函数概念及表示与函数的单调性.pdf
- 格式:pdf
- 大小:1.14 MB
- 文档页数:8
函数的表示法课前预习: 函数的表示法(1) 解析法:用数学表达式表示两个变量之间的对应关系,这种表示方法叫做解析法,这个数学表达式叫做函数的解析式。
归纳总结:解析法有两个有点:一是简明,全面的概括了变量间的变化规律,二是可以通过解析法求出任意一个自变量所对应的函数值。
缺点是并不是任意的函数都可以用解析法表示,仅当两个变量有变化规律时,才能用解析法表示。
(2) 图像法:以自变量x 的取值为横坐标,对应的函数y 值为纵坐标,在平面内描出个这些点构成了函数的图像,这种用图像表示两个变量的方法叫图像法。
归纳总结:图像法可以直观的表示函数局部变化规律,进而可以预测他的整体趋势,比如心电图等,图像可以是有限几个点,也可以试一段或几段直线或曲线。
在直角坐标系中,如果图像满足:垂直于x轴的直线与其至多有一个交点,那么这个图形一定是某函数的图像。
函数定义域的几何意义是函数图像上所有点纵坐标的取值范围。
(3) 列表法:列一个两行多列的表格,第一行是自变量的取值,第二行是对应的函数值,这种用表格表示两个变量的对应关系叫列表法。
归纳总结:列表法不必通过计算就知道两个变量之间的对应关系,比较直观但他只能表示有限个元素之间的函数关系。
自我测评例一:垂直于x 轴的直线与函数xx y 1+=的图像的交点至多有( )A 1 B 2 C 3 D 4 提示:根据函数的性质:一对一 或者一对多。
例二:已知一次函数f(x)满足f(2)=1,f(3)=-5,求解析式。
典题精讲题型一: 求函数的解析式例一 已知f(x)是一次函数,且()[]{}78+=x x f f f ,求f(x)的解析式 分析:解答本题可利用待定系数法,设()()0≠+=a b ax x f ,再根据题设条件列方程求解待定系数k、b。
反思:本题以()x f 为一次函数作为切入点,运用待定系数法,构建所设参数的方程组从而解决问题,这是一种常用的解题方法,已知函数类型求函数解析式常用此方法。
函数的概念与基本性质函数是数学中的一个重要概念,它在数学和其他领域中都有广泛的应用。
本文将介绍函数的概念以及其基本性质,包括定义域、值域、对应关系、单调性等。
一、函数的概念函数是两个集合之间的一种特殊关系,一般表示为 f(x),其中 x 是自变量,f(x) 是因变量。
函数的定义域是指所有可能的自变量的集合,而值域则是函数在定义域内可以取得的所有因变量的值的集合。
函数在定义域内的每个自变量都对应一个唯一的因变量。
二、函数的基本性质1. 定义域和值域:函数的定义域和值域是函数的两个基本性质。
定义域决定了函数的有效输入范围,而值域则表示函数可能的输出范围。
在函数中,定义域和值域可以是有限的集合,也可以是无限的区间。
2. 对应关系:函数的一个重要性质是具有确定的对应关系。
即在定义域内的每个自变量都对应唯一的因变量。
这种一一对应的关系使得函数具有明确的输入和输出。
3. 单调性:函数的单调性描述了函数随自变量变化时的趋势。
如果函数在定义域内的任意两个自变量 x1 和 x2 满足 x1 < x2,则有 f(x1) <f(x2),则称该函数是单调递增的。
反之,如果 f(x1) > f(x2),则称该函数是单调递减的。
4. 奇偶性:函数的奇偶性是指函数关于原点对称的性质。
如果对于定义域内的任意自变量 x,有 f(-x) = -f(x),则称函数是奇函数。
而如果有 f(-x) = f(x),则称函数是偶函数。
5. 周期性:函数的周期性表示在一定范围内,函数的图像会随着自变量的周期性变化而重复出现。
如果存在一个正数 T,使得对于定义域内的任意自变量 x,有 f(x+T) = f(x),则称函数具有周期 T。
三、函数的应用函数的概念和性质在数学和其他领域中都有广泛的应用。
在数学中,函数被用于解决各种数学问题,包括方程求解、函数图像绘制和曲线分析等。
在物理、经济学和工程学等应用领域,函数被用于建立模型和描述现象,帮助我们理解和解释自然界中的规律。
精锐教育学科教师辅导学案学员编号: 年 级:高一 课 时 数: 3 学员姓名: 辅导科目:数学 学科教师:授课类型 T 函数的概念与图象(4) T函数的表示方法T函数的单调性(一)授课日期及时段教学内容函数的概念与图象(4)[学习目标]1.会运用描点法作出一些简单函数的图象,从“形”的角度进一步加深对函数概念的理解;2.通过对函数图象的描绘和研究,培养数形结合的意识,提高运用数形结合的思想方法解决数学问题的能力. [知识要点]1.函数图象的概念将自变量的一个值0x 作为横坐标,相应的函数值()0f x 作为纵坐标,就得到坐标平面上的一个点()()0,0x f x .当自变量取遍函数定义域A中的每一个值时,就得到一系列这样的点.所有这些点组成的集合(点集)为()(){},,x f x x A ∈即()(){},,x y y f x x A =∈,所有这些点组成的图形就是函数()y f x =的图象.2.函数图象的画法画函数的图象,常用描点法,其基本步骤是:⑴列表;⑵描点;⑶连线.在画图过程中,一定要注意函数的定义域和值域.3.会作图,会读(用)图[例题讲解]例1.画出下列函数的图象,并求值域:(1)y =13-x ,∈x [1,2]; (2)y = (1-)x,∈x {0,1,2,3}; (3)y =x ; 变题:1y x =-; (4)y =2x 22--x例2.直线y =3与函数y =|x 2-6x |图象的交点个数为 ( ) (A )4个 (B )3个 (C )2个 (D )1个例3.下图中的A. B. C. D 四个图象中,用哪三个分别描述下列三件事最合适,并请你为剩下的一个图象写出一件事。
离开家的距离(m) 离开家的距离(m)时间(min ) 时间(min ) A B离开家的距离(m) 离开家的距离(m)时间(min ) 时间(min )C D(1) 我离开家不久,发现自己把作业本忘在家里了,停下来想了一会还是返回家取了作业本再上学; (2) 我骑着车一路匀速行驶,只是在途中遇到一次交通堵塞,耽搁了一些时间; (3) 我出发后,心情轻松,缓缓行进,后来为了赶时间加快了速度。
第三章函数的概念与性质(公式、定理、结论图表)1.函数的概念定义一般地,设A ,B 是非空的实数集,如果对于集合A 中的任意一个数x按照某种确定的对应关系f ,在集合B 中都有唯一确定的数y 和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数三要素对应关系y =f (x ),x ∈A定义域自变量x 的取值范围值域与x 的值相对应的y 的函数值的集合{f (x )|x ∈A }思考1:(1)有人认为“y =f (x )”表示的是“y 等于f 与x 的乘积”,这种看法对吗?(2)f (x )与f (a )有何区别与联系?提示:(1)这种看法不对.符号y =f (x )是“y 是x 的函数”的数学表示,应理解为x 是自变量,它是关系所施加的对象;f 是对应关系,它可以是一个或几个解析式,可以是图象、表格,也可以是文字描述;y 是自变量的函数,当x 允许取某一具体值时,相应的y 值为与该自变量值对应的函数值.y =f (x )仅仅是函数符号,不表示“y 等于f 与x 的乘积”.在研究函数时,除用符号f (x )外,还常用g (x ),F (x ),G (x )等来表示函数.(2)f (x )与f (a )的区别与联系:f (a )表示当x =a 时,函数f (x )的值,是一个常量,而f (x )是自变量x 的函数,一般情况下,它是一个变量,f (a )是f (x )的一个特殊值,如一次函数f (x )=3x +4,当x =8时,f (8)=3×8+4=28是一个常数.2.区间及有关概念(1)一般区间的表示设a ,b ∈R ,且a <b ,规定如下:定义名称符号数轴表示{x |a ≤x ≤b }闭区间[a ,b ]{x |a <x <b }开区间(a ,b ){x |a ≤x <b }半开半闭区间[a ,b ){x |a <x ≤b }半开半闭区间(a ,b ](2)特殊区间的表示定义R{x |x ≥a }{x |x >a }{x |x ≤a }{x |x <a }符号(-∞,+∞)[a ,+∞)(a ,+∞)(-∞,a ](-∞,a )思考2:(1)区间是数集的另一种表示方法,那么任何数集都能用区间表示吗?(2)“∞”是数吗?如何正确使用“∞”?提示:(1)不是任何数集都能用区间表示,如集合{0}就不能用区间表示.(2)“∞”读作“无穷大”,是一个符号,不是数.以“-∞”或“+∞”作为区间一端时,这一端必须是小括号.3.函数的表示法思考:任何一个函数都可以用解析法、列表法、图表法三种形式表示吗?提示:不一定.并不是所有的函数都可以用解析式表示,不仅如此,图象法也不适用于所有函数,如D (x 0,x ∈Q ,1,x ∈∁R Q .列表法虽在理论上适用于所有函数,但对于自变量有无数个取值的情况,列表法只能表示函数的一个概况或片段.4.分段函数如果函数y =f (x ),x ∈A ,根据自变量x 在A 中不同的取值范围,有着不同的对应关系,则称这样的函数为分段函数.思考:分段函数是一个函数还是几个函数?提示:分段函数是一个函数,而不是几个函数.5.增函数与减函数的定义条件一般地,设函数f (x )的定义域为I ,区间D ⊆I :如果∀x 1,x 2∈D ,当x 1<x 2时都有f (x 1)<f (x 2)都有f (x 1)>f (x 2)结论那么就说函数f (x )在区间D 上是增函数那么就说函数f (x )在区间D 上是减函数图示思考1:增(减)函数定义中的x 1,x 2有什么特征?提示:定义中的x 1,x 2有以下3个特征:(1)任意性,即“任意取x 1,x 2”中“任意”二字绝不能去掉,证明时不能以特殊代替一般;(2)有大小,通常规定x 1<x 2;(3)属于同一个单调区间.2.函数的单调性与单调区间如果函数y =f (x )在区间D 上单调递增或单调递减,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做y =f (x )的单调区间.思考2:函数y =1x在定义域上是减函数吗?提示:不是.y =1x 在(-∞,0)上递减,在(0,+∞)上也递减,但不能说y =1x 在(-∞,0)∪(0,+∞)上递减.6.函数最大值与最小值最大值最小值条件设函数y =f (x )的定义域为I ,如果存在实数M 满足:∀x ∈I ,都有f (x )≤Mf (x )≥M∃x 0∈I ,使得f (x 0)=M结论M 是函数y =f (x )的最大值M 是函数y =f (x )的最小值几何意义f (x )图象上最高点的纵坐标f (x )图象上最低点的纵坐标思考:若函数f (x )≤M ,则M 一定是函数的最大值吗?提示:不一定,只有定义域内存在一点x 0,使f (x 0)=M 时,M 才是函数的最大值,否则不是.7.函数的奇偶性奇偶性偶函数奇函数条件设函数f (x )的定义域为I ,如果∀x ∈I ,都有-x ∈I结论f (-x )=f (x )f (-x )=-f (x )图象特点关于y 轴对称关于原点对称思考:具有奇偶性的函数,其定义域有何特点?提示:定义域关于原点对称.8.幂函数的概念一般地,函数y =x α叫做幂函数,其中x 是自变量,α是常数.9.幂函数的图象在同一平面直角坐标系中,画出幂函数y =x ,y =x 2,y =x 3,y =x 12,y =x -1的图象如图所示:10.幂函数的性质y =xy =x 2y =x 3y =x 12y =x -1定义域R R R [0,+∞){x |x ≠0}值域R [0,+∞)R [0,+∞){y |y ≠0}奇偶性奇偶奇非奇非偶奇单调性增函数x ∈[0,+∞)时,增函数x ∈(-∞,0]时,减函数增函数增函数x ∈(0,+∞)时,减函数x ∈(-∞,0)时,减函数11.常见的几类函数模型函数模型函数解析式一次函数模型f (x )=ax +b (a ,b 为常数,a ≠0)二次函数模型f(x)=ax2+bx+c(a,b,c为常数,a≠0)分段函数模型f(x)=f1(x),x∈D1f2(x),x∈D2……fn(x),x∈D n<解题方法与技巧>1.判断对应关系是否为函数的2个条件(1)A,B必须是非空实数集.(2)A中任意一元素在B中有且只有一个元素与之对应.对应关系是“一对一”或“多对一”的是函数关系,“一对多”的不是函数关系.2.判断函数相等的方法(1)先看定义域,若定义域不同,则不相等;(2)若定义域相同,再化简函数的解析式,看对应关系是否相同.典例1:(1)下列各组函数是同一函数的是()①f(x)=-2x3与g(x)=x-2x;②f(x)=x与g(x)=x2;③f(x)=x0与g(x)=1x0;④f(x)=x2-2x-1与g(t)=t2-2t-1.A.①②B.①③C.③④D.①④(2)判断下列对应是不是从集合A到集合B的函数.①A=N,B=N*,对应法则f:对集合A中的元素取绝对值与B中元素对应;②A={-1,1,2,-2},B={1,4},对应法则f:x→y=x2,x∈A,y∈B;③A={-1,1,2,-2},B={1,2,4},对应法则f:x→y=x2,x∈A,y∈B;④A={三角形},B={x|x>0},对应法则f:对A中元素求面积与B中元素对应.(1)C[①f(x)=-2x3=|x|-2x与g(x)=x-2x的对应法则和值域不同,故不是同一函数.②g(x)=x2=|x|与f(x)=x的对应法则和值域不同,故不是同一函数.③f(x)=x0与g(x)=1x0都可化为y=1且定义域是{x|x≠0},故是同一函数.④f(x)=x2-2x-1与g(t)=t2-2t-1的定义域都是R,对应法则也相同,而与用什么字母表示无关,故是同一函数.由上可知是同一函数的是③④.故选C.](2)[解]①对于A中的元素0,在f的作用下得0,但0不属于B,即A中的元素0在B中没有元素与之对应,所以不是函数.②对于A中的元素±1,在f的作用下与B中的1对应,A中的元素±2,在f的作用下与B中的4对应,所以满足A中的任一元素与B中唯一元素对应,是“多对一”的对应,故是函数.③对于A中的任一元素,在对应关系f的作用下,B中都有唯一的元素与之对应,如±1对应1,±2对应4,所以是函数.④集合A不是数集,故不是函数.]3.函数求值的方法(1)已知f(x)的表达式时,只需用a替换表达式中的x即得f(a)的值.(2)求f(g(a))的值应遵循由里往外的原则.典例2:设f(x)=2x2+2,g(x)=1x+2,(1)求f(2),f(a+3),g(a)+g(0)(a≠-2),g(f(2)).(2)求g(f(x)).[思路点拨](1)直接把变量的取值代入相应函数解析式,求值即可;(2)把f(x)直接代入g(x)中便可得到g(f(x)).[解](1)因为f(x)=2x2+2,所以f(2)=2×22+2=10,f(a+3)=2(a+3)2+2=2a2+12a+20.因为g(x)=1x+2,所以g(a)+g(0)=1a+2+10+2=1a+2+12(a≠-2).g(f(2))=g(10)=110+2=112.(2)g(f(x))=1f(x)+2=12x2+2+2=12x2+4.4.求函数定义域的常用方法(1)若f(x)是分式,则应考虑使分母不为零.(2)若f(x)是偶次根式,则被开方数大于或等于零.(3)若f(x)是指数幂,则函数的定义域是使幂运算有意义的实数集合.(4)若f(x)是由几个式子构成的,则函数的定义域是几个部分定义域的交集.(5)若f(x)是实际问题的解析式,则应符合实际问题,使实际问题有意义.典例3:1.已知函数的解析式,求其定义域时,能否可以对其先化简再求定义域?提示:不可以.如f(x)=x+1x2-1.倘若先化简,则f(x)=1x-1,从而定义域与原函数不等价.2.若函数y=f(x+1)的定义域是[1,2],这里的“[1,2]”是指谁的取值范围?函数y =f(x)的定义域是什么?提示:[1,2]是自变量x的取值范围.函数y=f(x)的定义域是x+1的范围[2,3].5.分段函数求函数值的方法:(1)确定要求值的自变量属于哪一段区间.(2)代入该段的解析式求值,直到求出值为止.当出现f(f(x))的形式时,应从内到外依次求值.6..已知函数值求字母取值的步骤:(1)先对字母的取值范围分类讨论.(2)然后代入不同的解析式中.(3)通过解方程求出字母的值.(4)检验所求的值是否在所讨论的区间内.提醒:求某条件下自变量的值时,先假设所求的值在分段函数定义区间的各段上,然后相应求出自变量的值,切记代入检验.典例4:求下列函数的定义域:(1)f(x)=2+3x-2;(2)f(x)=(x-1)0+2x+1;(3)f(x)=3-x·x-1;(4)f(x)=(x+1)2x+1-1-x.[思路点拨]要求函数的定义域,只需分母不为0,偶次方根中被开方数大于等于0即可.[解](1)当且仅当x-2≠0,即x≠2时,函数f(x)=2+3x-2有意义,所以这个函数的定义域为{x|x≠2}.x-1≠0,2x+1≥0,x+1≠0,解得x>-1且x≠1,所以这个函数的定义域为{x|x>-1且x≠1}.3-x≥0,x-1≥0,解得1≤x≤3,所以这个函数的定义域为{x|1≤x≤3}.(4)要使函数有意义,自变量x x+1≠0,1-x≥0,解得x≤1且x≠-1,即函数定义域为{x|x≤1且x≠-1}.已知函数f(x x+1,x≤-2,x2+2x,-2<x<2,2x-1,x≥2.(1)求f(-5),f(-3),f f -52的值;(2)若f(a)=3,求实数a的值.[解](1)由-5∈(-∞,-2],-3∈(-2,2),-52∈(-∞,-2],知f(-5)=-5+1=-4,f(-3)=(-3)2+2×(-3)=3-2 3.∵f -52=-52+1=-32,而-2<-32<2,∴f f -52-32=-32+2×-32=94-3=-34.(2)当a≤-2时,a+1=3,即a=2>-2,不合题意,舍去.当-2<a<2时,a2+2a=3,即a2+2a-3=0.∴(a-1)(a+3)=0,解得a=1或a=-3.∵1∈(-2,2),-3∉(-2,2),∴a =1符合题意.当a ≥2时,2a -1=3,即a =2符合题意.综上可得,当f (a )=3时,a =1或a =2.7.利用定义证明函数单调性的步骤(1)取值:设x 1,x 2是该区间内的任意两个值,且x 1<x 2.(2)作差变形:作差f (x 1)-f (x 2),并通过因式分解、通分、配方、有理化等手段,转化为易判断正负的式子.(3)定号:确定f (x 1)-f (x 2)的符号.(4)结论:根据f (x 1)-f (x 2)的符号及定义判断单调性.提醒:作差变形是证明单调性的关键,且变形的结果是几个因式乘积的形式.典例5:证明函数f (x )=x +1x 在(0,1)上是减函数.[思路点拨]设元0<x 1<x 2<1―→作差:f (x 1)-f (x 2)――→变形判号:f (x 1)>f (x 2)――→结论减函数[证明]设x 1,x 2是区间(0,1)上的任意两个实数,且x 1<x 2,则f (x 1)-f (x 2)=x 1+1x 1x 2+1x 2=(x 1-x 21x 1-1x 2x 1-x 2)+x 2-x1x 1x 2=(x 1-x 2)1-1x 1x 2=(x 1-x 2)(-1+x 1x 2)x 1x 2∵0<x 1<x 2<1,∴x 1-x 2<0,0<x 1x 2<1,则-1+x 1x 2<0,∴(x 1-x 2)(-1+x 1x 2)x 1x 2>0,即f (x 1)>f (x 2),∴f (x )=x +1x 在(0,1)上是减函数.8.函数单调性的应用(1)函数单调性定义的“双向性”:利用定义可以判断、证明函数的单调性,反过来,若已知函数的单调性可以确定函数中参数的取值范围.(2)若一个函数在区间[a ,b ]上是单调的,则此函数在这一单调区间内的任意子集上也是单调的.典例6:(1)若函数f (x )=-x 2-2(a +1)x +3在区间(-∞,3]上是增函数,则实数a 的取值范围是________.(2)已知函数y =f (x )是(-∞,+∞)上的增函数,且f (2x -3)>f (5x -6),则实数x 的取值范围为________.[思路点拨](1)分析f (x )的对称轴与区间的关系――→数形结合建立关于a 的不等式――→求a 的范围(2)f (2x -3)>f (5x -6)――――――――――――――――→f (x )在(-∞,+∞)上是增函数建立关于x 的不等式――→求x 的范围(1)(-∞,-4](2)(-∞,1)[(1)∵f (x )=-x 2-2(a +1)x +3的开口向下,要使f (x )在(-∞,3]上是增函数,只需-(a +1)≥3,即a ≤-4.∴实数a 的取值范围为(-∞,-4].(2)∵f (x )在(-∞,+∞)上是增函数,且f (2x -3)>f (5x -6),∴2x -3>5x -6,即x <1.∴实数x 的取值范围为(-∞,1).]9.利用单调性求函数的最大(小)值的一般步骤(1)判断函数的单调性.(2)利用单调性求出最大(小)值.2.函数的最大(小)值与单调性的关系(1)若函数f (x )在区间[a ,b ]上是增(减)函数,则f (x )在区间[a ,b ]上的最小(大)值是f (a ),最大(小)值是f (b ).(2)若函数f (x )在区间[a ,b ]上是增(减)函数,在区间[b ,c ]上是减(增)函数,则f (x )在区间[a ,c ]上的最大(小)值是f (b ),最小(大)值是f (a )与f (c )中较小(大)的一个.提醒:(1)求最值勿忘求定义域.(2)闭区间上的最值,不判断单调性而直接将两端点值代入是最容易出现的错误,求解时一定注意.典例7:已知函数f (x )=2x +1x +1.(1)判断函数在区间(-1,+∞)上的单调性,并用定义证明你的结论;(2)求该函数在区间[2,4]上的最大值和最小值.[解](1)f (x )在(-1,+∞)上为增函数,证明如下:任取-1<x 1<x 2,则f (x 1)-f (x 2)=2x 1+1x 1+1-2x 2+1x 2+1=x 1-x 2(x 1+1)(x 2+1),因为-1<x 1<x 2⇒x 1+1>0,x 2+1>0,x 1-x 2<0,所以f (x 1)-f (x 2)<0⇒f (x 1)<f (x 2),所以f (x )在(-1,+∞)上为增函数.(2)由(1)知f (x )在[2,4]上单调递增,所以f(x)的最小值为f(2)=2×2+12+1=53,最大值f(4)=2×4+14+1=95.10.解实际应用题的四个步骤(1)审题:解读实际问题,找出已知条件、未知条件,确定自变量和因变量的条件关系.(2)建模:建立数学模型,列出函数关系式.(3)求解:分析函数性质,利用数学知识探究问题解法(一定注意自变量的取值范围).(4)回归:数学问题回归实际问题,写出答案.典例8:一个工厂生产某种产品每年需要固定投资100万元,此外每生产1件该产品还需要增加投资1万元,年产量为x(x∈N*)件.当x≤20时,年销售总收入为(33x-x2)万元;当x>20时,年销售总收入为260万元.记该工厂生产并销售这种产品所得的年利润为y万元.(年利润=年销售总收入-年总投资)(1)求y(万元)与x(件)的函数关系式;(2)当该工厂的年产量为多少件时,所得年利润最大?最大年利润是多少?[解](1)当0<x≤20时,y=(33x-x2)-x-100=-x2+32x-100;当x>20时,y=260-100-x=160-x.故y -x2+32x-100,0<x≤20,160-x,x>20(x∈N*).(2)当0<x≤20时,y=-x2+32x-100=-(x-16)2+156,x=16时,ymax=156.而当x>20时,160-x<140,故x=16时取得最大年利润,最大年利润为156万元.即当该工厂年产量为16件时,取得最大年利润为156万元.11.巧用奇、偶函数的图象求解问题(1)依据:奇函数⇔图象关于原点对称,偶函数⇔图象关于y轴对称.(2)求解:根据奇、偶函数图象的对称性可以解决诸如求函数值或画出奇偶函数图象的问题.典例9:已知奇函数f(x)的定义域为[-5,5],且在区间[0,5]上的图象如图所示.(1)画出在区间[-5,0]上的图象;(2)写出使f(x)<0的x的取值集合.[解](1)因为函数f(x)是奇函数,所以y=f(x)在[-5,5]上的图象关于原点对称.由y=f(x)在[0,5]上的图象,可知它在[-5,0]上的图象,如图所示.(2)由图象知,使函数值y<0的x的取值集合为(-2,0)∪(2,5).12.比较大小的求解策略,看自变量是否在同一单调区间上.(1)在同一单调区间上,直接利用函数的单调性比较大小;(2)不在同一单调区间上,需利用函数的奇偶性把自变量转化到同一单调区间上,然后利用单调性比较大小.典例10:函数y =f (x )在[0,2]上单调递增,且函数f (x +2)是偶函数,则下列结论成立的是()A.f (1)<f 52<72B.f 72<f (1)<52C.f 72<f 52f (1)D.f 52<f (1)<72[思路点拨]y =f (x +2)是偶函数―→f (x )的图象关于x =2对称――→[0,2]上递增比较大小B [∵函数f (x +2)是偶函数,∴函数f (x )的图象关于直线x =2对称,∴52f 32f 72=12,又f (x )在[0,2]上单调递增,∴f 12<f (1)<3272f (1)<5213.判断一个函数是否为幂函数的方法判断一个函数是否为幂函数的依据是该函数是否为y =x α(α为常数)的形式,即函数的解析式为一个幂的形式,且需满足:(1)指数为常数;(2)底数为自变量;(3)系数为1.典例11:(1)在函数y =1x2,y =2x 2,y =x 2+x ,y =1中,幂函数的个数为()A.0B.1C.2D.3(2)若函数f (x )是幂函数,且满足f (4)=3f (2),则f 12(1)B (2)13[(1)∵y =1x2=x -2,∴是幂函数;y =2x 2由于出现系数2,因此不是幂函数;y =x 2+x 是两项和的形式,不是幂函数;y =1=x 0(x ≠0),可以看出,常函数y =1的图象比幂函数y =x 0的图象多了一个点(0,1),所以常函数y =1不是幂函数.(2)设f (x )=x α,∵f (4)=3f (2),∴4α=3×2α,解得α=log 23,∴12=12log 23=13.]14.解决幂函数图象问题应把握的两个原则(1)依据图象高低判断幂指数大小,相关结论为:在(0,1)上,指数越大,幂函数图象越靠近x轴(简记为指大图低);在(1,+∞)上,指数越大,幂函数图象越远离x轴(简记为指大图高).(2)依据图象确定幂指数α与0,1的大小关系,即根据幂函数在第一象限内的图象(类似于y=x-1或y=x 12或y=x3)来判断.典例12:点(2,2)与点-2,-12f(x),g(x)的图象上,问当x为何值时,有:(1)f(x)>g(x);(2)f(x)=g(x);(3)f(x)<g(x).[解]设f(x)=xα,g(x)=xβ.∵(2)α=2,(-2)β=-12,∴α=2,β=-1,∴f(x)=x2,g(x)=x-1.分别作出它们的图象,如图所示.由图象知,(1)当x∈(-∞,0)∪(1,+∞)时,f(x)>g(x);(2)当x=1时,f(x)=g(x);(3)当x∈(0,1)时,f(x)<g(x).。
函数单调性的判断及证明1.引言函数是数学中重要的概念之一,是对变量与变量之间的规律进行描述的工具。
在实际应用中,我们往往需要判断一个函数的单调性,即其在定义域内是否是单调递增的或单调递减的。
因此,本文将介绍函数单调性的判断及证明方法。
2.函数单调性的定义在数轴上,如果对于任意两个实数$x_1,x_2$,若有$x_1<x_2$,则$f(x_1)\leq f(x_2)$,则称函数$f(x)$是单调递增的;若有$x_1<x_2$,则$f(x_1)\geq f(x_2)$,则称函数$f(x)$是单调递减的。
3.函数单调性的判断(1)导数法设函数$f(x)$在区间$(a,b)$内可导,则:若$f'(x)>0$,则$f(x)$在$(a,b)$内单调递增;若$f'(x)<0$,则$f(x)$在$(a,b)$内单调递减。
(2)二阶导数法若函数$f(x)$在$(a,b)$内二次可导,则:若$f''(x)>0$,则$f(x)$在$(a,b)$内是单调递增的;若$f''(x)<0$,则$f(x)$在$(a,b)$内是单调递减的。
(3)微分形式法对于一个函数$f(x)$,若能表示为$dy=f'(x)dx$的微分形式,则:若$dy>0$,则$f(x)$在$(a,b)$内单调递增;若$dy<0$,则$f(x)$在$(a,b)$内单调递减。
4.函数单调性的证明(1)导数法的证明设$f(x)$在区间$(a,b)$内可导,若$f'(x)>0$,则对于任意$x_1<x_2$,有$$f(x_2)-f(x_1)=\int_{x_1}^{x_2}f'(x)dx>0$$因此,$f(x)$在$(a,b)$内单调递增。
若$f'(x)<0$,则对于任意$x_1<x_2$,有$$f(x_2)-f(x_1)=\int_{x_1}^{x_2}f'(x)dx<0$$因此,$f(x)$在$(a,b)$内单调递减。
函数一、函数的有关概念 1、 函数的定义:设A 、B 为非空数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f:A B →为从集合A 到集合B 的一个函数,记作:y=f(x),x A ∈其中x 叫做自变量,x 的取值范围叫做函数的定义域,与x 的值相对应的y 值叫做函数值,函数值的集合{}A x x f ∈)(叫做函数的值域。
2、分段函数:如果一个函数在定义域的不同子集上因对应法则不同而用几个不同的式子来表示,这样的函数叫做分段函数。
注:分段函数的求法是分别求出各个区间上的函数关系,再组合在一起,但要注意各区间之间的点要不重不漏。
3、 复合函数:如果y=f(u)的定义域与y=g(x)的值域有交集,那么函数y=f(g(x))叫做复合函数,其中y=f(u)叫做外层函数,u=g(x)叫做内层函数。
4、 (1)映射:设A 、B 是两个集合,如果按照某种确定的对应关系f ,对于集合A 中的任何一个元素,在集合B 中都有唯一的元素和它对应,那么这样的对应(包括集合A ,B 以及集合A 到集合B 的对应关系f )叫做集合A 到集合B 的映射,记作:A B → (2)象、原象设给定一个集合A 到集合B 的映射,且a B b A ∈∈且,如果元素a 和元素b 对应,元素b 叫做元素a 的象,元素a 叫做元素b 的原象. 满射、单设、一一映射注:设集合A 有n 个元素,集合B 有m 个元素,则从A 到B 的映射有nm 个. 注:1) 函数的三要素:定义域,值域,对应法则; 2)两个函数是同一函数的条件:三要素相同。
函数的概念【例题1】下列各组函数中,表示同一函数的是( )A.f(x)=x ,g(x)=2x B. f(x)=2x ,g(x)=2)(xC.f(x)=112--x x ,g(x)=x+1 D.f(x)=11-⋅+x x ,g(x)=12-x【练习】存在函数f(x)满足,对于任意x ∈R 都有A. f(sin2x)=sinxB. f(sin2x)=x 2+xC. f(x 2+1)=1x +D. f(x 2+2x)= 1x + 分段函数【例题】函数⎩⎨⎧>≤+=1,lg 1,1)(2x x x x x f ,则f(f(10))=A.lg101B.2C.1D.0【练习】⎩⎨⎧≥<+-=0,0,3)(x a x a x x f x(a>0且a ≠1)是R 上的减函数,则a 的取值范围是( ) A.(0,1) B.[31,1) C.(0, 31] D.(0, 32]【例题】设函数⎩⎨⎧>-≤=-1,log 11,2)(21x x x f xx ,则满足f(x)≤2的x 的取值范围是( ) A.[-1,2] B.[0,2] C.[1,+∞) D.[0,+∞)【练习】若函数⎩⎨⎧>+≤+-=2,log 32,6(x x x x f xa ),(a>0且a ≠1)的值域是[4,+∞),则实数a 的取值范围是( )。