用户和网络控制信息的处理和传送;无线相关部分处理与UE 的无线接入(用户信息传送、无线信道控制、资源管理等)。
UE 主要完成无线接入、信息处理等。
Node B:无线收发信机。
主要功能是扩频、调制、信道编码及解扩、解调、信道解码、还包括基带信号和射频信号的转化。
5.Lub:逻辑单元块6.RNC:无线网络控制器是3G网络的一个关键网元。
它是接入网的组成部分,用于提供移动性管理、呼叫处理、链接管理和切换机制。
7.Lu:逻辑单元(LU)连接陆地无线接入网(UTRAN)和CN(核心网)8.Lur:用于呼叫切换的RNC到RNC连接,通常通过OC-3链路实现。
:核心网将业务提供者与接入网,或者,将接入网与其他接入网连接在一起的网络。
通常指除接入网和用户驻地网之外的网络部分。
10.Msc: 移动交换中心。
核心网CS域功能节点。
MSC/VLR的主要功能是提供CS域的呼叫控制、移动性管理、鉴权和加密等功能。
11.VLR: 拜访位置寄存器, VLR动态地保存着进入其控制区域内的移动用户的相关数据,如位置区信息及补充业务参数等,并为已登记的移动用户提供建立呼叫接续的必要条件。
VLR从该移动用户归属的HLR中获取并保存用户数据,并在MSC处理用户的移动业务时向MSC提供必要的用户数据。
WCDMA技术简介一.通信系统概述第一代移动通信系统是模拟制式的蜂窝移动通信系统,时间是本世纪七十年代中期至八十年代中期,1978年美国贝尔实验室研制成功先进移动电话系统AMPS,建成了蜂窝式移动通信系统。
其它工业化国家也相继开发出蜂窝式移动通信网。
这一阶段相对于以前的移动通信系统,最重要的突破是贝尔实验室在七十年代提出的蜂窝网的概念,蜂窝网,即小区制,由于实现了频率复用,大大提高了系统容量。
第一代移动通信系统的典型代表是美国的AMPS系统(先进移动电话系统)和后来的改进型系统TACS (总接入通信系统)等。
AMPS使用800MHz频带,在北美、南美和部分环太平洋国家广泛,使用TACS使用900MHz频带,分ETACS(欧洲)和NTACS(日本)两种版本,英国、日本和部分亚洲国家广泛使用此标准。
第一代移动通信系统的主要特点是采用频分复用FDMA 模拟制式,语音信号为模拟调制,每隔30kHz/25kHz一个模拟用户信道。
第一代系统在商业上取得了巨大的成功,但是其弊端也日渐显露出来:(1)频谱利用率低(2) 业务种类有限(3) 无高速数据业务(4) 保密性差易被窃听和盗号(5) 设备成本高(6) 体积大重量大第二代数字蜂窝移动通信系统的典型代表是美国的DAMPS系统、IS-95和欧洲的GSM系统。
GSM(全球移动通信系统)发源于欧洲,它是作为全球数字蜂窝通信的TDMA标准而设计的,支持64kbit/s的数据速率,可与ISDN互连。
GSM使用900MHz频带,使用1800MHz频带的称为DCS1800。
GSM采用FDD双工方式和TDMA多址方式,每载频支持8个信道,信号带200kHz ,GSM标准体制较为完善,技术相对成熟,不足之处是相对于模拟系统其容量增加不多,仅仅为模拟系统的两倍左右,无法和模拟系统兼容。
DAMPS(先进的数字移动电话系统)也称IS-54(北美数字蜂窝),使用800MHz频带,是两种北美数字蜂窝标准中推出较早的一种,使用TDMA多址方式。
WCDMA高级培训课件主要内容:1、UMTS的基本理论。
简述无线通信的发展历史以及他们之间的变化。
2、UMTS基本结构的介绍。
从逻辑视图介绍UMTS的功能结构,GSM及GPRS向UMTS 过渡的结构变化。
3、无线接口。
UMTS作为UTRAN网络并且是FDD方式下的空中接口特性,包括:a、WCMDA空中接口的基本原理b、UTRAN网络的总体介绍,协议模型、物理层、RLC层、MAC层的基本功能以及所对应的信道、空中接口的通信过程、调制解调方案及AMR等。
4、基本通信过程。
移动台至核心网之间的通信过程。
一、UMTS Introduction目标:1、UMTS是什么?2、UMTS的标准由谁制定、这些标准的特点及不同标准的差异。
3、UMTS现状,各国license发布情况。
1、移动通信的基本发展过程第一代以模拟制式为代表的空中无线接口的应用主要有:NMT(北欧)、TACS(英国)、AMPS(北美)及R2000(铁路应用)等。
多种标准的存在使得彼此不兼容,不能互联互通。
第二代移动通信引入数字和调频技术,最典型的技术有:GSM(欧洲)、CDMA IS-95(北美)、D-AMPS(北美)、IS-136(北美)等。
在整个发展过程中,主要有三个分支,分别是欧洲、北美和日本的移动通信发展历程。
日本的分支由于比较独立,一般不在讨论之中。
作为欧洲第二代移动通信技术的典型代表是GSM,GSM在空中接口的主要特点:多址方式-—TDMA,采用8路时分复用的多址方式,每用户的接入是通过占用物理信道的时隙来区分。
从网络侧考虑,区分上下行链路的双工方式是FDD。
在每一个频率上使用8路时分复用,微观的占用时间片来区分多路用户的个人通信。
在通信过程中,每个用户得到的物理资源是时隙,在GSM中物理信道的定义为:物理信道(Phy channel)=频率(Frequence)+时隙号(TS number)。
由于采用电路交换方式,每用户在通信过程中,将一直占用网络分配的物理信道直至通信结束。
W C D M A_物理层层信道详细解读-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIANWCDMA1、WCDMA物理层信道1.1、同步信道(SCH, Synchronisation Channel)SCH是下行物理信道,分为主同步信道(P-SCH, Primary SCH)和从同步信道(S-SCH, Secondary SCH)。
主要用于UE在开机后与系统进行时隙同步和帧同步的过程,以完成物理层同步。
SCH是一个用于在小区搜索过程中UE与网络进行时隙同步和帧同步的下行物理信道。
SCH包括两个子信道,一个是主同步信道(P-SCH),另一个是从同步信道(S-SCH)。
SCH 的每个无线帧长度为10ms(38400chips),分为15个时隙。
每个时隙的长度为2560chips。
SCH 的无线帧结构如图:P-SCH 上发送的是基本同步码(PSC, Primary Synchronization Code),长为256chips。
PSC 在每一个时隙的前256个码片的位置发射一次,在图中用cp表示。
系统中每个小区的PSC 都是相同的。
S-SCH 上发送的是辅助同步码(SSC, Secondary Synchronization Code),长为256chips。
S-SCH 与P-SCH 在时间上并行传输。
SSC 在图中用csi,k来表示,其中i (0~63)表示主扰码组的组号,k(0~14)表示时隙号。
S-SCH 的每一个无线帧重复发射这15个SSC。
每个SSC 是从长为256chips的16个不同的码片序列中选取的。
在S-SCH上发送的SSC 序列共有64种确定的组合,对应64个主扰码组,用于指示小区的下行扰码是属于哪一个扰码组的。
也就是说如果两个小区的主扰码不同,那么这两个小区的S-SCH信道上发送的SSC 序列就不同。
图中的参数a用于指示P-CCPCH 是否进行了发射分集,a=+1,表示P-CCPCH 进行了STTD 发射分集,a=-1,表示P-CCPCH 未进行STTD 发射分集。
1、WCDMA物理层信道、同步信道(SCH, Synchronisation Channel)SCH是下行物理信道,分为主同步信道(P-SCH, Primary SCH)和从同步信道(S-SCH, Secondary SCH)。
主要用于UE在开机后与系统进行时隙同步和帧同步的过程,以完成物理层同步。
SCH是一个用于在小区搜索过程中UE与网络进行时隙同步和帧同步的下行物理信道。
SCH包括两个子信道,一个是主同步信道(P-SCH),另一个是从同步信道(S-SCH)。
SCH 的每个无线帧长度为10ms(38400chips),分为15个时隙。
每个时隙的长度为2560chips。
SCH 的无线帧结构如图:P-SCH 上发送的是基本同步码(PSC, Primary Synchronization Code),长为256chips。
PSC 在每一个时隙的前256个码片的位置发射一次,在图中用cp表示。
系统中每个小区的PSC 都是相同的。
S-SCH 上发送的是辅助同步码(SSC, Secondary Synchronization Code),长为256chips。
S-SCH 与P-SCH 在时间上并行传输。
SSC 在图中用csi,k来表示,其中i(0~63)表示主扰码组的组号,k(0~14)表示时隙号。
S-SCH 的每一个无线帧重复发射这15个SSC。
每个SSC 是从长为256chips的16个不同的码片序列中选取的。
在S-SCH上发送的SSC 序列共有64种确定的组合,对应64个主扰码组,用于指示小区的下行扰码是属于哪一个扰码组的。
也就是说如果两个小区的主扰码不同,那么这两个小区的S-SCH信道上发送的SSC 序列就不同。
图中的参数a用于指示P-CCPCH 是否进行了发射分集,a=+1,表示P-CCPCH进行了STTD 发射分集,a=-1,表示P-CCPCH 未进行STTD 发射分集。
SCH 信道不进行扩频和加扰。
WCDMA系统网络结构图
1.Uu:UE和UTRAN(陆地无线接入网)之间的接口,用户终端。
2.UE: 3G网络中,用户终端就叫做UE包含手机,智能终端,多媒体设备,
流媒体设备等。
3.ME:
4.UTRAN:陆地无线接入网。
UTRAN由NODE B和无线网络控制器(RNC)
构成,NODE B相当于GSM BTS,RNC相当于GSM BSC。
3g由核心网(CN)、UMTS 陆地无线接入网(UTRAN)、用户设备(UE)三大部分组成,CN主要完成用户认证、位置管理、呼叫连接控制、用户信息传送等功能。
UTRAN 分为无线不相关和无线相关两部分,前者完成与CN 的接口,实现向用户提供QOS 保证的信息处理和传送以及用户和网络控制信息的处理和传送;无线相关部分处理与UE 的无线接入(用户信息传送、无线信道控制、资源管理等)。
UE 主要完成无线接入、信息处理等。
Node B:无线收发信机。
主要功能是扩频、调制、信道编码及解扩、解调、信道解码、还包括基带信号和射频信号的转化。
5.Lub:逻辑单元块
6.RNC:无线网络控制器是3G网络的一个关键网元。
它是接入网的组成
部分,用于提供移动性管理、呼叫处理、链接管理和切换机制。
7.Lu:逻辑单元(LU)连接陆地无线接入网(UTRAN)和CN(核心网)
8.Lur:用于呼叫切换的RNC到RNC连接,通常通过OC-3链路实现。
:核心网将业务提供者与接入网,或者,将接入网与其他接入网连
接在一起的网络。
通常指除接入网和用户驻地网之外的网络部分。
10.Msc: 移动交换中心。
核心网CS域功能节点。
MSC/VLR的主要功能是提
供CS域的呼叫控制、移动性管理、鉴权和加密等功能。
11.VLR: 拜访位置寄存器, VLR动态地保存着进入其控制区域内的移动用户
的相关数据,如位置区信息及补充业务参数等,并为已登记的移动用户提供建立呼叫接续的必要条件。
VLR从该移动用户归属的HLR中获取并保存用户数据,并在MSC处理用户的移动业务时向MSC提供必要的用户数据。
VLR一般都与MSC在一起综合实现。
12.HLR: 归属位置寄存器, 存放着所有归属用户的信息,如用户的有关号
码(IMSI和MSISDN)、用户类别、漫游能力、签约业务和补充业务等。
此外,HLR还存储着每个归属用户有关的动态数据信息,如用户当前漫游所在的MSC/VLR地址(即位置信息)和分配给用户的补充业务。
13.AUC是GSM系统的安全性管理单元,存储用以保护移动用户通信不受
侵犯的必要信息。
AUC一般与HLR合置在一起,在HLR/AUC内部,AUC 数据作为部分数据表存在。
14.OMC:操作维护中心。
包括设备管理系统和网络管理系统。
设备管理系
统完成对各独立网元的维护和管理;网络管理系统能够实现对全网所有相关网元的统一维护和管理。
15.
16.SGSN: 服务GPRS支持节点,SGSN是GSM/GPRS/EDGE网络的CN的网元。
它负责在其服务区内转发MS移动台与外部网络之间的IP数据包。
SGSN 和MS之间的业务信息还要经过BSC,基站控制器)和BTS基站收发信台)的传输。
主要功能还有:鉴权和加密;会话管理;移动性管理;逻辑链路管理;通过Gr接口与HLR归属位置寄存器)连接、通过Gb接口与BSC 连接、通过Gn接口与GGSN,网关GPRS支持节点)连接;输出与无线网络使用相关的计费数据。
17.GMSC: 移动交换中心网关, GMSC称为入口移动交换局或称门道局
(GATE WAY-网关或门道交换局)。
它具有从HLR查询得到被叫MS 目前的位置信息,并根据此信息选择路由。
GMSC 可以是任意的MSC ,也可以单独设置。
单独设置时,不处理MS的呼叫,因此不需设VLR ,不与BSC 相连。
18.GGSN: 网关GPRS支持节点, 核心网)的网元,是为了在GSM网络中提供
GPRS业务功能而引入的一个网元功能实体,提供数据包在GPRS网和外部数据网之间的网关接口功能。
用户选择哪一个GGSN作为网关,是在PDP Contexts激活过程中根据用户的签约信息以及用户请求的接入点名确定的。
主要功能有:通过Gi接口与外部IP分组网络连接2 GPRS会话管理,建立与外部网络的通信3通过Gn接口与SGSN连接4输出与外部数据网络使用相关的计费信息。
19.External Networks:外部网络(External Networks)外部网络主要可以
分为两类:①电路交换型外部网络(CS Networks):提供电路交换的连接服务,如语音服务。
20.PLMN PST LSDN..etc: PLMN 公众陆地移动电话网, 由政府或它所批准的
经营者,为公众提供陆地移动通信业务目的而建立和经营的网路。
该网路必须与公众交换电话网(PSTN)互连,形成整个地区或国家规模的通信网。
PSTN 公共交换电话网即我们日常生活中常用的电话网。
PSTN 是一种以模拟技术为基础的电路交换网络。
他是一种用于全球语音通信的电路交换网络,是目前世界上最大的网络目前几乎全部是数字化的网络。
公共交换电话网主要由交换系统和传输系统两大部分组成,其中,交换系统中的设备主要是电话交换机(现在是程控交换机)。
传输系统主要由传输设备和线缆组成,传输设备也由早期的载波复用设备发展到SDH同步数字体系,根据ITU-T的建议定义,是不同速度的数位信号的传输提供相应等级的信息结构,包括复用方法和映射方法,以及相关的同步方法组成的一个技术体制。
ISDN 综合业务数字网就是采用的数字交换和数字传输的电信网的简称,中国电信将其俗称为"一线通"。
ISDN 是以电话综合数字网为基础发展而成的通信网,能提供端到端的数字连接,可承载话音和非话音业务,用户能够通过多用途用户----网络接口接入网络。
ISDN采用数字传输和数字交换技术,将电话、传真、数据、图像等多种业务综合在一个统一的数字网络进行传输和处理,向用户提供基本速率(2B+ D,144kbit/s)和一次群速率(30B+D,2Mkbit/s)两种接口。
基本速率接口包括两个能独立工作的B信道(64Kkbit/s)和一
个D信道(16Kkbit/s)。
其中B信道一般用来传输话音、数据和图像,D信道用来传输信令或分组信息。
ISDN能够向用户提供三大类业务:承载业务(与用户终端类型无关);用户终端业务(如数字电话、四类传真、数据通信、视频通信等);丰富的补充业务(如主/被叫用户号码识别显示/限制、呼叫等待、呼叫转移、多用户号码、子地址、三方通信等)。