高三数学余弦定理
- 格式:pptx
- 大小:949.93 KB
- 文档页数:9
第6讲正弦定理和余弦定理[学生用书P87]1.正弦定理和余弦定理定理正弦定理余弦定理内容asin A=bsin B=csin C=2R(R为△ABC外接圆半径)a2=b2+c2-2bc cos_A;b2=c2+a2-2ca cos_B;c2=a2+b2-2ab cos_C变形形式a=2R sin_A,b=2R sin_B,c=2R sin_C;sin A=a2R,sin B=b2R,sin C=c2R;a∶b∶c=sin_A∶sin_B∶sin_C;a+b+csin A+sin B+sin C=asin Acos A=b2+c2-a22bc;cos B=c2+a2-b22ca;cos C=a2+b2-c22ab2.三角形解的判断A为锐角A为钝角或直角图形关系式a=b sin A b sin A<a<b a≥b a>b 解的个数一解两解一解一解3.三角形中常用的面积公式(1)S=12ah(h表示边a上的高).(2)S=12bc sin A=12ac sin_B=12ab sinC.(3)S=12r(a+b+c)(r为三角形的内切圆半径).常用结论1.三角形中的三角函数关系(1)sin(A+B)=sin C;(2)cos(A+B)=-cos C;(3)sin A+B2=cos C2;(4)cos A+B2=sin C2.2.三角形中的射影定理在△ABC中,a=b cos C+c cos B;b=a cos C+c cos A;c=b cos A+a cos B.3.在△ABC中,两边之和大于第三边,两边之差小于第三边,A>B⇔a>b ⇔sin A>sin B⇔cos A<cos B.一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)三角形中三边之比等于相应的三个内角之比.( ) (2)在△ABC 中,若sin A >sin B ,则A >B .( )(3)在△ABC 的六个元素中,已知任意三个元素可求其他元素.( ) (4)当b 2+c 2-a 2>0时,△ABC 为锐角三角形;当b 2+c 2-a 2=0时,△ABC 为直角三角形;当b 2+c 2-a 2<0时,△ABC 为钝角三角形.( )答案:(1)× (2)√ (3)× (4)× 二、易错纠偏常见误区|K(1)利用正弦定理求角时解的个数弄错; (2)在△ABC 中角与角的正弦关系弄错; (3)判断三角形形状时弄错.1.在△ABC 中,已知b =40,c =20,C =60°,则此三角形的解的情况是( ) A .有一解 B .有两解 C .无解D .有解但解的个数不确定解析:选C.由正弦定理得b sin B =csin C ,所以sin B =b sin Cc =40×3220=3>1.所以角B 不存在,即满足条件的三角形不存在.2.在△ABC 中,若sin A =sin B ,则A ,B 的关系为________;若sin A >sin B ,则A ,B 的关系为________.解析:sin A =sin B ⇔a =b ⇔A =B ; sin A >sin B ⇔a >b ⇔A >B . 答案:A =B A >B3.在△ABC 中,a cos A =b cos B ,则这个三角形的形状为________. 解析:由正弦定理,得sin A cos A =sin B cos B , 即sin 2A =sin 2B ,所以2A =2B 或2A =π-2B ,即A =B 或A +B =π2,所以这个三角形为等腰三角形或直角三角形. 答案:等腰三角形或直角三角形[学生用书P88]利用正、余弦定理求解三角形(多维探究) 角度一 求角或三角函数值(1)(2020·高考全国卷Ⅲ)在△ABC 中,cos C =23,AC =4,BC =3,则tan B =( )A.5 B .2 5 C .4 5D .8 5(2)(2021·福州市适应性考试)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若cos A (sin C -cos C )=cos B ,a =2,c =2,则角C 的大小为________.【解析】 (1)方法一:在△ABC 中,cos C =23,则sin C =53>22,所以C ∈⎝ ⎛⎭⎪⎫π4,π2.由余弦定理知AB 2=AC 2+BC 2-2AC ·BC ·cos C =16+9-2×4×3×23=9,所以AB =3.由正弦定理AC sin B =AB sin C ,得sin B =459,易知B ∈⎝ ⎛⎭⎪⎫0,π2,所以cos B =19,tan B =sin Bcos B =4 5.故选C.方法二:在△ABC 中,cos C =23,AC =4,BC =3,所以由余弦定理知AB 2=AC 2+BC 2-2AC ·BC ·cos C =16+9-2×4×3×23=9,所以AB =3,所以△ABC 是等腰三角形.过点B 作BD ⊥AC 于点D ,则BD =BC 2-CD 2=32-⎝ ⎛⎭⎪⎫422=5,tan B2=25=255,所以tan B=2tanB21-tan2B2=4 5.故选C.(2)因为cos A(sin C-cos C)=cos B,所以cos A(sin C-cos C)=-cos(A+C),所以cos A sin C=sin A sin C,所以sin C(cos A-sin A)=0,因为C∈(0,π),所以sin C≠0,cos A=sin A,则tan A=1,又A∈(0,π)所以A=π4,又asin A=csin C,即2 sin π4=2sin C,所以sin C=12,因为c<a,所以0<C<π4,故C=π6.【答案】(1)C(2)π6角度二求边长或周长在△ABC中,内角A,B,C的对边a,b,c成公差为2的等差数列,C=120°.(1)求边长a;(2)(一题多解)求AB边上的高CD的长.【解】(1)由题意得b=a+2,c=a+4,由余弦定理cos C=a2+b2-c22ab得cos 120°=a2+(a+2)2-(a+4)22a(a+2),即a2-a-6=0,所以a=3或a=-2(舍去),所以a=3.(2)方法一:由(1)知a=3,b=5,c=7,由三角形的面积公式得12ab sin ∠ACB=12c×CD,所以CD=ab sin ∠ACBc=3×5×327=15314,即AB边上的高CD=15314.方法二:由(1)知a=3,b=5,c=7,由正弦定理得3sin A =7sin ∠ACB=7sin 120°,即sin A =3314,在Rt △ACD 中,CD =AC sin A =5×3314=15314,即AB 边上的高CD =15314.(1)正弦定理、余弦定理的作用是在已知三角形部分元素的情况下求解其余元素,基本思想是方程思想,即根据正弦定理、余弦定理列出关于未知元素的方程,通过解方程求得未知元素.(2)正弦定理、余弦定理的另一个作用是实现三角形边角关系的互化,解题时可以把已知条件化为角的三角函数关系,也可以把已知条件化为三角形边的关系.(3)涉及最值问题时,常利用基本不等式或表示为三角形的某一内角的三角函数形式求解.1.(2021·广东省七校联考)若△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知2b sin 2A =3a sin B ,且c =2b ,则ab 等于( )A.32 B . 2 C.43D. 3解析:选B.由2b sin 2A =3a sin B ,及正弦定理可得4sin B ·sin A cos A =3sin A sin B ,由于sin A ≠0,sin B ≠0,所以cos A =34,又c =2b ,所以a 2=b 2+c 2-2bc cos A =b 2+4b 2-2b ×2b ×34=2b 2,所以ab =2,故选B.2.(2019·高考全国卷Ⅰ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,设(sin B -sin C )2=sin 2A -sin B sinC.(1)求A;(2)若2a+b=2c,求sinC.解:(1)由已知得sin2B+sin2C-sin2A=sin B sin C,故由正弦定理得b2+c2-a2=bc.由余弦定理得cos A=b2+c2-a22bc=12.因为0°<A<180°,所以A=60°.(2)由(1)知B=120°-C,由题设及正弦定理得2sin A+sin(120°-C)=2sinC,即62+32cos C+12sin C=2sin C,可得cos(C+60°)=-22.由于0°<C<120°,所以sin(C+60°)=22,故sin C=sin(C+60°-60°)=sin(C+60°)cos 60°-cos(C+60°)sin 60°=6+2 4.判断三角形的形状(典例迁移)(2020·重庆六校联考)在△ABC中,cos2B2=a+c2c(a,b,c分别为角A,B,C的对边),则△ABC的形状为()A.直角三角形B.等边三角形C.等腰三角形D.等腰三角形或直角三角形【解析】已知等式变形得cos B+1=ac+1,即cos B=ac①.由余弦定理得cos B=a2+c2-b22ac,代入①得a2+c2-b22ac=ac,整理得b2+a2=c2,即C为直角,则△ABC为直角三角形.【答案】 A【迁移探究1】(变条件)将“cos2B2=a+c2c”改为“c-a cos B=(2a-b)cosA”,试判断△ABC的形状.解:因为c-a cos B=(2a-b)cos A,C=π-(A+B),所以由正弦定理得sin C-sin A cos B=2sin A cos A-sin B cos A,所以sin A cos B+cos A sin B-sin A cos B=2sin A cos A-sin B cos A,所以cos A(sin B-sin A)=0,所以cos A=0或sin B=sin A,所以A=π2或B=A或B=π-A(舍去),所以△ABC为等腰三角形或直角三角形.【迁移探究2】(变条件)将“cos2B2=a+c2c”改为“sin Asin B=ac,(b+c+a)(b+c-a)=3bc”,试判断△ABC的形状.解:因为sin Asin B=ac,所以ab=ac,所以b=c.又(b+c+a)(b+c-a)=3bc,所以b2+c2-a2=bc,所以cos A=b2+c2-a22bc=bc2bc=12.因为A∈(0,π),所以A=π3,所以△ABC是等边三角形.(1)判定三角形形状的2种常用途径(2)判定三角形形状的3个注意点①“角化边”后要注意用因式分解、配方等方法得出边的相应关系; ②“边化角”后要注意用三角恒等变换公式、三角形内角和定理及诱导公式推出角的关系;③还要特别注意“等腰直角三角形”与“等腰三角形或直角三角形”的区别.在△ABC 中,已知2a cos B =c, sin A sin B ·(2-cos C )=sin 2C2+12,则△ABC 为( )A .等边三角形B .等腰直角三角形C .锐角非等边三角形D .钝角三角形解析:选B.将已知等式2a cos B =c 利用正弦定理化简得2sin A cos B =sin C , 因为sin C =sin ()A +B =sin A cos B +cos A sin B , 所以2sin A cos B =sin A cos B +cos A sin B , 即sin A cos B -cos A sin B =sin(A -B )=0, 因为A 与B 都为△ABC 的内角, 所以A -B =0,即A =B .因为sin A sin B (2-cos C )=sin 2C 2+12,所以sin A sin B (2-cos C )=12(1-cos C )+12=1-12cos C , 所以-12⎣⎡⎦⎤cos ()A +B -cos (A -B )(2-cosC )=1-12cos C ,所以-12(-cos C-1)(2-cos C)=1-12cos C,即(cos C+1)(2-cos C)=2-cos C,整理得cos2C-2cos C=0,即cos C(cos C-2)=0,所以cos C=0或cos C =2(舍去),所以C=90°,则△ABC为等腰直角三角形,故选B.与三角形面积有关的问题(多维探究)角度一计算三角形的面积(一题多解)(2021·昆明市三诊一模)△ABC的三个内角A,B,C所对的边分别为a,b,c,若B=120°,sin C=217,c=2,则△ABC的面积等于() A.32B.2 3C.34 D. 3【解析】方法一:由正弦定理bsin B=csin C,得b=c sin Bsin C=2×32217=7.由余弦定理b2=a2+c2-2ac cos B,得7=a2+4+2a,解得a=1或a=-3(舍去),所以S△ABC=12ac sin B=12×1×2×32=32,故选A.方法二:由正弦定理bsin B=csin C,得b=c sin Bsin C=2×32217=7.因为sin C=217,0°<C<60°,所以cos C=277,所以sin A=sin(B+C)=sin B cos C+cos B sin C=32×277-12×217=2114,所以S△ABC=12bc sin A=12×7×2×2114=32,故选A.【答案】 A求三角形面积的方法(1)若三角形中已知一个角(角的大小或该角的正、余弦值),结合题意求解这个角的两边或该角的两边之积,代入公式求面积;(2)若已知三角形的三边,可先求其中一个角的余弦值,再求其正弦值,代入公式求面积,总之,结合图形恰当选择面积公式是解题的关键.角度二已知三角形的面积解三角形(2021·深圳市统一测试)已知△ABC的内角A,B,C的对边分别为a,b,c,△ABC的面积为S,a2+b2-c2=2S.(1)求cos C;(2)(一题多解)若a cos B+b sin A=c,a=5,求b.【解】(1)因为S=12ab sin C,a2+b2-c2=2S,所以a2+b2-c2=ab sin C,在△ABC中,由余弦定理得cos C=a2+b2-c22ab=ab sin C2ab=sin C2,所以sin C=2cos C,又sin2C+cos2C=1,所以5cos2C=1,cos C=±55,又C∈(0,π),所以sin C>0,所以cos C>0,所以cos C=55.(2)方法一:在△ABC中,由正弦定理得sin A cos B+sin B sin A=sin C,因为sin C=sin[π-(A+B)]=sin(A+B)=sin A cos B+cos A sin B,所以sin A cos B+sin B sin A=sin A cos B+cos A sin B,即sin B sin A=cos A sinB,又A,B∈(0,π),所以sin B≠0,sin A=cos A,得A=π4.因为sin B=sin[π-(A+C)]=sin(A+C),所以sin B=sin A cos C+cos A sin C=22×55+22×255=31010.在△ABC 中,由正弦定理得b =a sin Bsin A =5×3101022=3.方法二:因为a cos B +b sin A =c , a cos B +b cos A =c ,所以a cos B +b sin A =a cos B +b cos A , 即sin A =cos A ,又A ∈(0,π),所以A =π4.在△ABC 中,由正弦定理得c =a sin Csin A =5×25522=2 2.因为b =c cos A +a cos C , 所以b =22×22+5×55=3. 方法三:求A 同方法一或方法二.在△ABC 中,由正弦定理得c =a sin Csin A =5×25522=22,由余弦定理c 2=a 2+b 2-2ab cos C ,得b 2-2b -3=0,解得b =-1(舍去)或b =3.所以b =3.(或由余弦定理a 2=b 2+c 2-2bc cos A ,得b 2-4b +3=0,解得b =1或b =3.因为当b =1时,a 2+b 2-c 2=-2<0,不满足cos C >0或a 2+b 2-c 2=-2≠2S ,所以应舍去,故b =3)已知三角形面积求边、角的方法(1)若求角,就寻求这个角的两边的关系,利用面积公式列方程求解; (2)若求边,就寻求与该边(或两边)有关联的角,利用面积公式列方程求解. [注意] 正弦定理、余弦定理与三角函数性质的综合应用中,要注意三角函数公式的工具性作用.1.在△ABC 中,cos B =14,b =2,sin C =2sin A ,则△ABC 的面积等于( )A.14 B .12C.32D.154解析:选D.在△ABC 中,cos B =14,b =2,sin C =2sin A ,由正弦定理得c=2a ;由余弦定理得b 2=a 2+c 2-2ac ·cos B =a 2+4a 2-2a ·2a ·14=4a 2=4,解得a=1,可得c =2,所以△ABC 的面积为S =12ac sin B =12×1×2×1-⎝ ⎛⎭⎪⎫142=154.故选D.2.(2020·成都市诊断性检测)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c 且b 2+c 2-a 2=423bc .(1)求sin A 的值;(2)若△ABC 的面积为2,且2sin B =3sin C ,求△ABC 的周长. 解:(1)因为b 2+c 2-a 2=2bc cos A ,所以2bc cos A =423bc ,所以cos A =223,所以在△ABC 中,sin A =1-cos 2A =13.(2)因为△ABC 的面积为2,所以12bc sin A =16bc =2, 所以bc =6 2.因为2sin B =3sin C ,所以由正弦定理得 2 b =3c ,所以b =32,c =2,所以a 2=b 2+c 2-2bc cos A =6,所以a = 6. 所以△ABC 的周长为2+32+ 6.[学生用书P91]高考新声音3 解三角形中的结构不良型开放性问题(2020·新高考卷Ⅰ)在①ac =3,②c sin A =3,③c =3b 这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c 的值;若问题中的三角形不存在,说明理由.问题:是否存在△ABC ,它的内角A ,B ,C 的对边分别为a ,b ,c ,且sin A =3sin B ,C =π6,________________?【解题思路】 结合已知条件,根据正弦定理及余弦定理可得a = 3 b ,b =c ,选择①ac =3,可由a = 3 b ,b =c ,求得a ,b ,c 的值,得到结论;选择②c sin A =3,可由b =c 得到A ,B ,进而求得a ,b ,c 的值,得到结论;选择③c = 3 b ,与b =c 矛盾,得到结论.【解】 方案一:选条件①.由C =π6和余弦定理得a 2+b 2-c 22ab =32. 由sin A =3sin B 及正弦定理得a =3b . 于是3b 2+b 2-c 223b 2=32,由此可得b =c . 由①ac =3,解得a =3,b =c =1.因此,选条件①时问题中的三角形存在,此时c =1. 方案二:选条件②.由C=π6和余弦定理得a2+b2-c22ab=32.由sin A=3sin B及正弦定理得a=3b.于是3b2+b2-c223b2=32,由此可得b=c,B=C=π6,A=2π3.由②c sin A=3,所以c=b=23,a=6.因此,选条件②时问题中的三角形存在,此时c=2 3.方案三:选条件③.由C=π6和余弦定理得a2+b2-c22ab=32.由sin A=3sin B及正弦定理得a=3b.于是3b2+b2-c223b2=32,由此可得b=c.由③c=3b,与b=c矛盾.因此,选条件③时问题中的三角形不存在.本题以解三角形为背景命制,给定了若干条件(在这些条件下三角形并不能随之确定),在此基础上让学生在另外给出的几个条件中自主选择,在所选条件下,若问题中的三角形存在,求解三角形;若问题中的三角形不存在,说明理由.(2020·高考北京卷)在△ABC中,a+b=11,再从条件①、条件②这两个条件中选择一个作为已知,求;(1)a的值;(2)sin C和△ABC的面积.条件①:c=7,cos A=-1 7;条件②:cos A=18,cos B=916.解:选①(1)由余弦定理a 2=b 2+c 2-2bc cos A ,b =11-a ,c =7, 得a 2=(11-a )2+49-2(11-a )×7×⎝ ⎛⎭⎪⎫-17,所以a =8.(2)因为cos A =-17,A ∈(0,π),所以sin A =437. 由正弦定理a sin A =c sin C ,得sin C =c sin A a =7×4378=32,由(1)知b =11-a =3,所以S △ABC =12ab sin C =12×8×3×32=6 3.选②(1)因为cos A =18,所以A ∈⎝ ⎛⎭⎪⎫0,π2,sin A =378.因为cos B =916,所以B ∈⎝ ⎛⎭⎪⎫0,π2,sin B =5716.由正弦定理a sin A =bsin B , 得a 378=11-a 5716,所以a =6.(2)sin C =sin(π-A -B )=sin(A +B )=sin A cos B +cos A sin B =74. 因为a +b =11,a =6, 所以b =5.所以S △ABC =12ab sin C =12×6×5×74=1574.[学生用书P301(单独成册)][A 级 基础练]1.(2020·六校联盟第二次联考)在△ABC 中,AB =3,AC =1,B =30°,则A =( )A .60°B .30°或90°C .60°或120°D .90°解析:选B.由正弦定理AC sin B =ABsin C 得1sin 30°=3sin C ,所以sin C =32,因为AB >AC ,所以C =60°或120°,当C =60°,B =30°时,A =90°;当C =120°,B =30°时,A =30°.2.设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定解析:选B.因为b cos C +c cos B =a sin A ,所以由正弦定理得sin B cos C +sin C cos B =sin 2A ,所以sin(B +C )=sin 2A .又sin(B +C )=sin A 且sin A ≠0,所以sin A =1,所以A =π2,所以△ABC 为直角三角形,故选B.3.(2021·长沙市四校模拟考试)设△ABC 的内角A ,B ,C 的对边分别是a ,b ,c .已知2b -a cos C =0,sin A =3sin(A +C ),则bca 2=( )A.74 B .149C.23D.69解析:选D.因为2b -a cos C =0,所以由余弦定理得2b -a ×a 2+b 2-c 22ab =0,整理得3b 2+c 2=a 2 ①.因为sin A =3sin(A +C )=3sin B ,所以由正弦定理可得a =3b ②,由①②可得c =6b ,则bc a 2=b ×6b 9b 2=69.故选D.4.在△ABC 中,角A ,B ,C 所对应的边分别为a ,b ,c .若角A ,B ,C 依次成等差数列,且a =1,b =3,则S △ABC =( )A. 2 B . 3 C.32D .2解析:选C.因为A ,B ,C 依次成等差数列,所以B =60°,所以由余弦定理得b 2=a 2+c 2-2ac cos B ,得c =2或c =-1(舍去),所以由正弦定理得S △ABC =12ac sin B =32,故选C.5.在△ABC 中,已知a ,b ,c 分别为角A ,B ,C 的对边且∠A =60°,若S △ABC =332且2sin B =3sin C ,则△ABC 的周长等于( )A .5+7B .12C .10+7D .5+27解析:选A.在△ABC 中,∠A =60°.因为2sin B =3sin C ,故由正弦定理可得2b =3c ,再由S △ABC =332=12bc ·sin A ,可得bc =6,所以b =3,c =2.由余弦定理可得a 2=b 2+c 2-2bc cos A =7,所以a =7,故△ABC 的周长为a +b +c =5+7,故选A.6.(2020·福州市适应性考试)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若a cos B +b cos A =2ac ,则a =________.解析:由题设及正弦定理得sin A cos B +sin B cos A =2a sin C ,所以sin(A +B )=2a sinC .又A +B +C =π,所以sin C =2a sin C ,又sin C ≠0,所以a =12. 答案:127.(2020·湖北八校第一次联考)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且sin B -sin A (sin C +cos C )=0,a =2,c =2,则角C =________.解析:因为A+C=π-B,所以sin B=sin(A+C)=sin A·cos C+cos A sin C,因为sin B-sin A(sin C+cos C)=0,所以cos A sin C-sin A sin C=0,因为C∈(0,π),所以sin C>0,所以cos A=sin A,又A∈(0,π),所以A=π4,由正弦定理得a sin π4=csin C,又a=2,c=2,所以sin C=12,因为a>c,所以C=π6.答案:π68.(2020·福州市质量检测)已知钝角三角形ABC的内角A,B,C的对边分别为a,b,c,且c=7,b=1,若△ABC的面积为62,则a的长为________.解析:因为△ABC的面积S=12bc sin A,所以62=12×1×7sin A,所以sin A=67,所以cos A=±77,当cos A=77时,由a2=b2+c2-2bc cos A得a=6,此时△ABC为直角三角形(舍去);当cos A=-77时,由a2=b2+c2-2bc cos A得a=10,经检验,a=10符合题意.综上,a=10.答案:109.(2020·高考全国卷Ⅰ)△ABC的内角A,B,C的对边分别为a,b,c.已知B=150°.(1)若a=3c,b=27,求△ABC的面积;(2)若sin A+3sin C=22,求C.解:(1)由题设及余弦定理得28=3c2+c2-2×3c2×cos 150°.解得c=-2(舍去),c=2,从而a=2 3.△ABC的面积为12×23×2×sin 150°= 3.(2)在△ABC 中,A =180°-B -C =30°-C ,所以 sin A +3sin C =sin(30°-C )+3sin C =sin(30°+C ). 故sin(30°+C )=22.而0°<C <30°,所以30°+C =45°,故C =15°.10.(2020·高考全国卷Ⅱ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos 2⎝ ⎛⎭⎪⎫π2+A +cos A =54.(1)求A ;(2)若b -c =33a ,证明:△ABC 是直角三角形.解:(1)由已知得sin 2A +cos A =54,即cos 2A -cos A +14=0. 所以⎝ ⎛⎭⎪⎫cos A -122=0, cos A =12.由于0<A <π,故A =π3.(2)证明:由正弦定理及已知条件可得sin B -sin C =33sin A . 由(1)知B +C =2π3,所以sin B -sin ⎝ ⎛⎭⎪⎫2π3-B =33sin π3.即12sin B -32cos B =12,sin ⎝⎛⎭⎪⎫B -π3=12.由于0<B <2π3,故B =π2.从而△ABC 是直角三角形.[B 级 综合练]11.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,△ABC 的面积为43,且2b cos A +a =2c ,a +c =8,则其周长为( )A .10B .12C .8+ 3D .8+2 3解析:选B.因为△ABC 的面积为43,所以12ac sin B =4 3.因为2b cos A +a=2c ,所以由正弦定理得2sin B cos A +sin A =2sin C ,又A +B +C =π,所以2sin B cos A +sin A =2sin A cos B +2cos A sin B ,所以sin A =2cos B ·sin A ,因为sin A ≠0,所以cos B =12,因为0<B <π,所以B =π3,所以ac =16,又a +c =8,所以a =c =4,所以△ABC 为正三角形,所以△ABC 的周长为3×4=12.故选B.12.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且a cos B -c -b 2=0,a 2=72bc ,b >c ,则b c =________.解析:由a cos B -c -b 2=0及正弦定理可得sin A cos B -sin C -sin B 2=0.因为sin C =sin(A +B )=sin A cos B +cos A sin B ,所以-sin B 2-cos A sin B =0,所以cosA =-12,即A =2π3.由余弦定理得a 2=72bc =b 2+c 2+bc ,即2b 2-5bc +2c 2=0,又b >c ,所以b c =2.答案:213.(2020·深圳市统一测试)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若(a +b )(sin A -sin B )=(a -c )sin C ,b =2,则△ABC 的外接圆面积为________.解析:利用正弦定理将已知等式转化为(a +b )(a -b )=(a -c )c ,即a 2+c 2-b 2=ac ,所以由余弦定理得cos B =a 2+c 2-b 22ac =12,所以B =60°.设△ABC 的外接圆半径为R ,则由正弦定理知,2R =b sin B =43,所以△ABC 的外接圆面积S =πR 2=4π3. 答案:4π314.(2020·广州市调研检测)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知c sin ⎝⎛⎭⎪⎫A +π3-a sin C =0. (1)求角A 的值;(2)若△ABC 的面积为3,周长为6,求a 的值.解:(1)因为c sin ⎝⎛⎭⎪⎫A +π3-a sin C =0,所以由正弦定理得sin C ⎝ ⎛⎭⎪⎫12sin A +32cos A -sin A ·sin C =0. 因为sin C >0, 所以32cos A -12sin A =0,即tan A =3,因为A ∈(0,π),所以A =π3.(2)因为△ABC 的面积为3,所以12bc sin A =3,得bc =4.由余弦定理a 2=b 2+c 2-2bc cos A ,得a 2=b 2+c 2-bc =(b +c )2-3bc =(b +c )2-12,因为△ABC 的周长为6,即a +b +c =6,所以a 2=(6-a )2-12,所以a =2.[C 级 提升练]15.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,3b sin A =a ·(2-cosB ).(1)求角B 的大小;(2)D 为边AB 上一点,且满足CD =2,AC =4,锐角△ACD 的面积为15,求BC 的长.解:(1)由正弦定理得3sin B sin A =sin A (2-cos B ),因为A ∈(0,π),则sin A >0,所以3sin B =2-cos B ,所以2sin ⎝⎛⎭⎪⎫B +π6=2, 所以sin ⎝⎛⎭⎪⎫B +π6=1, 因为B ∈(0,π),所以B +π6=π2,解得B =π3.(2)由题意,可得S △ACD =12CD ·CA sin ∠ACD =12×2×4sin ∠ACD =15,解得sin ∠ACD =154. 又因为△ACD 为锐角三角形, 所以cos ∠ACD =1-sin 2∠ACD =14, 在△ACD 中,由余弦定理得AD 2=CA 2+CD 2-2CA ·CD ·cos ∠ACD =42+22-2×2×4×14=16,所以AD =4,在△ACD 中,由正弦定理得CD sin A =AD sin ∠ACD, 则sin A =CD AD ·sin ∠ACD =158,在△ABC 中,由正弦定理得BC sin A =AC sin B ,所以BC =AC sin A sin B= 5.。
余弦定理公式大全余弦定理是解决三角形问题时经常使用的重要公式,可以通过它计算三角形的边长或角度。
它的表达式是:c² = a² + b² - 2ab*cos(C)其中,a、b、c分别代表三角形的边长,C代表夹在边a和边b之间的角度。
1.角度公式:根据余弦定理公式,我们可以解出夹在边a和边b之间的角度C的值:cos(C) = (a² + b² - c²) / 2ab通过这个公式,如果我们已知三角形的三个边长a、b、c,就可以计算出夹在边a和边b之间的角度C的大小。
2.边长公式:根据余弦定理公式,我们可以解出边c的值:c = √(a² + b² - 2ab*cos(C))通过这个公式,如果我们已知三角形的两个边长a、b和夹在边a和边b之间的角度C,就可以计算出边c的长度。
3.面积公式:根据余弦定理公式,我们可以推导出三角形的面积公式:S = 1/2 * a * b * sin(C)其中,S代表三角形的面积。
通过这个公式,如果我们已知三角形的两个边长a、b和夹在边a和边b之间的角度C,就可以计算出三角形的面积。
4.费马定理公式:根据余弦定理公式,我们可以推导出费马点定理公式:AF² + BF² + CF² = 4S² / sqrt(3)其中,AF、BF、CF分别代表三角形的三个顶点到费马点的距离,S代表三角形的面积。
通过这个公式,如果我们已知三角形的面积S,就可以计算出费马点到三个顶点的距离。
总结:余弦定理提供了一种解决三角形问题的强大工具。
通过余弦定理公式,我们可以计算三角形的边长、角度和面积等相关参数。
这些公式的应用范围非常广泛,是解决三角形问题时的基础知识之一、掌握了余弦定理公式,我们就可以快速准确地解决三角形相关的数学问题。
1.1.2 余弦定理
余弦定理定义及公式
余弦定理,是描述三角形中三边长度与一个角的余弦值关系的数学定理。
是勾股定理在一般三角形情形下的推广。
a²=b²+c²-2bccosA
余弦定理证明
如上图所示,△ABC,在c上做高,根据射影定理,可得到:
将等式同乘以c得到:
运用同样的方式可以得到:
将两式相加:
向量证明
正弦定理和余弦定理
正弦定理
a/sinA=b/sinB=c/sinC=2R
(1)已知三角形的两角与一边,解三角形
(2)已知三角形的两边和其中一边所对的角,解三角形
(3)运用a:b:c=sinA:sinB:sinC解决角之间的转换关系
直角三角形的一个锐角的对边与斜边的比叫做这个角的正弦。
余弦定理
是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求角的问题,若对余弦定理加以变形并适当移于其它知识,则使用起来更为方便、灵活。
直角三角形的一个锐角的邻边和斜边的比值叫这个锐角的余弦值如有侵权请联系告知删除,感谢你们的配合!
如有侵权请联系告知删除,感谢你们的配合!。
余弦定理公式一、引言余弦定理是解决三角形中的边长或角度关系问题的重要工具。
在数学和物理领域广泛应用,特别是在解决三角形的非直角问题以及相关定理的证明过程中。
本文将对余弦定理的定义、推导过程以及实际应用进行详细介绍。
二、余弦定理的定义余弦定理是三角学中的一个定理,用于计算三角形的边长、角度或判断三角形的形状。
余弦定理的表达式如下:c^2 = a^2 + b^2 - 2abcosC其中,a、b为三角形中的两边,c为斜边,C为斜边对应的角。
三、余弦定理的推导过程余弦定理的推导过程并不复杂。
首先,我们需要设想一个任意的三角形ABC,其中a、b为两条边,C是它们的夹角。
假设c是它们的斜边,我们需要找到c的表达式。
根据正余弦的定义,我们可以得到以下等式:cosA = Adjacent / HypotenusecosB = Opposite / Hypotenuse将这两个等式改写为:Hypotenuse = Adjacent / cosA (1)Hypotenuse = Opposite / cosB (2)我们可以将(1)和(2)两个等式相等:Adjacent / cosA = Opposite / cosB进一步改写为:cosB / cosA = Adjacent / Opposite根据三角公式sinA = 1 / cscA 和 sinB = 1 / cscB,可以将cosB / cosA转换为sinB / sinA:sinB / sinA = Adjacent / Opposite将A和B两个角度的角替换为C, sinA和sinB替换为a和b,可以得到余弦定理的表达式:c^2 = a^2 + b^2 - 2abcosC这就是余弦定理的最终表达式。
四、余弦定理的实际应用1. 计算三角形的边长:通过已知两边和它们夹角的大小,可以利用余弦定理计算第三边的长度。
这对于求解航海、测量不可达距离等问题非常有用。
高中数学余弦定理余弦定理是高中数学的一个核心内容,也是三角函数的一个重要应用。
余弦定理描述了三角形中一边的平方与另外两边及其夹角的余弦值之间的关系。
对于任何一个三角形,余弦定理都可以给出以下公式:c² = a² + b² - 2abcos(C)其中,a、b和c分别代表三角形的三边长度,C是a和b之间的夹角。
余弦定理的应用范围非常广泛,无论是解三角形、解决实际问题,还是在数学竞赛中,它都是一个重要的工具。
一、解三角形余弦定理可以用来确定三角形的形状和大小。
例如,如果我们知道三角形的三边长a、b和c,以及角A、B和C的度数,我们可以用余弦定理来计算角C的度数。
公式如下:cos(C) = (a² + b² - c²) / (2ab)二、解决实际问题余弦定理也被广泛应用于解决实际问题。
例如,在物理学中,余弦定理可以用来解决与力的合成和分解相关的问题;在地理学中,余弦定理可以用来计算地球上两点之间的距离;在经济学中,余弦定理可以用来计算投资组合的风险和回报。
三、数学竞赛在数学竞赛中,余弦定理也是一个重要的考点。
例如,一些几何问题可能需要使用余弦定理来解决;在一些代数问题中,余弦定理也可能是一个关键的工具。
余弦定理是高中数学的一个重要内容,它不仅在数学中有广泛的应用,也在其他领域中有重要的应用价值。
通过学习和理解余弦定理,我们可以更好地理解和解决各种问题。
一、引言在中国的教育体系中,数学一直是核心学科,特别是在高中阶段,数学的学习对学生的学习生涯和未来的学术成就具有重大影响。
因此,如何设计有效且吸引人的数学课程,帮助学生理解和掌握数学知识,是所有教育工作者都应的问题。
在本文中,我们将探讨如何利用APOS 理论来设计高中数学定理的教学,并以余弦定理为例进行具体阐述。
二、APOS理论概述APOS理论是由美国学者杜宾斯基提出的一种学习理论,它强调学习过程中学生的主动性和实践性。
高考余弦定理知识点在高考数学考试中,余弦定理是一个重要的知识点。
它是三角函数中的重要内容,被广泛应用于解决与三角形相关的问题。
掌握了余弦定理,我们就可以更好地理解和分析三角形的性质以及与之相关的几何问题。
一、什么是余弦定理余弦定理是描述任意一个三角形的边长与角度之间的关系的定理。
它可以帮助我们计算三角形的边长,以及求解其他与三角形边长和角度关系有关的问题。
余弦定理的数学表达式是:c² = a² + b² - 2ab·cos(C),其中a、b、c 表示三角形的边长,C表示夹在边a和边b之间的角。
二、余弦定理的推导为了更好地理解余弦定理,我们可以对其进行简单的推导。
首先,我们可以将任意一个三角形分解为两个直角三角形。
假设我们有一个三角形ABC,如下图所示:A/|/ |c/ |b/ |B____Ca我们可以在三角形ABC中引入一个高AD,使其垂直于边BC。
这样,我们可以将三角形ABC分为两个直角三角形ABD和ACD。
由于三角形ABD是直角三角形,我们可以利用三角函数中的正弦定理求出边BD的长度:BD = a · sin(C)同理,我们可以求出三角形ACD中高AD的长度:AD = b · sin(C)由于高AD是边c的延长线,所以AD的长度等于两个直角三角形的和,即BD + CD。
而BC的长度就是两个直角三角形的斜边AB和AC之和,即a + b。
因此,我们可以得到:c = a + b · sin(C)进一步移项,我们可以得到:c - a = b · sin(C)根据三角函数中的定义,我们可以将sin(C)转换成cos(C)的形式:sin(C) = √(1 - cos²(C))将其代入前式,再进行平方运算,即可得到余弦定理的数学表达式:c² - 2ac·cos(C) + a² = b² - 2ab·cos(C) + a² - 2ab·cos(C)·√(1 - cos²(C))通过简单的推导,我们可以得到余弦定理的具体数学表达式。
余弦定理公式的含义及其证明余弦定理是解决三角形中边长和角度之间关系的重要公式。
它描述了三角形的一个边的平方和另外两边平方的差,与这两边之间的夹角余弦函数的乘积的关系。
余弦定理的数学表达式为:c² = a² + b² - 2abcosC其中,a、b、c分别表示三角形的三边,C表示夹角C的大小。
证明余弦定理可以使用向量法和三角法两种方法。
1.向量法证明:假设三角形ABC中,向量AB的模为a,向量AC的模为b,向量BC的模为c。
向量AB与向量AC之间的夹角为夹角C,设其大小为θ。
根据向量的加法和平方模长定义,可以得到:a² = AB² = AA² + BB² - 2(AA)(BB)cosθb² = AC² = AA² + CC² - 2(AA)(CC)cosθc² = BC² = BB² + CC² - 2(BB)(CC)cosθ将以上三个等式相加,得到:a² + b² + c² = 2(AA² + BB² + CC²) - 2(AA)(BB)cosθ -2(AA)(CC)cosθ - 2(BB)(CC)cosθ化简可得:2(AA² + BB² + CC²) = a² + b² + c² + 2(AA)(BB)cosθ +2(AA)(CC)cosθ + 2(BB)(CC)cosθ设向量AA、BB、CC的模长分别为x、y、z,则上式变成:2(x² + y² + z²) = a² + b² + c² + 2xycosθ + 2xzcosθ +2yzcosθ由于AA=BB=CC=x+y+z(向量AA、BB、CC的模长相等),进一步化简得到:2(x² + y² + z²) = a² + b² + c² + 2(xy + xz + yz)cosθ所以,余弦定理成立。
高中数学解余弦定理和正弦定理的技巧解余弦定理和正弦定理是高中数学中常见的题型,也是考试中的重点内容。
掌握解题的技巧可以帮助学生更好地理解和应用这两个定理。
本文将从具体题目出发,分析解题的方法和技巧,帮助高中学生和他们的父母更好地掌握余弦定理和正弦定理。
一、解余弦定理的技巧余弦定理的公式为:c² = a² + b² - 2abcosC,其中a、b、c为三角形的边长,C为对应的夹角。
例题1:已知三角形ABC,AB = 5,AC = 8,∠BAC = 60°,求BC的长度。
解析:根据余弦定理,我们可以得到:BC² = 5² + 8² - 2×5×8×cos60°。
计算得到BC² = 89,所以BC ≈ 9.43。
因此,BC的长度约为9.43。
解题技巧:1. 在使用余弦定理时,首先要明确已知条件,确定需要求解的量。
根据已知条件,确定a、b、c和对应的夹角。
2. 在计算过程中,注意角度的单位,一般使用度数制。
3. 在计算时,可以使用计算器来计算复杂的三角函数值,以提高计算的准确性和效率。
二、解正弦定理的技巧正弦定理的公式为:a/sinA = b/sinB = c/sinC,其中a、b、c为三角形的边长,A、B、C为对应的夹角。
例题2:已知三角形ABC,AB = 6,AC = 8,∠BAC = 45°,求BC的长度。
解析:根据正弦定理,我们可以得到:6/sin45° = BC/sinBAC。
由于sin45° =√2/2,所以6/(√2/2) = BC/sin45°,即12√2 = BC。
因此,BC的长度为12√2。
解题技巧:1. 在使用正弦定理时,同样要明确已知条件,确定需要求解的量。
根据已知条件,确定a、b、c和对应的夹角。
2. 在计算过程中,注意角度的单位,一般使用度数制。
高中余弦定理公式大全高中余弦定理公式是三角学中的重要定理之一,用于求解三角形的边长或角度。
它是基于三角形的三条边之间的关系而得出的。
余弦定理公式可以表示为:c = a + b - 2ab cos(C)其中,a、b、c 分别表示三角形的三条边的长度,C 表示夹在 a 和 b 之间的角的大小。
在使用余弦定理时,需要注意以下几点:1. 余弦定理适用于任意三角形,不仅仅是直角三角形。
2. 当 C 是直角时,余弦定理可以简化为勾股定理:c = a + b。
3. 当 C 是锐角时,cos(C) 大于 0;当 C 是钝角时,cos(C) 小于 0;当 C 是180度时,cos(C) 等于 -1。
这个性质可以用来判断三角形是锐角三角形、钝角三角形还是直角三角形。
4. 余弦定理也可以用来求解三角形的角度,当已知三边长度 a、b、c 时,可以通过余弦定理反解出角度 C 的大小。
除了上述提到的余弦定理公式,高中三角学中还有一些类似的公式,如正弦定理和正切定理。
这些公式在解决不同类型的三角形问题时都有其特定的应用。
正弦定理公式可以表示为:a/sin(A) = b/sin(B) = c/sin(C)其中,a、b、c 分别表示三角形的三条边的长度,A、B、C 分别表示与对应边相对的角的大小。
正切定理公式可以表示为:tan(A) = a/b, tan(B) = b/a其中,a、b 分别表示三角形的两条边的长度,A、B 分别表示与对应边相对的角的大小。
这些定理的掌握和运用可以帮助我们更好地理解和解决三角形相关的数学问题,例如求解三角形的边长、角度或者判断三角形的形状。
高中正余弦定理数学公式有哪些高中正余弦定理数学公式有哪些不要依赖搜题软件。
可以翻书,找例题。
要轻语思考和总结,把类似的相关题型,归纳总结起来。
以下是小编整理的高中正余弦定理数学公式,希望可以提供给大家进行参考和借鉴。
高中正余弦定理数学公式正弦定理:a/sinA=b/sinB=c/sinC=2R R为三角形外接圆的半径余弦定理:a2=b2+c2-2bc__cosA诱导公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=t anα(k∈Z)cot(2kπ+α)=cotα(k∈Z)二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα高考前数学的复习方法1、调整好状态,控制好自我。
保持清醒。
高考数学的考试时间在下午,建议同学们中午最好休息半个小时或一个小时,其间尽量放松自己,从心理上暗示自己:只有静心休息才能确保考试时清醒。
2、提高解选择题的速度、填空题的准确度。
高考数学选择题是知识灵活运用,解题要求是只要结果、不要过程。
因此,逆代法、估算法、特例法、排除法、数形结合法……尽显威力。
12个选择题,若能把握得好,容易的一分钟一题,难题也不超过五分钟。