即
r
位矢:
r x i y j z k
o
模:
| r| x2y2z2
kz
p
x
i
方向余弦:co s x,co s y,cos z
r
r
r
位矢单位:m
二、位移(displacement)
t时刻,
r1 这r1(称t) 为质点的运动方程,
在运动方程中把t消去可得到质点的轨道方程。
tt r2r2( tt)
dx dl 两边对时间t 求导数, 得 2x 2l
dt dt d l u绞车拉动纤绳的速率, 纤绳随时间在缩
dt
短, 故 d l 0 ; d x v 是小船向岸边移动的速率。
dt
dt
l
22
x h
负号表示小船速
v u
u
x
x 度沿x 轴反方向。
小船向岸边移
d2x dv u2h2
a
动的加速度为
解:(1)由题意可得速度矢量为:
vd rd x(t)id y(t)j i 1tj
d t d t d t
2
所以t =3s时质点的速度为: v(3)i1.5j
(2)由运动方程 x(t) t和2 y(t)(1/4)t22
消去t 可得轨迹方程为: y 1 x2 x 3 4
由此可知该质点的运动轨迹为抛物线。
四、加速度(acceleration)
t
例1:通过绞车拉动湖中小船拉向岸边, 如图。如 果绞车以恒定的速率u拉动纤绳, 绞车定滑轮离水面 的高度为h, 求小船向岸边移动的速度和加速度。
解:以绞车定滑轮处为坐标原点, x 轴水平向
右, y 轴竖直向下, 如图所示。