湖北省武汉市巨人教育辅导机构2018年中考数学专题复习讲义 :相似三角形六大证明技巧(无答案)
- 格式:docx
- 大小:298.10 KB
- 文档页数:10
2018中考数学:7个相似三角形考点归纳
考点1:相似三角形的概念、相似比的意义、画图形的放大和缩小
考核要求:
(1)理解相似形的概念;
(2)掌握相似图形的特点以及相似比的意义,能将已知图形按照要求放大和缩小。
考点2:平行线分线段成比例定理、三角形一边的平行线的有关定理
考核要求:理解并利用平行线分线段成比例定理解决一些几何证明和几何计算。
注意:被判定平行的一边不可以作为条件中的对应线段成比例使用。
考点3:相似三角形的概念
考核要求:以相似三角形的概念为基础,抓住相似三角形的特征,理解相似三角形的定义。
考点4:相似三角形的判定和性质及其应用
考核要求:熟练掌握相似三角形的判定定理(包括预备定理、三个判定定理、直角三角形相似的判定定理)和性质,并能较好地应用。
考点5:三角形的重心
考核要求:知道重心的定义并初步应用。
考点6:向量的有关概念
考点7:向量的加法、减法、实数与向量相乘、向量的线性运算。
2018年下学期九年级数学辅导讲义第06,07讲 相似三角形【知识网络】【要点梳理】要点一、相似图形及比例线段1.相似图形:在数学上,我们把形状相同的图形称为相似图形.要点诠释:(1) 相似图形就是指形状相同,但大小不一定相同的图形; (2) “全等”是“相似”的一种特殊情况,即当“形状相同”且“大小相同”时,两 个图形全等;2.相似多边形如果两个多边形的对应角相等,对应边的比相等,我们就说它们是相似多边形. 要点诠释:(1)相似多边形的定义既是判定方法,又是它的性质. (2)相似多边形对应边的比称为相似比.3. 比例线段:对于四条线段a 、b 、c 、d ,如果其中两条线段的比与另两条线段的比相等,如a :b =c :d ,我们就说这四条线段是成比例线段,简称比例线段. 要点诠释:(1)若a :b =c :d ,则ad=bc ;(d 也叫第四比例项) (2)若a :b=b :c ,则 =ac (b 称为a 、c 的比例中项).要点二、相似三角形 1. 相似三角形的判定:判定方法(一):平行于三角形一边的直线和其他两边相交,所构成的三角形和原三角形相似. 判定方法(二):如果两个三角形的三组对应边的比相等,那么这两个三角形相似. 判定方法(三):如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似.要点诠释:此方法要求用三角形的两边及其夹角来判定两个三角形相似,应用时必须注意这个角必须是两边的夹角,否则,判断的结果可能是错误的.2b判定方法(四):如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似. 判定方法(五):如果两个直角三角形斜边与一条直角边对应成比例,那么这两个直角三角形相似. 要点诠释:要判定两个三角形是否相似,只需找到这两个三角形的两个对应角相等即可,对于直角三角形而言,若有一个锐角对应相等,那么这两个三角形相似.2. 相似三角形的性质:(1)相似三角形的对应角相等,对应边的比相等; (2)相似三角形中的重要线段的比等于相似比;相似三角形对应高,对应中线,对应角平分线的比都等于相似比. 要点诠释:要特别注意“对应”两个字,在应用时,要注意找准对应线段. (3) 相似三角形周长的比等于相似比;(4)相似三角形面积的比等于相似比的平方。
《相似三角形》知识点归纳知识点1有关相似形的概念(1) 形状相同的图形叫相似图形,在相似多边形中,最简单的是相似三角形 •(2) 如果两个边数相同的多边形的对应角相等,对应边成比例,这两个多边形叫做相似多边形.相似多边形对应边长度的比叫做相似比 (相似系数).知识点2比例线段的相关概念、比例的性质 (1)定义: 在四条线段a,b, c,d 中,如果a 和b 的比等于e 和d 的比,那么这四条线段 a,b,c,d 叫做成比例线段,简称比例线段.注:①比例线段是有顺序的,如果说 a 是b,c,d 的第四比例项,那么应得比例式为:注:①黄金三角形:顶角是 360的等腰三角形②黄金矩形:宽与长的比等于黄金数的矩形a -,(交换内项)c d②a c b d d c,(交换外项) 核心内容:ad bcb a'd -.(同时交换内外项) (2)黄金分割:把线段AB 分成两条线段 AC,BC(AC BC),且使AC 是AB 和BC 的比例中项, 即AC 2 AB BC ,叫做把线段 AB 黄金分割,点C 叫做线段AB 的黄金分割点,其中 AC 也」AB 〜0.618 AB •即 2 AC AB BC E 1 AC 2 简记为: 长-短-V5 1全—长—2a c abed(3)合、分比性质:注:实际上,比例的合比性质可扩展为: 比例式中等号左右两个比的前项,后项之间b a d c发生同样和差变化比例仍成立•如:a c a c等等•b d a bc da b c d(4)等比性质:如果 a c e m(b d f n 0),b d f n那么a c e m ab d f n b知识点3比例线段的有关定理平行线分线段成比例定理:三条平行线截两条直线,所截得的对应线段成比例已知AD//BE// CF,可得JAB些或AB BC EFAC特别在三角形中:DF AB由DE// BC可得:如圧或BDDB EC AD EF DEEC EA知识点4相似三角形的概念匹巨或便BC等.(1)定义:对应角相等,对应边成比例的三角形,叫做相似三角形•相似用符号“S”表示,读作“相似于” 似系数)•相似三角形对应角相等,对应边成比例.•相似三角形对应边的比叫做相似比(或相注:①对应性:即把表示对应顶点的字母写在对应位置上②顺序性:相似三角形的相似比是有顺序的.③两个三角形形状一样,但大小不一定一样.④全等三角形是相似比为1的相似三角形.用轴语言表港是r 石6三角形全等 三角形相似两角夹一边对应相等(ASA)两角对应相等 两角一对边对应相等(AAS)两边对应成比例,且夹角相等 两边及夹角对应相等(SAS)三边对应成比例 三边对应相等(SSS)、(HL ) “ HL ”知识点5 相似三角形的性质相似三角形对应角相等,对应边成比例. 相似三角形周长的比等于相似比. 相似三角形对应高的比,对应中线的比和对应角平分线的比都等于相似比. 相似三角形面积的比等于相似比的平方. 相似三角形的几种基本图形:称为“平行线型”的相似三角形(有“ A 型”与“ X 型”图)(2)三角形相似的判定方法 1、 平行法: 2、 判定定理 3、 判定定理 4、 判定定理 5、 判定定理 全等与相似的比较: (或两边的延长线)相交,所构成的三角形与原三角形相似 两角对应相等,两三角形相似. AA 两边对应成比例且夹角相等,两三角形相似 .SAS 三边对应成比例,两三角形相似 .SSS “HL ” (图上)平行于三角形一边的直线和其它两边 1 2 3 4 简述为: 简述为: 简述为: 直角三角形中, 则S ==> AD 2 =BD- DCS ==> AB 2 =BD- BC S ==> AC 2 =CD- BC⑴⑵⑶⑷知识点6(1)如图: / BAC=90°, AD 是斜边 BC 上的高, (3)射影定理: 如图,Rt △ ABC 中,则厶ADE^A ABC称为“斜交型”的相似三角形。
湖北省武汉市巨人教育辅导机构2018年中考数学专题复习讲义 :相似三角形六大证明技巧
(无答案)
相似三角形的判定方法总结:
1. 平行于三角形一边的直线与其他两边相交,所构成的三角形与原三角形相似.
2. 三边成比例的两个三角形相似.(SSS )
3. 两边成比例且夹角相等的两个三角形相似. (SAS)
4. 两角分别相等的两个三角形相似.(AA)
5. 斜边和一条直角边成比例的两个直角三角形相似(HL) 相似三角形的模型方法总结: “反A ”型与“反X ”型.
示意图
结论
E D C
B A
反A 型:
如图,已知△ABC ,∠ADE =∠C ,则△ADE ∽△ACB (AA ),∴AE ·AC =AD ·AB.
若连CD 、BE ,进而能证明△ACD ∽△ABE (SAS)
O D
C
B
A
反X 型:
如图,已知角∠BAO =∠CDO ,则△AOB ∽△DOC (AA ),∴OA ·OC =OD ·OB . 若连AD ,BC ,进而能证明△AOD ∽△BOC .
“类射影”与射影模型
示意图
结论
A B
C
D
类射影:
如图,已知△ABC ,∠ABD =∠C ,则△ABD ∽△ACB (AA ),∴2AB =AD ·AC.
C
A
B
H
射影定理
如图,已知∠ACB =90°,CH ⊥AB 于H ,则222,,AC AH AB BC BH BA HC HA HB =⋅=⋅=⋅
相似三角形证明方法
相似三角形6大证明技巧
“旋转相似”与“一线三等角”
反A 型与反X 型
已知△ABC 中,∠AEF=∠ACB ,求证:(1)AE AB AF AC ⋅=⋅(2)∠BEO=∠CFO , ∠EBO=∠FCO (3)∠OEF=∠OBC ,∠OFE=∠OCB
O
F E
C
B
A
类射影
如图,已知2AB AC AD =⋅,求证:
BD AB
BC AC
= A B
C
D
射影定理
已知△ABC ,∠ACB =90°,CH ⊥AB 于H ,求证:2AC AH AB =⋅,2BC BH BA =⋅,2HC HA HB =⋅
湖北省武汉市巨人教育辅导机构2018年中考数学专题复习讲义 :相似三角形六大证明技巧
(无答案)
通过前面的学习,我们知道,比例线段的证明,离不开“平行线模型”(A 型,X 型,线束型),也离不开上述的6种“相似模型”. 但是,王老师认为,“模型”只是工具,怎样选择工具,怎样使用工具,怎样用好工具,取决于我们如何思考问题. 合理的思维方法,能让模型成为解题的利刃,让复杂的问题变简单。
在本模块中,我们将学比例式的证明中,会经常用到的思维技巧. 技巧一:三点定型法 技巧二:等线段代换 技巧三:等比代换 技巧四:等积代换 技巧五:证等量先证等比 技巧六:几何计算
【例1】 如图,平行四边形ABCD 中,E 是AB 延长线上的一点,DE 交BC 于F ,求证:
DC CF AE AD
=.
A
B
C
F
D
E
【例2】 如图,ABC △中,90BAC ∠=︒,M 为BC 的中点,DM BC ⊥交CA 的延长线于
D ,交AB 于
E .求证:2AM MD ME =⋅
C
B
A
E
D
M
【例3】 如图,在Rt ABC △中,AD 是斜边BC 上的高,ABC ∠的平分线BE 交AC 于E ,
交AD 于F .求证:
BF AB
BE BC
=.
D
B
A
C
F E
技巧一:三点定型
比例式的证明方法
悄悄地替换比例式中的某条线段…
【例4】 如图,在△ABC ,AD 平分∠BAC ,AD 的垂直平分线交AD 于E ,交BC 的延长线于F ,
求证:2FD FB FC =⋅
A
B
C
D E
F
【例5】 如图,四边形ABCD 是平行四边形,点E 在边BA 的延长线上,CE 交AD 于F ,
ECA D ∠=∠.求证:AC BE CE AD ⋅=⋅.
C
B
A D E
F
【例6】 如图,△ACB 为等腰直角三角形,AB=AC ,∠BAC=90°,∠DAE=45°,求证:
2AB BE CD =⋅
A
B
C
D
E
【例7】 如图,ABC △中,AB AC =,AD 是中线,P 是AD 上一点,过C 作CF AB ∥,
延长BP 交AC 于E ,交CF 于F .求证:2BP PE PF =⋅.
C
B
A
D
P
E
F
技巧二:等线段代换
湖北省武汉市巨人教育辅导机构2018年中考数学专题复习讲义 :相似三角形六大证明技巧
(无答案)
【例8】 如图,平行四边形ABCD 中,过B 作直线AC 、AD 于O ,E 、交CD 的延长线
于F ,求证:2OB OE OF =⋅.
O
F
E
D
C B
A
【例9】 如图,在ABC △中,已知90A ∠=︒时,AD BC ⊥于D ,E 为直角边AC 的中点,
过D 、E 作直线交AB 的延长线于F .求证:AB AF AC DF ⋅=⋅.
E
F
C
A
B
D
【例10】 如图,在ABC △中(AB >AC )的边AB 上取一点D ,在边AC 上取一点E ,使
AD AE =,直线DE 和BC 的延长线交于点P .求证:BP CE CP BD ⋅=⋅
E C
D B
A
P
技巧三:等比代换
P
M
N D A
B
C
【例11】 如图,ABC △中,BD 、CE 是高,EH BC ⊥于H 、交BD 于G 、交CA 的延长
线于M .求证:2HE HG MH =⋅.
A B
C
D
E H
G
M
【例12】 如图,在ABC △中,AD BC ⊥于D ,DE AB ⊥于E ,DF AC ⊥于F ,连EF ,
求证:∠AEF =∠C
F
E
D
C
B
A
【例13】 如图,在ABC △中,90BAC ∠=︒,D 为AC 中点,AE BD ⊥,E 为垂足,求证:
CBD ECD ∠=∠.
C
B
A
D
E
【例14】 在Rt △ABC 中,AD ⊥BC ,P 为AD 中点,MN ⊥BC ,求证2MN AN NC =⋅
技巧四:等积代换
湖北省武汉市巨人教育辅导机构2018年中考数学专题复习讲义 :相似三角形六大证明技巧
(无答案)
【例15】 已知,平行四边形ABCD 中,E 、F 分别在直线AD 、CD 上,EF //AC ,BE 、BF
分别交AC 于M 、N .,求证:AM =CN.
F
M
N
E
D
C
B
A
【例16】 已知如图AB =AC ,BD //AC ,AB //CE ,过A 点的直线分别交BD 、CE 于D 、E . 求
证:AM =NC ,MN //DE .
D
C
B
A
E
M N
【例17】 如图,△ABC 为等腰直角三角形,点P 为AB 上任意一点,PF ⊥BC ,PE ⊥AC ,
AF 交PE 于N ,BE 交PF 于M .,求证:PM =PN ,MN //AB .
C
B
A
P E
F
N M
技巧五:证等量先证等比
【例18】 如图,正方形BFDE 内接于△ABC ,CE 与DF 交于点N ,AF 交ED 于点M ,CE
与AF 交于点P . 求证:(1)MN //AC ;(2)EM =DN .
P
N
M E
F
D A
B
C
【例19】 (※)设E 、F 分别为AC 、AB 的中点,D 为BC 上一点,P 在BF 上,DP //CF ,
Q 在CE 上,DQ //BE ,PQ 交BE 于R ,交CF 于S ,求证:13
RS PQ
C
B
A
D
P Q
S
E F
G
R
湖北省武汉市巨人教育辅导机构2018年中考数学专题复习讲义 :相似三角形六大证明技巧
(无答案)
【例20】 (※)如图,梯形ABCD 的底边AB 上任取一点M ,过M 作MK //BD ,MN //AC ,
分别交AD 、BC 于K 、N ,连KN ,分别交对角线AC 、BD 于P 、Q ,求证:KP =QN .
Q N
S
P
R
K
M
O D
C B
A
【例21】 (2016年四月调考)如图,在△ABC 中,AC >AB ,AD 是角平分线,AE 是中线,
BF ⊥AD 于G ,交AC 于点M ,EG 的延长线交AB 于点H .(1)求证:AH =BH ,(2)若∠BAC =60°,求
FG
DG
的值. H M
F G E
D C
B
A
技巧六:几何计算
【例22】(2016七一华源)如图:正方形ABCD中,点E、点F、点G分别在边BC、AB、CD上,∠1=∠2=∠3=α. 求证:(1)EF+EG=AE(2)求证:CE+CG=AF。