当前位置:文档之家› 电力系统有功功率平衡与频率调整

电力系统有功功率平衡与频率调整

电力系统有功功率平衡与频率调整
电力系统有功功率平衡与频率调整

第五章 电力系统有功功率平衡与频率调整

主要内容提示

本章主要讨论电力系统中有功功率负荷的最优分配和频率调整。 §5-1电力系统中有功功率的平衡 一、电力系统负荷变化曲线 在电力系统运行中,负荷作功需要一定的有功功率,同时,传输这些功率也要在网络中造成有功功率损耗。因此,电源发出的有功功率必须满足下列平衡式:

∑?+∑=∑P P P Li Gi

式中Gi P ∑—所有电源发出的有功功率;

Li P ∑—所有负荷需要的有功功率; ∑?P —网络中的有功功率损耗。

可见,发电机发出的功率比负荷功率大的多才

行。当系统中负荷增大时,网络损耗也将增大,发电机发出的功率也要增加。在实际电力系统中,负荷随时在变化,所以必须靠调节电源侧,使发电机发出的功率随负荷功率的变化而变化。

负荷曲线的形状往往是无一定规律可循,但可将这种无规则的曲线看成是几种有规律的曲线的迭加。如图5-1所示,将一种负荷曲线分解成三种曲线负荷。

第一种负荷曲线的变化,频率很快,周期很短,变化幅度很小。这是由于想象不到的小负荷经常性变化引起的。

第二种负荷曲线的变化,频率较慢,周期较长,幅度较大。这是由于一些冲击性、间歇性负荷的变动引起的,如大工厂中大电机、电炉、电气机车等一开一停。

第三种负荷曲线的变化,非常缓慢,幅度很大。这是由于生产、生活、气象等引起的。这种负荷是可以预计的。

对于第一种负荷变化引起的频率偏移进行调整,称为频率的“ 一次调整”。调节方法一般是调节发电机组的调速器系统。对于第二种负荷变化引起的频率偏移进行调整,称为频率的“二次调整”,调节方法是调节发电机组的调频器系统。对于第三种负荷的变化,通常是根据预计的负荷曲线,按照一定的优化分配原则,在各发电厂间、发电机间实现功率的经济分配,称为有功功率负荷的优化分配。

二、发电厂的备用容量

电力系统中的有功功率电源是发电厂中的发电机,而系统中装机容量总是大于发电容

t

量,即要有一定的备用容量。系统的备用容量包括:负荷备用、事故备用、检修备用和国民经济备用。总备用容量占最大发电负荷的(15~20)%。然而系统中装机容量的确定,不仅考虑到最大发电负荷,而且还考虑到适当的备用容量。即为:

装机容量()()()()??

??

??

?

?????????+=∑%5~3%5~4%10~5%5~2max max 国民经济备用检修备用事故备用

负荷备用备用容量最大发电负荷

P P P L M ?

§5-2电力系统中有功功率的最优分配

电力系统中有功功率合理分配的目标是:在满足一定负荷持续供电的前提下,使电能在生产的过程中消耗的能源最少。而系统中各类发电机组的经济特性并不相同,所以就存在着有功功率在各个电厂间的经济分配问题。

⒈ 发电机的耗量特性

发电机的耗量特性反映发电机单位时间内消耗的能源与发出有功功率的关系。如图5-2所示,图中纵坐标表示单位时间内消耗的燃料F (标准煤),单位为“t/h ”,或表示单位时间内消耗的水量W ,单位为“m 3/s ”;横坐标表示发电功率P G ,单位为“kW ”或 “MW ”。

耗量特性曲线上某一点纵坐标与横坐标的比值称为比耗量。如i 点的比耗量:

Gi i i P F =

μ 或Gi

i i P W

=μ 评价发电机组的经济特性,常常用到耗量特性曲

线上某一点纵坐标与横坐标的增量比,我们称之为耗量微增率,以λ表示。λ表示单位时间内输入能量增量与输出功率增量的比值。如i 点的耗量微增率:

Gi

i

Gi i i dP dF P F =??=

λ ⒉ 目标函数和约束条件

火力发电厂的能量消耗主要与发电机组输出的有功功率P G 有关,而与输出的无功功率Q G 及电压U G 关系较小,因此对于n 机系统,单位时间内消耗燃料的目标函数为

()()()()Gn n G G Gn G G P F P F P F P P P C C +++==ΛΛΛΛ221121

约束条件为

等约束条件:01

1

=∑-∑==Li n

i Gi n

i P P (略网损)

P G

图5-2 耗量特性

不等约束条件:min Gi P ≤Gi P ≤max Gi P 、 min Gi Q ≤Gi Q ≤max Gi Q 、 min Gi U ≤Gi U ≤max Gi U ⒊ 拉格朗日函数

建立一个新的不受约束的目标函数—拉格朗日函数:

()()

()()()()

Ln L L Gn G G Gn n G G Gn G G Gn G G P P P P P P P F P F P F P P P f P P P C C ---+++-+=-=*ΛΛΛΛΛΛΛΛΛΛ212122112121λλ

各变量对函数求偏导,然后令偏导等于零,求其最小值。

01=??*G P C 002

=??=??**

Gn G P C P C Λ

Λ 0=??*

λ

C 解得:

()()()

λ====Gn

Gn n G G G G dP P F dP P dF dP P dF ΛΛ222111

即:λλλλ====n ΛΛ21

此式为有功功率负荷最优分配的等耗量微增率准则,满足这个条件的解

()Gn G G P P P ΛΛ21为最优分配方案。

【例5—1】 某发电厂装有两台发电设备,其耗量特性分别为:

F 1=3+0.3P G1 +0.002P G12 (t/h) F 2=5+0.3P G2 +0.003P G22 (t/h)

两台发电设备的额定容量均为100MW,而最小可发有功功率均为30MW ,若该厂承担负荷150MW,试求负荷在两台发电设备间的最优分配方案。

解 两台发电设备的耗量微增率分别为

2

22

2

21

11

1

1006.03.0003.023.0004.03.0002.023.0G G G G G G P P dP dF P P dP dF +=?+==+=?+==

λλ

按等耗量微增率准则21λλ=分配负荷,有:()1006.03.0004.03.021ΛΛG G P P +=+ 而等约束条件为:()215021ΛΛ=+G G P P 联立式()1、()2,求解1G P 、2G P : 把12150G G P P -=代入()1式有:

()9

.001.0006.09.0004.0150006.03.0004.03.011111=-=-+=+G G G G G P P P P P

于是解得:901=G P (MW ) 602=G P (MW )

此分配方案符合等耗量微增率准则,即满足等约束条件,也满足不等约束条件﹙30<90<100、30<60<100﹚,因此,可做为最优分配方案。

⒋ 水、火电厂之间最优分配准则

电力系统中有火电厂又有水电厂时,考虑到水电厂发电设备消耗的能源受到限制。例如,水电厂一昼夜间消耗的水量受约束于水库调度。于是,约束条件(比讨论火电厂间的最优分配时)多一个。以W 表示单位时间内水电厂消耗的水量,它是所发出功率H P 的函数,K 表示水电厂在0至τ时间段可消耗的水量。因此有约束条件:

()?=τ

K dt P W H

由此式可知,水电厂在τ时间段内消耗的水量不得超过水库的容水量。 水、火电厂之间的最优分配准则为:

()()

λγ==H

H T T dP P dW dP P dF 即 λγλλ==H T 其中

()T T T dP P dF λ=为火电厂的耗量微增率,()

H H

H dP P dW λ=为水电厂的耗量微增率。γ为拉格朗日乘数,可看作是一个煤水换算系数。相当于把1立方米/小时的水量通过γ折算为1吨/小时的煤量。

如果系统中有n 个电厂,其中m 个火电厂,()m n -个水电厂,则有功功率负荷最优分配准则可表示为:

()()()λγγ=====+++Hn

n n m H m m Tm m T dP dW dP dW dP dF dP dF ΛΛΛΛ11111

即λλγλγλγλλλ===+===++++Hn n Hm m Hm m Tm T T ΛΛΛΛ221121

以上是不计网损时的负荷最优分配。如果网络线路较长,负荷很重,则网损较大,忽略网损就会产生分配上的误差。考虑网损后等约束条件为:

01

1

=?-∑-∑∑==P P P Li n

i Gi n i

等耗量微增率准则:

()()

λ?γ?∑∑=??-?=??-?Hj Hj j j Ti Ti i P P dP dW P P dP dF /11

/11 应用前面类似的方法求其满足等耗量微增率准则的函数最小值,即得最优分配方案。

§5-3电力系统的频率调整 一、频率的一次调整

通过调节发电机组的调速器系统可进行频率的一次调整。负荷与电源的有功功率静态频率特性如图5-3所示,设在O 点运行时负荷突然增加0L P ?,发电机组将因调速器的一次调整作用增发功率G P ?,负荷将因它本身的调节效应面减小功率L P ?,系统的频率偏差为

f ?。此时有

发电机的单位调节功率:

=G K G P ?/f ?αtg -=

负荷的单位调节功率:

=L K L P ?/f ?βtg =

系统的单位调节功率等于发电机的单位

调节功率与负荷的单位调节功率之和

f P f P P K K K L L G L G S ??=??+?=+=0

所以 S

L K P

f 0?=?

可见一次调频只能做到有差调节,在运行中为减小f ?,希望S K 大些,但负荷特性一定时L K 为常值,只有G K 大些,系统中多数发电机均能进行一次调频,如果有n 台机都能一次调频,Gn G G nG K K K K +++=ΛΛ21,若某些机组已达到满发,则不能参加调频,只有m 台能调,所以mG K <nG K ,因此总的发电机的单位调节功率也不能提的很高。

发电机的单位调节功率与调差系数%σ有互为倒数关系:

P P

f

图 5-3 频率的一次调整

100%

1

?=

*σG K 所以常常用调差系数%σ来描述一次调频时发电机组的频率特性。调差系数%σ与之对应的发电机组的单位调节功率是可以整定的。一般整定为如下数值:

汽轮发电机组: %σ=3~5 20~3.33=*G K 水轮发电机组: %σ=2~4 25~50=*G K

当一次调频不能使之f ?在允许的频率波动范围(f ?≤5.0~2.0±Hz )之内时,则要靠二次调频,将f ?将缩小在允许值之间。

二、频率的二次调整

通过调节发电机组的调频器系统可进行频率的二次调整,增加发电机组发出的功率

0G P ?,如图5-4所示,由图可见:

→0L P ?OA=OC+CB+BA

OC 0G P ?→表示由于二次调整作用使发电机组增发的功率; CB=f K B C G ''→''''?表示由于调速器的调整作用而增大的发电机功率;

BA=f K A B L ''→''''?表示因负荷本身的调节效应而减小的负荷功率。

这里分析频率偏差为不失一般性,将f ''?仍以f ?表示,因此

f K f K P P L G G L ?+?+?=?00

从而有 ()00G L L G P P K K f ?-?=+? 频率偏移控制在S

G L L G G L K P P K K P P f 0

000?-?=+?-?=

?≤2.0±Hz

频率的二次调整不是所有发电机组都要进行的,只能是很少的发电厂做为专门的调频

厂,即二次调频是在调频厂进行的。调频厂的选择原则:①具有足够的调整容量;②具有

0 0 0

图 5-4 频率的二次调整

较快的调整速度;③调整范围内的经济性能好。

三、互联系统的频率调整

如果调频厂不位于负荷的中心,则应避免调频厂与系统其它部分联系的联络线上的流通功率超出允许值,然而必须在调整系统频率的同时控制联络线上的流通功率。如图5-5所示A 、B 两系统相互联络,图中K A 、K B 分别为联合前A 、B 两系统的单位调节功率。设A 、B 两系统均有进行二次调整的电厂,它们的功率变化量分别为GA P ?、GB P ?;A 、B 两系统的负荷变化量LA P ?、LB P ?。于是,在联合前:

对A 系统有 A A GA LA f K P P ?=?-? (5-1) 对B 系统有 B B GB LB f K P P ?=?-? (5-2)

在联合后,全系统的频率变化量将一致,即有f f f B A ?=?=?。通过联络线由A 向B 输送的交换功率为ab P ?,对A 系统,可把这个交换功率看作是一个负荷功率,对B 系统,可把这个交换功率看作是一个电源功率,从而有

f K P P P A GA ab LA ?=?-?+? (5-3) f K P P P B GB ab LB ?=?-?-? (5-4)

将以上两式相加,整理得

()()

B

A G

B LB GA LA K K P P P P f +?-?+?-?=

? (5-5)

令 A GA LA P P P ?=?-?,B GB LB P P P ?=?-?,A P ?、B P ?分别为A 、B 两系统的功率缺额,于是

B

A B

A K K P P f +?+?=

? (5-6)

以此代入式(5-3)或式(5-4),可得:

B

A A

B B A ab K K P K P K P +?-?=

? (5-7)

由上可知,互联系统频率的变化取决于这个系统总的功率缺额和总的系统单位调节功

A

B

率。联络线上的交换功率取决于两个系统的单位调节功率、二次调整的能力及负荷变化的情况。当交换功率超过线路允许的范围时,即使互联系统具有足够的二次调整能力,由于受联络线交换功率的限制,系统频率也不能保持不变。

本章基本要求

⒈掌握电力系统负荷三种变动曲线的一般规律及其同一、二、三次调频的对应关系。

⒉掌握电力系统有功功率电源各种备用容量的概念。

⒊了解各类发电厂的运行特点和合理组合在电力系统有功功率最优分配中的意义,能正确安排电力系统中各类发电厂的合理组合顺序。

⒋理解发电机组的耗量特性、比耗量和耗量微增率等概念。

⒌理解并掌握电力系统最优分配有功功率负荷的等耗量微增率准则,能够熟练计算在不计网损条件下有功功率负荷的最优分配方案。掌握发电厂之间的有功功率负荷的最优分配原则和计算方法。

⒍了解频率调整对电力系统的意义和发电机自动调速系统的工作原理。

⒎掌握发电机组(有功电源)的静态频率特性,能定性分析频率的“一次调整”和“二次调整”。当系统负荷功率增大时,调速器、调频器随之动作时,从静态频率特性曲线上分析其工作点的转移趋势。

⒏掌握发电机的单位调节率和调差系数,负荷的单位调节功率等基本概念,能熟练进行互联系统的调频计算。负荷的单位调节功率标么值一律是以负荷的实际容量为基准给定的,而发电机的单位调节功率一般是以其额定容量为基准给定的,在调频计算中应特别注意。

⒐掌握调频电厂的选择原则。

习题五

5-1 两台火力发电机组并列运行,额定容量均为100MW,耗量特性分别为:

F1 =1+0.2P G1 +0.001P G12(t/h)

F2 =2+0.1P G2 +0.002P G22(t/h)

当负荷为160MW时,试求:

⑴平均分配负荷时每小时耗煤多少吨?

⑵最优分配负荷时每小时耗煤多少吨?

5-2 某火电厂装设两套发电设备,其耗量特性分别为:

F1=2+0.2P G1 +0.001P G12(t/h)

F2=4+0.2P G2 +0.002P G22(t/h)

两台发电机的额定容量均为200MW,而最小有功功率为P G1min=P G2min=50MW。若该电厂承担负荷为300MW,试求负荷的最优分配方案。

5-3 已知系统中有两台发电机组,它们的燃料消耗特性为:

F1=a1+b1P G1 +c1P G12(t/h)

F 2=a 2+b 2P

G 2 +c 2P G 22 (t/h)

其中b 1=2元/(MWh),b 2=2.5元/(MWh),c 1=0.01元/(MW 2h),c 2 =0.005元/(MW 2h)。两台机组的最小负荷都是20MW ,最大负荷都是125MW 。如果系统有功负荷P L 为150MW ,求两台机组所分配的负荷P G1、P G2。

5-4 设有三个火电厂并列运行,各电厂的耗量特性及有功功率的约束条件如下: F 1=4+0.3P G1 +0.0007P G12 (t/h) 100MW ≤P G1≤200MW

F 2=3+0.32P G2 +0.0004P G22 (t/h) 120MW ≤P G2≤250MW F 3=3.5+0.3P G3 +0.00045P G32 (t/h) 150MW ≤P G3≤300MW 当总负荷为700MW ,试确定发电厂间的最优分配方案。

5-5 写出如图5-5所述系统在不计网损,不考虑不等约束的条件时,有功功率最优分配的目标函数、拉格朗日函数,并推导出有功功率最优分配时的准则。(A 、B 均为火电厂,P L 为负荷点的负荷)

5-6 如图5-6所示,有两台容量均为100MW ,耗量特性分别为:

F 1=1+0.2P

G 1 +0.002P G12 (t/h)

F 2=3+0.1P G2 +0.002P G22 (t/h)

两台发电机,同时供一个负荷P L ,试求:

⑴当系统负荷为65MW ,按1号机发20MW ,2号机发45MW 分配负荷时,是不是最优分配方案?

⑵当系统负荷为160MW 时,此二发电机间的最优分配方案是多少? 5-7 三台发电机组共同承担负荷,它们的耗量微增率分别为:

/1015.011

1

元+=G G P dF dF (MWh) 100<1G P <200MW /1010.022

2

元+=G G P dF dF (MWh) 100<2G P 300MW /1005.033

3

元+=G G P dF dF (MWh) 200<3G P <500MW 试求:⑴负荷为750MW 时,每台发电机组所承担的负荷;

⑵负荷在400MW 至1000MW 范围内的耗量微增率与负荷功率的关系曲线

)(L P f =λ。

L

习题5-5图

L 习题5-6图

5-8 两个发电机组一个系统, G1:

11012.00.8G P +=λ元/(MWh ) G2:22018.00.7G P +=λ元/(MWh)

G1: 100MW ≤P G1≤650MW G2: 50MW ≤P G2≤500MW 试求:(1)当P G1+P G2=P L =600MW 时,最佳操作系统的λ、P G1与P G2;

(2)假如P L 增加1MW (成为601MW )时,额外成本(元/h )。 5-9 某火电厂有两台发电机组,它们的耗量特性如下:

F 1=5+0.1P G1 +0.006P G12 (t/h)

F 2=6+0.2P G2 +0.01P G22 (t/h)

每台机组最大、最小出力为:100MW ≥P G2≥50MW,200MW ≥P G1≥10MW,当调度分配给该厂的发电任务为250MW 时,试求机组间有功功率负荷分配的合理方案。若发电任务增至252MW 时,全厂耗量增加多少?

5-10 假设三个发电机组的燃料—成本曲线如下:

f 1(P G1)=300+8.0P G1+0.0015P G12 f 2(P G2)=450+8.0P G2+0.0005P G22 f 3(P G3)=700+7.5P G3+0.0010P G33

忽略线路损失与发电机极限,当总负荷P L 为500MW 时,试求最佳调度与总成本(元/h )。

5-11 已知系统中有两台发电机组(一水、一火),它们的耗量特性为:

211111G G P c P b a F ++= (t/h) 222222G G P c P b a W ++= (m 3/h)

其中a 1 a 2 b 1 b 2 c 1 c 2均为常数,如果水电厂的耗水量微增率与火电厂燃料微增率的折换系数γ已求出,且能满足给定的日用水量要求,设系统的有功负荷为P L ,试求两台机组的最优分配负荷P G1、P G2。 5-12 已知电力系统只有一个火电厂、一个水电厂。火、水电厂的耗量特性分别为:

F =3+0.3P

G +0.0015P G 2 (t/h) W =5+P G

H +0.002P GH 2 (m 3/s)

水电厂日用水量恒定为K =1.5×107m 3,系统的日负荷曲线如图5-12所示。火电厂容量

为900MW ,水电厂容量为400MW 。求在给

定的用水量下,水、火电厂间的有功功率经济分配方案。

5-13 两台容量为60MW 的发电机共同承担负荷,它们的调差系数分别为4%、3%,若空载时并联运行,其频率f 0为50Hz ,试求:

⑴ 总负荷为100MW 时,这两台发电机组发出的功率;

⑵ 为使总负荷为100MW 时,两台机组能平均分担负荷,它们的转速应分别增减多少?

习题5-12图

t (h )

电力系统频率及有功功率的自动调节

电力系统频率及有功功率的自动调节 摘要 在现实中系统功率并不是一个恒定的值,而是随时变化的,在系统中,每时每刻发电功 率和用电功率基本平衡。而功率又是影响频率的主要因素,当发电功率与用电功率平衡时,频率基本稳定,当发电功率大于用电功率时系统频率则上升,反之则下降,所以系统对有功 功率和频率进行调整。本文研究了电力系统频率及有功功率的自动调节进行了详细的研究与论证。 关键词:频率有功功率自动调节 第一章频率和有功功率自动控制的必要性 1电力系统频率控制的必要性A频率对电力用户的影响 (1)电力系统频率变化会引起异步电动机转速变化,这会使得电动机所驱动的加工工业产品的机械的转速发生变化,转速不稳定会影响产品质量”甚至会出现次品和废品。 (2)电力系统频率波动会影响某些测量和控制用的电子设备的准确性和性能,频率过低时有 些设备甚至无法工作。这对一些重要工业和国防是不能允许的。 (3)电力系统频率降低将使电动机的转速和输出功率降低,导致其所带动机械的转速和出力降低,影响电力用户设备的正常运行。 B频率对电力系统的影响 (1)频率下降时,汽轮机叶片的振动会变大,轻则影响使用寿命,重则可能产生裂纹。对于额定频率为50Hz的电力系统,当频率低到45Hz附近时,某些汽轮机的叶片可能因发生共振而断 裂,造成重大事故。(次同步谐振,1970、1971年莫哈维电厂790MV机组的大轴损坏事故) (2)频率下降到47-48HZ时,火电厂由异步电动机驱动的辅机(如送风机、送煤机)的出力随之下降,从而使火电厂发电机发出的有功功率下降。这种趋势如果不能及时制止,就会在短时间内使电力系统频率下降到不能允许的程度。这种现象称为频率雪崩。出现频率雪崩会造 成大面积停电,甚至使整个系统瓦解。 (3)在核电厂中,反应堆冷却介质泵对供电频率有严格要求。当频率降到一定数值时,冷却介质泵即自动跳开,使反应堆停止运行。 (4)电力系统频率下降时,异步电动机和变压器的励磁电流增加,使无功消耗增加,引起系统 电压下降,频率下降还会引起励磁机出力下降,并使发电机电势下降,导致全系统电压水平降

电力系统频率调整

电力系统负荷可分为三种。第一种变动幅度很小,周期又很短,这种负荷变动由很大的 偶然性。第二种变动幅度较大,周期较长,属于这类负荷的主要有电炉、电气机车等带有冲 击性的负荷。第三种负荷变动幅度最大,周期也最长,这一种是由于生产、生活、气象等变 化引起的负荷变动。 电力系统的有功功率和频率调整大体可分为一次、二次、三次调整三种。一次调整或频 率的一次调整指由发电机的调速器进行的,对第一种负荷变动引起的频率偏移的调整。二次 调整或频率的二次调整指由发电机的调频器进行的,对第二种负荷变动引起的频率偏移的调 整。三次调整其实就是指按最优化准则分配第三种有规律变动的负荷,即责成各发电厂按事 先给定的发电负荷曲线发电。在潮流计算中除平衡节点外其他节点的注入有功功率之所以可 以给定,就是由于系统中大部分电厂属于这种类型。这类发电厂又称为负荷监视。至于潮流 计算中的平衡节点,一般可取系统中担负调频任务的发电厂母线,这其实是指担负二次调频 任务的发电厂母线。 一:调整频率的必要性 电力系统频率变动时,对用户的影响: 用户使用的电动机的转速与系统频率有关。 系统频率的不稳定将会影响电子设备的工作。 频率变动地发电厂和系统本身也有影响: 火力发电厂的主要厂用机械—风机和泵,在频率降低时,所能供应的风量和水量将迅速减少, 影响锅炉的正常运行。 低频运行还将增加汽轮机叶片所受的应力,引起叶片的共振,缩短叶片的寿命,甚至使叶片 断裂。 低频运行时,发电机的通风量将减少,而为了维持正常电压,又要求增加励磁电流,以致使 发电机定子和转子的温升都将增加。为了不超越温升限额,不得不降低发电机所发功率。 低频运行时,由于磁通密度的增大,变压器的铁芯损耗和励磁电流都将增大。也为了不超越 温升限额,不得不降低变压器的负荷。 频率降低时,系统中的无功功率负荷将增大。而无功功率负荷的增大又将促使系统电压水 平的下降。 频率过低时,甚至会使整个系统瓦解,造成大面积停电。 调整系统频率的主要手段是发电机组原动机的自动调节转速系统,或简称自动调速系统, 特别时其中的调速器和调频器(又称同步器)。 二:发电机原动机有功功率静态频率特性 电源有功功率静态频率特性通常可以理解为就是发电机中原动机机械功率的静态频率特性。 原动机未配置自动调速时,其机械功率与角速度或频率的关系: 221212m P C C C f C f ωω=-=- 式中各变量都是标幺值;通常122C C =。 解释如下:机组转速很小时,即使蒸汽或水在它叶轮上施加很大转矩m M ,它的功率输出m P 仍很小,因功率为转矩和转速的乘积;机组转速很大时,由于进汽或进水速度很难跟上叶轮 速度,它们在叶轮上施加的转矩很小,功率输出仍然很小;只有在额定条件下,转速和转矩 都适中,它们的乘积最大,功率输出最大。 调速系统中调频器的二次调整作用在于:原动机的负荷改变时,手动或自动地操作调频器,

电力系统无功功率平衡与电压调整

电力系统无功功率平衡与电压调整 由于电力系统中节点很多,网络结构复杂,负荷分布不均匀,各节点的负荷变动时,会引起各节点电压的波动。要使各节点电压维持在额定值是不可能的。所以,电力系统调压的任务,就是在满足各负荷正常需求的条件下,使各节点的电压偏移在允许范围之内。 由综合负荷的无功功率一电压静态特性分析可知,负荷的无功功率是随电压的降低而减少的,要想保持负荷端电压水平,就得向负荷供应所需要的无功功率。所以,电力系统的无功功率必须保持平衡,即无功功率电源发出的无功功率要与无功功率负荷和无功功率损耗平衡。这是维持电力系统电压水平的必要条件。 一、无功功率负荷和无功功率损耗 1.无功功率负荷 无功功率负荷是以滞后功率因数运行的用电设备(主要是异步电动机)所吸收的无功功率。一般综合负荷的功率因数为0.6~O.9,其中,较大的数值对应于采用大容量同步电动机的场合。 2.电力系统中的无功损耗 (1)变压器的无功损耗。变压器的无功损耗包括两部分。一部分为励磁损耗,这种无功损耗占额定容量的百分数,基本上等于空载电流百分数0I %,约为 1%~2%。因此励磁损耗为 0/100Ty TN Q I S = (Mvar) (5-1-1) 另一部分为绕组中的无功损耗。在变压器满载时,基本上等于短路电压k U 的百分值,约为10%这损耗可用式(6-2)求得 2(%)()100k TN TL Tz TN U S S Q S = (Mvar) (5-1-2) 式中,TN S 为变压器的额定容量(MVA);TL S 为变压器的负荷功率(MVA)。 由发电厂到用户,中间要经过多级变压,虽然每台变压器的无功损耗只占每台变压器容量的百分之十几,但多级变压器无功损耗的总和可达用户无功负荷的75%~100%左右。 (2)电力线路的无功损耗。电力线路上的无功功率损耗也分为两部分,即并联电纳和串联电抗中的无功功率损耗。并联电纳中的无功损耗又称充电功率,与电力线路电压的平方成正比,呈容性。串联电抗中的无功损耗与负荷电流的平方成正比,呈感性。因此电力线路作为电力系统的一个元件,究竟是消耗容性还是感性无功功率,根据长线路运行分析理论,可作一个大致估计。对线路不长,长度不超过100km ,电压等级为220kV 电力线路,线路将消耗感性无功功率。对线路较长,其长度为300km 左右时,对220kV 电力线路,线路基本上既不消耗感性无功功率也不消耗容性无功功率,呈电阻性。大于300km 时,线路为电容性的。 二、系统综合负荷的电压静态特性 电力系统中某额定功率的用电设备实际吸收的有功功率和无功功率的大小是随电力网的电压变化而变的,尤其是无功功率受电压的影响很大。电力系统综

电力系统频率的二次调节

电力系统频率的二次调节 一、频率的二次调节基本概念 上一节分析了系统频率特性系数Ks的组成和特点。从分析中可知,系统的频率响应系数愈大,系统就能承受愈大的负荷冲击。换句话说,在同样大的负荷冲击下,Ks愈大,所引起的系统频率变化愈小。为了使系统的频率偏差限制在教小的范围内,总是希望有较大的Ks。 Ks由两部分组成,一部分有负荷本身的频率特性所决定,电力系统的运行人员是无法改变的;另一部分有发电机组的频率响应系数决定的,它是发电机调差系数的倒数。运行人员可以调整机组的调差系数和机组的运行方式来改变其大小。但是从机组的稳定运行角度考虑,机组的调差系数δ%不能取得太小,以免影响机组的稳定运行。 系统的频率响应系数Ks是随着系统负荷的变动和运行方式的变化二变动的。这对用户和系统本身都是不希望的。也就是说,仅靠系统的一次频率调整,没有任何形式的二次调节(包括手动和自动),系统的频率不可能恢复到原有的值。 为了使系统的频率恢复到原有的额定频率运行,必须采用频率的二次调节。 频率的二次调节就是改变发电机组的频率特性曲线,从而使系统的频率恢复到原来的正常范围。 如图3-15所示,发电与负荷的起始点为a,系统的频率为f1。当系统的负荷发生变化,负荷增大,负荷特性曲线从PLa变化至PLb时,当系统发电特性曲线为PGa时,发电与负荷的交叉点为a移至b点。此时,系统的频率从f1降至f2。当增加系统发电,即改变发电的频率特性曲线从PGa变到PGb,就能使发电与负荷特性的交叉点移至d点,可使系统的频率保持在原来的f1运行。 反之,当系统的负荷降低,在如图3-15中,发电与负荷的起始点为d,此时,系统的频率为f1。当系统的负荷发生变化,负荷特性从从PLb变化至PLa时,当系统发电特性曲线为PGb时,发电与负荷的交叉点为d和c点。此时,系统的频率从f1上升至f3。为了恢复系统的频率,适当减少系统发电,即改变发电的频率特性曲线从PGb变到PGa,就能使发电与负荷特性的交叉点从c点移至a点,可使系统的频率从f3恢复到原来的f1运行。 以上改变发电机组调速系统的运行点,使发电机组在原有额定频率条件下运行,增加较大的有功功率的方法,就是频率的二次调节。 二、频率二次调节的方法

第五章 电力系统有功功率和

第五章 电力系统有功功率和频率调整 第一节 电力系统中有功功率的平衡 一、有功功率负荷的变动和调整控制 L L G P P P ?∑+∑=∑ 如图5-1中所示,负荷可以分为三种。第一种变动幅度很小,周期又很短,这种负荷变动有很大的偶然性。第二种变动幅度较大,周期也较长,属于这一种的主要有电炉、压延机械、电气机车等带有冲击性的负荷。第三种变动幅度最大,周期也最长,这一种是由于生产、生活、气象等变化引起的负荷变动。第三种负荷基本上可以预计。 据此,电力系统的有功功率和频率调整大体上也可分为一次、二次、三次调整三种。一次调整或频率的一次调整指由发电机组的调速器进行的、对第一种负荷变动引起的频率偏移的调整。二次调整或频率的二次调整指由发电机的调频器进行的、对第二种负荷变动引起的频率偏移的调整。三次调整实际上就是按最优化准则分配第三种有规律变动的负荷,即责成各发电厂按事先给定的发电负荷曲线发电。 二、有功功率电源和备用容量 装机容量——所有发电设备容量总和。 电源容量——可投入使用的容量之和。 备用容量——系统电源容量减去最大发电负荷(包括网损、负荷、厂用电等)。

系统备用容量可分为热备用和冷备用或负荷备用、事故备用、检修备用和国民经济备用等。 所谓热备用运转中的发电设备可能发的最大功率与系统发电负荷之差。冷备用则指未运转的发电设备可能发的最大功率。 负荷备用是指调整系统中短时的负荷波动并担负计划外的负荷增加而设置的备用。 事故备用是使电力用户在发电设备发生偶然性事故时不受严重影响,维持系统正常供电所需的备用。 检修备用是使系统中的发电设备能定期检修而设置的备用。 电力工业是线性工业,除满足当前负荷的需要设置上述备用外,还应计及负荷超计划增长而设置一定的备用。这种备用就称国民经济备用。 具备了备用容量,才可能谈论它们在系统中各发电设备和发电厂之间的最优分配以及系统的频率调整问题。 第二节电力系统中有功功率的最优分配 一、有功功率最优分配 电力系统中有功功率的分配有两个主要内容,即有功功率电源的最优组合和有功功率负荷的最优分配。 有功功率电源的最优组合是指系统中发电设备或发电厂的合理组合,也就是通常所说谓的合理开停。 有功功率负荷的最优分配是指系统的有功功率负荷在各个正在运行的发电设备或发电厂之间的合理分配。最常用的是按所谓等耗量微增率准则分配。 二、最优分配负荷时的目标函数和约束条件 1.耗量特性 电力系统中有功功率负荷合理分配的目标是在满足一定约束条件的前提下,尽可能节约消耗的一次能源。因此,必须先明确发电设备单位时间内消耗的能源与发出有功功率的关系,即发电设备输入与输出的关系。这关系称耗量特性,如图5-2所示。 耗量特性曲线上某一点纵坐标和横坐标的比值,即单位时间内输入能量与输 μ。耗量特性曲线上某点切线的斜率称耗量微增出功率之比称比耗量μ。P F/ =

电力系统有功功率平衡与频率调整

第五章 电力系统有功功率平衡与频率调整 主要内容提示 本章主要讨论电力系统中有功功率负荷的最优分配和频率调整。 §5-1电力系统中有功功率的平衡 一、电力系统负荷变化曲线 在电力系统运行中,负荷作功需要一定的有功功率,同时,传输这些功率也要在网络中造成有功功率损耗。因此,电源发出的有功功率必须满足下列平衡式: ∑?+∑=∑P P P Li Gi 式中Gi P ∑—所有电源发出的有功功率; Li P ∑—所有负荷需要的有功功率; ∑?P —网络中的有功功率损耗。 可见,发电机发出的功率比负荷功率大的多才 行。当系统中负荷增大时,网络损耗也将增大,发电机发出的功率也要增加。在实际电力系统中,负荷随时在变化,所以必须靠调节电源侧,使发电机发出的功率随负荷功率的变化而变化。 负荷曲线的形状往往是无一定规律可循,但可将这种无规则的曲线看成是几种有规律的曲线的迭加。如图5-1所示,将一种负荷曲线分解成三种曲线负荷。 第一种负荷曲线的变化,频率很快,周期很短,变化幅度很小。这是由于想象不到的小负荷经常性变化引起的。 第二种负荷曲线的变化,频率较慢,周期较长,幅度较大。这是由于一些冲击性、间歇性负荷的变动引起的,如大工厂中大电机、电炉、电气机车等一开一停。 第三种负荷曲线的变化,非常缓慢,幅度很大。这是由于生产、生活、气象等引起的。这种负荷是可以预计的。 对于第一种负荷变化引起的频率偏移进行调整,称为频率的“ 一次调整”。调节方法一般是调节发电机组的调速器系统。对于第二种负荷变化引起的频率偏移进行调整,称为频率的“二次调整”,调节方法是调节发电机组的调频器系统。对于第三种负荷的变化,通常是根据预计的负荷曲线,按照一定的优化分配原则,在各发电厂间、发电机间实现功率的经济分配,称为有功功率负荷的优化分配。 二、发电厂的备用容量 电力系统中的有功功率电源是发电厂中的发电机,而系统中装机容量总是大于发电容 t

第四章电力系统的无功功率平衡和电压调整.doc

第四章 电力系统的无功功率平衡和电压调整 例4-1 某变电站装设一台双绕组变压器,型号为SFL-31500/110,变比为110±2×2.5%/38.5kV ,空载损耗△P 0=86 KW ,短路损耗△P K =200KW ,短路电压百分值U k %=10.5,空载电流百分值I 0%=2.7。变电站低压侧所带负荷为S MAX =20+j10MV A ,S MIN =10+j7MV A ,高压母线电压最大负荷时为102KV ,最小负荷时为105KV ,低压母线要求逆调压,试选择变压器分接头电压。 解 计算中略去变压器的励磁支路、功率损耗及电压降落的横分量。 变压器的阻抗参数 R T =(△P K U N 2)/(1000S N 2)=(200×1102)/(1000×31.52)=2.44(Ω) X T =(U K %U N 2)/(100S N )=(10.5×1102)/(100×31.5)=40.3(Ω) 变压器最大、最小负荷下的电压损耗为 △ U Tmax = max max 1max 20 2.441040.3 4.43()102T T P R Q X KV U +?+?== △ U Tmin =min min 1min 10 2.44740.3 2.92()105 T T P R Q X KV U +?+?== 变压器最大、最小负荷下的分接头电压为 U 1tmax =(U 1max -△U tmax ) 22max N U U =(102-4.43)38.535105%?=102.2(kV) U 1tmin =(U 1min -△U tmin )22min N U U =(105-2.92) ×38.535 =112.3(kV) U 1t =(102.2+112.3)/2=107.25(kV) 选择与最接近的分接头为110-2.5%即分接头电压为107.25KV 。此时,低压母线按所选分接头电压计算的实际电压为

电力系统有功功率和

第五章 电力系统有功功率和频率调整 第一节 电力系统中有功功率的平衡 一、有功功率负荷的变动和调整控制 L L G P P P ?∑+∑=∑ 如图5-1中所示,负荷可以分为三种。第一种变动幅度很小,周期又很短,这种负荷变动有很大的偶然性。第二种变动幅度较大,周期也较长,属于这一种的主要有电炉、压延机械、电气机车等带有冲击性的负荷。第三种变动幅度最大,周期也最长,这一种是因为生产、生活、气象等变化引起的负荷变动。第三种负荷基本上可以预计。 据此,电力系统的有功功率和频率调整大体上也可分为一次、二次、三次调整三种。一次调整或频率的一次调整指由发电机组的调速器进行的、对第一种负荷变动引起的频率偏移的调整。二次调整或频率的二次调整指由发电机的调频器进行的、对第二种负荷变动引起的频率偏移的调整。三次调整实际上就是按最优化准则分配第三种有规律变动的负荷,即责成各发电厂按事先给定的发电负荷曲线发电。 二、有功功率电源和备用容量 装机容量——所有发电设备容量总和。 电源容量——可投入使用的容量之和。 备用容量——系统电源容量减去最大发电负荷(包括网损、负荷、厂用电等)。 系统备用容量可分为热备用和冷备用或负荷备用、事故备用、检修备用和国民经济备用等。

所谓热备用运转中的发电设备可能发的最大功率与系统发电负荷之差。冷备用则指未运转的发电设备可能发的最大功率。 负荷备用是指调整系统中短时的负荷波动并担负计划外的负荷增加而设置的备用。 事故备用是使电力用户在发电设备发生偶然性事故时不受严重影响,维持系统正常供电所需的备用。 检修备用是使系统中的发电设备能定期检修而设置的备用。 电力工业是线性工业,除满足当前负荷的需要设置上述备用外,还应计及负荷超计划增长而设置一定的备用。这种备用就称国民经济备用。 具备了备用容量,才可能谈论它们在系统中各发电设备和发电厂之间的最优分配以及系统的频率调整问题。 第二节电力系统中有功功率的最优分配 一、有功功率最优分配 电力系统中有功功率的分配有两个主要内容,即有功功率电源的最优组合和有功功率负荷的最优分配。 有功功率电源的最优组合是指系统中发电设备或发电厂的合理组合,也就是通常所说谓的合理开停。 有功功率负荷的最优分配是指系统的有功功率负荷在各个正在运行的发电设备或发电厂之间的合理分配。最常用的是按所谓等耗量微增率准则分配。 二、最优分配负荷时的目标函数和约束条件 1.耗量特性 电力系统中有功功率负荷合理分配的目标是在满足一定约束条件的前提下,尽可能节约消耗的一次能源。因此,必须先明确发电设备单位时间内消耗的能源与发出有功功率的关系,即发电设备输入与输出的关系。这关系称耗量特性,如图5-2所示。 耗量特性曲线上某一点纵坐标和横坐标的比值,即单位时间内输入能量与输 μ。耗量特性曲线上某点切线的斜率称耗量微增出功率之比称比耗量μ。P F/ = λ。 率λ。即dP ? ? = F/ dF P /= 2.目标函数和约束条件

电力系统无功功率平衡与电压调整

电力系统无功功率平衡与电压调整 由于电力系统中节点很多,网络结构复杂,负荷分布不均匀,各节点的负荷变动时,会引起各节点电压的波动。要使各节点电压维持在额定值是不可能的。所以,电力系统调压的任务,就是在满足各负荷正常需求的条件下,使各节点的电压偏移在允许范围之内。 由综合负荷的无功功率一电压静态特性分析可知,负荷的无功功率是随电压的降低而减少的,要想保持负荷端电压水平,就得向负荷供应所需要的无功功率。所以,电力系统的无功功率必须保持平衡,即无功功率电源发出的无功功率要与无功功率负荷和无功功率损耗平衡。这是维持电力系统电压水平的必要条件。 一、无功功率负荷和无功功率损耗 1.无功功率负荷 无功功率负荷是以滞后功率因数运行的用电设备(主要是异步电动机)所吸收的无功功率。一般综合负荷的功率因数为0.6~O.9,其中,较大的数值对应于采用大容量同步电动机的场合。 2.电力系统中的无功损耗 (1)变压器的无功损耗。变压器的无功损耗包括两部分。一部分为励磁损耗,这种无功损耗占额定容量的百分数,基本上等于空载电流百分数0I %,约为1%~2%。因此励磁损耗为 0/100Ty TN Q I S =V (Mvar) (5-1-1) 另一部分为绕组中的无功损耗。在变压器满载时,基本上等于短路电压k U 的百分值,约为10%这损耗可用式(6-2)求得 2(%)()100k TN TL Tz TN U S S Q S =V (Mvar) (5-1-2) 式中,TN S 为变压器的额定容量(MVA);TL S 为变压器的负荷功率(MVA)。 由发电厂到用户,中间要经过多级变压,虽然每台变压器的无功损耗只占每台变压器容量的百分之十几,但多级变压器无功损耗的总和可达用户无功负荷的75%~100%左右。 (2)电力线路的无功损耗。电力线路上的无功功率损耗也分为两部分,即并联电纳和串联电抗中的无功功率损耗。并联电纳中的无功损耗又称充电功率,与电力线路电压的平方成正比,呈容性。串联电抗中的无功损耗与负荷电流的平方成正比,呈感性。因此电力线路作为电力系统的一个元件,究竟是消耗容性还是感性无功功率,根据长线路运行分析理论,可作一个大致估计。对线路不长,长度不超过100km ,电压等级为220kV 电力线路,线路将消耗感性无功功率。对线路较长,其长度为300km 左右时,对220kV 电力线路,线路基本上既不消耗感性无功功率也不消耗容性无功功率,呈电阻性。大于300km 时,线路为电容性的。 二、系统综合负荷的电压静态特性 电力系统中某额定功率的用电设备实际吸收的有功功率和无功功率的大小是随电力网的电压变化而变的,尤其是无功功率受电压的影响很大。电力系统综

电力系统频率变化的影响

电力系统频率偏低偏高有哪些危害 电力系统频率的频率变动会对用户、发电厂、电力系统产生不利的影响。1.对用户的影响:频率的变化将引起电动机转速的变化,从而影响产品质量,雷达、电子计算机等会因频率过低而无法运行;2.对发电厂的影响:频率降低时,风机和泵所能提供的风能和水能将迅速减少,影响锅炉的正常运行;频率降低时,将增加汽轮机叶片所受的应力,引起叶片的共振,减短叶片寿命甚至使其断裂。频率降低时,变压器铁耗和励磁电流都将增加,引起升温,为保护变压器而不得不降低其负荷;3.对电力系统的影响:频率降低时,系统中的无功负荷会增加,进而影响系统,使其电压水平下降。 当供电电路的频率偏高时,1、电动机的转速回高(n=60f/p(1-&) ),当电动机转速增大时,其实际功率成倍增加,其结果电动机很容易过载烧毁;2、中国电气设备是按50赫兹设计的,如果大于其允许的频率数,电气原件容易损坏。当供电电路的频率偏低时,电动机转速会过低,会使有的设备不能正常工作,如水泵可能不出水,风机风量、风压过低。 频率变化对电力用户及电力系统的影响包括哪些 对用户: 1、用户使用的电动机的转速与系统频率有关,频率变化将使电动机的转速变化,从而影响产品的质量。例如,纺织工业都会因为频率的变化出现次品。 2、近代工业,国防和科学技术都已经广泛使用的电子设备受到频率影响较大。 系统本身: 1、低频运行,会对发电机的叶片所受到的应力有影响。甚至引起共振,降低叶片寿命。 2、增大励磁电流,提高温升等。 系统频率的变化主要是引起负荷端异步电动机转速的变化。 如果频率降低的过多,将使电动机停止运转,会引起严重的后果。比如,火电厂的给水泵停止运转,将迫使锅炉停炉。另一方面,如楼上所讲,对于汽轮机在低频运行状态下时,会缩短汽轮机叶片的寿命,严重时会使叶片断裂。(这是因为汽轮机转子一般瘦长,转速较快,可达1500r/s,突然频率过低,会使叶片断裂)。 如果频率过高,则会出现失步等问题。 推荐楼主看《电力系统分析(上)》诸俊伟和《电力系统分析(下)》夏道止 电力系统频率变化的原因

电力系统有功功率平衡(电力系统稳态分析陈珩)

电力系统的频率调整 电能相对于其他一、二次能源具有易于输送的特点,尤其电能在远距离输送时,无论在经济性、安全性及损耗等面都具有显著优势,这使其成为现代社会最重要的能源类型之一。保证以及提高电能质量是世界所有电力企业的共同目标。电能质量的好坏一般由一系列电网运行状态参数来衡量,衡量电能质量的指标有频率质量、电压质量和波形质量,分别以频率偏移、电压偏移和波形畸变率表示。可见,电网频率质量是电能质量中最重要的指标之一。电网中绝大多数发电及用电设备均按照电网额定频率生产制造,一般只能够在较小的频率偏差下正常使用。当频率偏差较大时,电气设备可能会出现低效乃至损坏等问题,从而造成经济损失甚至人身安全事故。 电网频率与电网整体有功功率的平衡直接相关。若电网中的总发电功率大于总负荷吸收功率,则电网频率上升;反之则电网频率下降。因此,保证电网频率质量的问题,可转化为保证电网整体有功功率平衡控制质量的问题。由于在目前的技术条件下,电能尚无法实现大规模直接存储,因此有功功率平衡质量的保证只能依赖于电能在发、输、配、用各环节中实现实时功率平衡。在有功功率平衡控制问题的研宄中,一般将输配电过程中的功率损耗看作等效负荷,因此,电网有功功率平衡控制问题主要是发电与用电的平衡控制。 表面上看,电网的有功功率平衡控制问题似乎是十分简单及清晰的,即电网中的发电功率与用电功率需要实时平衡。然而,在实际操作层面,即电网如具体且高质量地实现实时的有功功率平衡却较为复杂。有功功率平衡控制及其性能评价作为互联电网有功功率平衡控制问题中的一个环节,与其他环节间相互影响、相互制约,因此,必须首先对所究问题的背景及相关概念加以分析和梳理。

电力系统频率调整及控制

12.1.1.1频率与有功功率平衡 电力系统频率是靠电力系统内并联运行的所有电机组发出的有功功率总和与系统内所有负荷消耗(包括网损)的有功功率总和之间的平衡来维持的。 但是,电力系统的负荷是时刻变化的,从而导致系统频率变化。为了保证电力系统频率在允许范围之内,就需要及时调节系统内并联运行机组的有功功率。 频率质量是电能质量的一个重要指标。中国《电力工业技术管理法规》规定,大容量电力系统的频率偏差不得超过,一些工业发达国家规定频率偏差不得超过。 说明电力系统元件及整个系统的频率特性,介绍电力系统调频的基本概念。 12.1.2.1负荷频率特性 负荷的频率静态特性:在没有旋转备用容量的电力系统中,当电源与负荷推动平衡时,则频率将立即发生变化。由于频率的变化,整个系统的负荷也将随着频繁率的的变化而变化。这种负荷随频率的变化而变化的特性叫做负荷的频率静态特性。 综合负荷与频率的关系可表示成: 由于电力系统运行中,频率一般在额定频率附近,频率偏移也很小,因此可将负荷的静态频率特性近似为直线,如下图所示。

12.1.2.2发电机组频率特性 发电机组的频率静特性:当系统频率变化时,发电机组的高速系统将自动地改变汽轮机的进汽量或水轮机的进水量以增减发电机组的出力,这种反映由频率变化而引起发电机组出力变化的关系,叫发电机调速系统的频率静态特性。 发电机组的功率频率静态特性如下图:在不改变发电机调速系统设定值时,发电机输出功率增加则频率下降,而当功率增加到其额定功率时,输出功率不随频率变化。图中向下倾斜的直线即为发电机频率静态特性,而①和②表示发电机出力分别为PG1和PG2时对应的频率。

电力系统有功功率与频率调整

郑州电力职业技术学院毕业生论文题目:_浅谈电力系统有功功率与频率调整 系别___电力工程系____ 专业_继电保护及自动化 班级___15继电3班____ 学号__15401020341 姓名____张高原____ 论文成绩答辩成绩综合成绩指导教师 主答辩教师 答辩委员会主任

浅谈电力系统有功功率与频率调整 摘要 本文首先介绍了电力系统有功功率与频率调整的基本知识,有功功率的应用、意义及;频率调整的必要性,电压频率特性,频率的一二次调整,以及互联系统中的频率的一二次调整,调频与调压的关系,以及电力系统频率调整在个类电厂中得作用。 关键词:有功功率频率调整互联系统

目录 1电力系统有功功率与频率调整的意义 (1) 2频率调整的必要性 (1) 2.1频率变化的危害 (1) 2.2电力系统负荷变动规律 (1) 3电力系统的频率特性 (2) 3.1负荷的有功功率-频率静态特性3.2电源的有功功率-频率静态特性 3.2.1同步发电机组的调试系统 (2) (4) (4) 3.2.2调速系统框图 (4) 3.2.3同步发电机组的有功功率-频率静态特性 (4) 4电力系统的频率调整 (6) 4.1频率的一次调整 (6) 4.1.1基本原理 (6) 4.1.2基本关系 (6) 4.1.3多机系统的一次调频 (7) 4.2频率的二次调整 (9) 4.2.1基本原理 (9) 4.2.2基本关系: (10) 4.2.3基本理论: (10) 4.3互联系统的(二次)频率调整 (10) 4.3.1基本关系 (10) 4.3.2注意要点: (10) 4.4调频与调压的关系 (11) 4.4.1频率变化对电压的影响4.4.2电压变化会频率的影响 (11) (11) 4.4.3注意 (11) 5电力系统的有功平衡与备用容量 (12) 5.1有功平衡关系 (12) 5.2备用容量 (12) 6电力系统负荷在各类发电厂的合理分配 (12) 6.1火力发电厂的主要特点6.2水力发电厂的主要特点 (12) (13) 6.3抽水蓄能水电厂的主要特点 (13) 6.4核能发电厂的主要特点 (13) 总结 (14) 致谢 (15) 参考书籍 (16)

电力系统有功无功及调整

第一节功率三角形 一、概述 1、有功和无功的概念 电力系统无论是发电厂发出的电能还是消费的电能,其电功率都可分为有功功率和无功功率。有功功率就是指电能转化为热能或者机械能等形式被人们使用或消耗的能量,有功电能是我们最直接能感受到的电功率;而无功功率比较抽象,它是指用于建立电场能和磁场能相互交换所必须的、并用来在电气设备中建立和维持磁场的那部分电功率。它不对外作功,而是转变为其他形式的能量,凡是有电磁线圈的电气设备要建立磁场,都要消耗无功功率。 无功功率决不是无用的功率,它的作用很大。电动机需要建立和维持旋转磁场,使转子转动而带动机械运动的转子磁场就是靠从电源取得无功功率建立的;变压器也同样需要无功功率在变压器的一次线圈建立磁场,进而才能在二次线圈感应出电压。因此没有无功功率,电动机就不会转动,变压器也不能变压,交流接触器也不会吸合。 无功功率的符号用Q表示,单位为乏(Var)或千乏(kVar)。 发电厂(站)担负着向用户提供安全优质电能的任务,由于电能不能储存,因此发电厂(站)必须按照用户的需求向系统实时送出经济安全优质足量的有功和无功电能,确保总发出电能与总需求电能的平衡。 2、电能质量的两个重要指标 电压和频率是衡量电能质量的两个重要指标,有功功率充足与否直接影响是频率的变动,而影响电压质量的直接因素就是无功功率。 电力系统中各种用电设备只有在电压和频率为额定值时才能有安全运行和最好的经济指标。但是在电力系统的正常运行中,用电负荷和系统运行方式都是经常变化的,也由此引起电压和频率发生变化,不可避免地出现电压和频率偏移。 电力系统运行中,频率的稳定与否取决于有功功率的平衡,电压水平高低取决于无功功率的平衡。系统中的有功电源和各种无功电源的功率输出必须能满足系统负荷和网络损耗在额定状态下对有功功率和无功功率的需求,否则就会偏离额定值,系统的安全和经济运行指标就不可能实现。

电力系统有功功率与频率调整

电力系统有功功率与频率 调整

郑州电力职业技术学院毕业生论文题目:_浅谈电力系统有功功率与频率调整 系别___电力工程系____ 专业_继电保护及自动化 班级___ 15 继电 3 班____ 学号__ 姓名____张高原____ 论文成绩答辩成绩综合成绩指导教师 主答辩教师 答辩委员会主任 1

浅谈电力系统有功功率与频率调整 摘要 本文首先介绍了电力系统有功功率与频率调整的基本知识,有功功率的应 用、意义及;频率调整的必要性,电压频率特性,频率的一二次调整,以及互联 系统中的频率的一二次调整,调频与调压的关系,以及电力系统频率调整在个类电厂中得作用。 关键词:有功功率频率调整互联系统 2

目录 1 电力系统有功功率与频率调整的意义 ...................................................................... (1) 2 频率调整的必要性........................................................................................ (1) 频率变化的危 害 .................................................................................................... (1) 电力系统负荷变动规律............................................................................. (1) 3 电力系统的频率特性...................................................................................... (2) 负荷的有功功率-频率静态特性电源的有功功率-频率静态特性同步发电机组的调试系统 .................................................................... .. (2) .................................................................... .. (4) ..................................................................... .. (4) 调速系统框 图 ................................................................................................ (4) 同步发电机组的有功功率 -频率静态特 性 (4) 4 电力系统的频率调整...................................................................................... (6) 频率的一次调 整 .................................................................................................... (6) 基本原 理 ................................................................................................ (6) 基本关 系 ................................................................................................ (6) 多机系统的一次调频......................................................................... (7) 频率的二次调 整 .................................................................................................... (9) 基本原 理 ................................................................................................ (9) 基本关 系: .............................................................................................. (10) 基本理 论: .............................................................................................. (10) 互联系统的(二次)频率调整 ...................................................................... (10) 基本关 系 ................................................................................................ (10) 注意要 点: .............................................................................................. (10) 调频与调压的关系 .................................................................................. (11) 频率变化对电压的影响电压变化会频率的影响....................................................................... .. (11) ....................................................................... .. (11)

电力系统有功功率平衡及频率调整

第三章电力系统有功功率平衡及频率调整 例3-1 某一容量为100MW的发电机,调差系数整定为4%,当系统频率为50Hz 时,发电机出力为60MW;若系统频率下降为49.5Hz时,发电机的出 力是多少? 解根据调差系数与发电机的单位调节功率关系可得 K G=(1/δ*)×(P GN/f N)=(1/0.04)×(100/50)=50(MW/Hz) 于是有 △P G=-K G△f=50(50-49.5)=25(MW) 即频率下降到49.5Hz时,发电机的出力为60+25=85(MW) 例3-2 电力系统中有A、B两等值机组并列运行,向负荷P D供电。A等值机额定容量500MW,调差系数0.04,B等值机额定容量400MW,调差系数0.05。系统负荷的频率调节效应系数K D*=1.5。当负荷P D为600 MW时,频率为50Hz,A机组出力500MW,B机组出力100MW。试问: (1)当系统增加50MW负荷后,系统频率和机组出力是多少? (2)当系统切除50MW负荷后,系统频率和机组出力是多少? 解首先求等值发电机组A, B的单位调节功率及负荷的频率调节效应系数为K GA=(1/δ*)×(P GNA/f N)=(1/0.04)×(500/50)=250(MW/Hz) K GB=(1/δ*)×(P GNB/f N)=(1/0.05)×(400/50)=160(MW/Hz) K D=K D*×(P DN/f N)=1.5×(600/50)=18(MW/Hz) (1)当系统增加50 MW负荷后。 由题可知,等值机A已满载,若负荷增加,频率下降,K GA=0,不再参加频率调整。 系统的单位调节功率K=K GB+K D=160+18=178(MW/Hz) 频率的变化量△f=-△P D/K=-50/178=-0.2809(Hz) 系统频率f=50-0.2809=49.72(Hz) A机有功出力P GA=500MW B机有功出力P GB=100-K GB△f=100+160×0.2809=144.94(MW) (2)当系统切除50MW负荷后。 A机满载运行,负荷增加时无可调功率,但切除负荷,即负荷减少,频率上升,A机组具有频率调整作用。即系统的单位调节功率为K=K GA+K GB+K D=250+160+18=428(MW/Hz)频率的变化量△f=-△P D/K=-(-50/428)=0.117(Hz) 系统频率f=50+0.117=50.117(Hz) A机有功出力P GA=500-K GA△f=500-250×0.117=470.75(MW)

第13章 电力系统的有功功率与频率调整

第13章 电力系统的有功功率与频率调整 频率是衡量电能质量的另一项重要指标,保证频率合乎标准也是系统运行调整的一项基本任务。为了完成这项任务,最基本的一点就是要做到有功功率平衡,即电力系统内所有电源输出的有功功率必须与系统内所有的用电设备消耗的有功功率加上输配电网中所有元件损耗的有功功率相等。有功功率怎么和频率有关系呢?又有什么样的关系呢?出现问题后如何协调呢? 按照以下顺序我们将对上述问题一一解答。 图13-1 第13章结构图 频 率 ? 么 什 为 怎 样调整 ? 有谁 有关系? 有什么关系?

13-1 频率调整的必要性 一频率偏移的影响 频率是电力系统运行的一个重要质量指标。所有用电传动的旋转设备,其最高效率都是在电力系统频率为额定频率时,因此,任何频率偏移,都会造成效率的降低;其次,频率的过高或过低,还会给运行中的电气设备带来各种不同的危害。 1 对用户的影响 现代工业的许多产品质量与电力系统频率有关。例如纺织工业、造纸工业等。这些工业使用的大多数电动机为异步电动机,频率的降低会造成异步电动机转速下降,使异步电动机所传动的生产设备生产出次品,乃至废品,如纺织品、纸张等将发生毛疵和厚薄不匀的质量问题。一般工业由电动机传动的生产设备也会因频率下降而使生长率降低。电力系统频率波动过大时,会使某些电子设备(如雷达)、电力电子设备等工作不正常。 2 对发电厂的影响 频率变化时,对发电厂本身的影响比对用户的影响更大,其影响有: (1) 汽轮机叶片谐振电力系统低频率运行时,汽轮机低压级叶片会产生谐振,振动疲劳的积累会导致叶片出现裂纹,缩短叶片寿命,严重时会使叶片断裂,造成事故停机的严重后果。

相关主题
文本预览
相关文档 最新文档