仪器分析之 串联质谱
- 格式:ppt
- 大小:2.07 MB
- 文档页数:37
电喷雾串联四极杆质谱
电喷雾离子化技术是一种在实验中常用的软电离技术,主要应用于极性分子如大分子、手性分子等的离子化。
在电喷雾离子化过程中,首先使流动相和样品混合物通过喷嘴,然后在喷嘴和收集器之间施加高电压,这使得溶剂发生雾化并带电。
当这些带电的溶剂滴落时,由于静电场的持续作用,它们进一步细化并形成单个的微小液滴。
当这些液滴蒸发时,留下带电的分子或离子。
串联质谱技术是一种通过两个或更多级质谱仪来获取更精确的
分子结构信息的方法。
首先,初级质谱仪将分子离子化,然后选择性地将其传输到下一级质谱仪进行进一步的分析。
这样可以提供更多的碎片信息,从而更准确地推断出分子的结构。
四极杆分析器是一种常用的选择系统,用于分离特定质量的离子。
它由四根平行导体(通常是同轴的)组成。
仪器分析之串联质谱串联质谱(Tandem Mass Spectrometry,简称MS/MS)是一种用于分析化学样品的仪器分析技术,它结合了质谱仪的离子化和分析能力,可以用于分析复杂样品的定性和定量分析。
本文将介绍串联质谱的原理、仪器组成、应用领域等。
串联质谱的原理基于质谱仪的两个重要特性:离子化和质量分析。
在离子化过程中,化学样品中的分子被转化为带电离子,一般通过电离源实现,如电喷雾离子源(Electrospray Ionization,简称ESI)和电子轰击离子源(Electron Impact Ionization,简称EI)等。
离子化后的样品会进入质量分析阶段,其中会通过质量过滤来选择特定的离子异质体。
然后,所选离子会再次发生离子化,产生新的离子异质体。
根据这些离子异质体之间的关系,可以推导出样品中的化合物的结构和组成。
串联质谱的仪器组成主要包括两个重要部分:质谱仪和质谱分析器。
质谱仪主要负责离子化和质量分析。
离子化过程中,样品通常会被加热或溶解在溶剂中,并通过样品引入系统进行离子化。
质量分析中,离子进入质谱仪后,会经过离子透镜、碰撞池等部分,然后进入质量分析器。
质量分析器通常包括四极质量分析器、飞行时间质量分析器或离子陷阱质量分析器等,这些分析器根据不同的设计原理来分析离子。
质量过滤器根据离子的质量对其进行选择,在高真空环境下分析离子。
然而,串联质谱也有一些局限性。
首先,仪器的复杂性和高成本限制了其在许多实验室中的应用。
其次,样品的预处理过程可能会导致一些损失,影响到分析结果的准确性。
而且,针对不同的样品和分析目标,需要选择合适的离子化源和质谱分析器。
综上所述,串联质谱作为一种仪器分析技术,结合了质谱仪的离子化和质量分析能力,可用于复杂样品的定性和定量分析。
它在生物医学研究、食品安全、环境科学和化学分析等领域有广泛的应用。
尽管面临仪器复杂性、样品处理和选择合适的仪器等挑战,但串联质谱仍然是一种重要的分析工具,可以为科学研究和工业应用提供有价值的信息。
串联质谱试剂是用于串联质谱技术的化学试剂。
串联质谱是一种高级质谱技术,通过将样品中的离子分子依次经过多个质谱分析器,以进一步分析和鉴定样品中的化合物。
串联质谱试剂的种类很多,常见的包括离子源试剂、碰撞气体和内标物质等。
离子源试剂用于产生和稳定离子化的样品分子,常见的有电子轰击试剂和化学离子化试剂等。
碰撞气体则是在质谱分析器中与离子发生碰撞,以促使离子解离和产生离子片段,常见的碰撞气体有氮气、氦气等。
内标物质是在样品中添加的已知化合物,用于对样品中目标物质的含量进行定量分析。
串联质谱试剂的选择和使用对于获得准确的质谱数据和准确的化合物鉴定至关重要。
不同的样品类型和分析目的可能需要不同的试剂组合和条件。
因此,在进行串联质谱分析之前,需要根据具体实验要求选择合适的试剂,并进行优化和验证实验条件,以确保分析结果的准确性和可靠性。
沃特世串联质谱
沃特世串联质谱是一种高性能、稳健和可靠的质谱仪,具有以下特点:
1. 高灵敏度:沃特世串联质谱仪具有高灵敏度,能够检测到低浓度的化合物。
2. 高分辨率:该质谱仪具有高分辨率,能够准确地分离和鉴定化合物。
3. 多种扫描模式:沃特世串联质谱仪支持多种扫描模式,如全扫描、选择离子扫描、多反应监测等,可以根据不同的需求进行选择。
4. 自动化操作:该质谱仪支持自动化操作,可以自动进行样品处理、数据采集和分析,大大提高了工作效率。
5. 广泛的应用范围:沃特世串联质谱仪广泛应用于生物医药、食品安全、环境监测等领域,可以检测多种类型的化合物。
总之,沃特世串联质谱是一种高性能、稳健和可靠的质谱仪,具有广泛的应用前景。
试析高效液相色谱—串联质谱法检测纺织品中的烷基酚聚氧乙烯醚使用高精度仪器检定纺织品中烷基酚聚氧乙烯醚(APEO)。
通过对样品中烷基酚聚氧乙烯醚的回收率计算评估方法的准确性,从而达到检测纺织品中烷基酚聚氧乙烯醚的目的,减少对人体产生的危害。
本文首先介绍烷基酚聚氧乙烯醚的危害性,然后開展相应实验,实验中主要采用高效液相色谱—串联质谱法的检测方式,实现对纺织品中烷基酚聚氧乙烯醚的有效检测。
标签:高效液相色谱;串联质谱法检测;纺织品;烷基酚聚氧乙烯醚前言人们日益了解烷基酚聚氧乙烯醚的危害性,以欧盟为代表的西方国家早年已经出台法规禁令对其进行限制。
同时,一些大型服装生产商也在其内部禁用物质列表(RSL)中加入了对烷基酚聚氧乙烯醚的管控。
本文分析了烷基酚聚氧乙烯醚的实际应用,及检测其在纺织产品中残留的意义。
我国作为世界上最大的纺织品销售市场,出口额已经占到了世界总额的四分之一,为突破贸易的技术壁垒,避免违反进口国的法规禁令而被处罚,需要一套准确的、高效的检测方法。
本文讨论了使用甲醇作为提取溶剂,通过采用高效液相色谱—串联质谱法来检测纺织品中烷基酚聚氧乙烯醚的含量的方法。
在此环节不仅提高了现代检测技术,还促进了人员专业技术的进一步提升。
采用高效的液相色谱-质谱检测法来检定烷基酚聚氧乙烯醚,便于针对实际问题来提出有效的解决策略,提升了检测结果的准确性和时效性。
1.烷基酚聚氧乙烯醚的相关介绍烷基酚聚氧乙烯醚作为一种非离子表面活性剂,具有明显的耐酸碱、性质稳定、成本低等优势,在印染助剂中添加一定的烷基酚聚氧乙烯醚,使其起到了很好的乳化、渗透、润湿、洗涤等作用。
烷基酚聚氧乙烯醚的生产过程:直链烷烃氯化,生成氯代烷烃,然后通过路易斯酸和酚缩合;路易斯酸直接与酚进行加成反应,在碱性催化剂的作用下发生了氧化烯化[1]。
APEO是聚合度不同,性质相似的一大类物质,实际应用中NPEO的比例最多约有80%,OPEO的比例占到了16%。
液相质谱串联质谱
液相质谱串联质谱(LC-MS/MS)是一种高效、敏感、选择性强的分析方法,被广泛应用于生物分析、环境分析、食品安全等领域。
液相色谱(LC)将要分析的混合物分离成单一成分,质谱(MS)则对单一成分进行结构鉴定和定量分析,而串联质谱(MS/MS)则可以进行更加精细的结构鉴定和分析。
液相质谱串联质谱的优势在于其可以对复杂样品进行高效、高通量的分析,同时可以进行更加准确的定量和定性分析。
该技术的应用范围广泛,可以用于生物大分子的鉴定、药物代谢学研究、环境污染物的检测等领域。
- 1 -。
仪器分析之串联质谱串联质谱是一种先进的仪器分析技术,主要用于物质的结构鉴定、分析和定量测定。
它将两种或多种质谱仪相连,在不同质荷比区域进行质谱分析,从而得到更加详细和准确的分析结果。
串联质谱由质谱仪、离子源和质谱分析器三部分组成。
首先,样品通过离子源产生离子化的气态分子或离子。
然后,离子经过质谱分析器,按照质荷比对离子进行分离、筛选和定量测定。
最后,质谱仪记录和分析结果,生成质谱图。
串联质谱的主要优点是可进行多级质谱分析,可以对复杂的样品进行高效、准确的测定。
它还能提供更高的质谱分辨率和灵敏度,减少干扰物的影响。
此外,串联质谱可以通过选择离子反应的方式,对化合物的特定离子进行选择性检测,大大增加了分析的准确性和可靠性。
串联质谱的应用非常广泛。
在生物医药领域,串联质谱可用于药物代谢和药物中残留物的分析。
在环境领域,它可用于水和大气中污染物的监测和定量分析。
在食品安全领域,串联质谱可用于检测食品中的农药残留和毒素。
同时,在化学合成和新材料领域也有广泛的应用。
在串联质谱中,有两种常用的质谱分析方法,即电子轰击碎裂质谱(EI-MS)和电喷雾质谱(ESI-MS)。
EI-MS是一种常见的质谱技术,适用于小分子化合物的分析。
在EI-MS中,样品通过电子束轰击产生离子,然后通过质谱分析器进行质荷比的分离和筛选。
ESI-MS则适用于大分子化合物的分析,它将样品通过电喷雾产生离子,再进行质谱分析。
除了常规的EI-MS和ESI-MS之外,串联质谱还有其他一些特殊的质谱技术,如飞行时间质谱(TOF-MS)和离子阱质谱(IT-MS)。
TOF-MS具有极高的质谱分辨率和灵敏度,适用于快速分析。
IT-MS则可进行多阶段质谱分析,可以充分利用质谱分析仪的空间,提供更高的分析能力。
在实际应用中,为了提高串联质谱的性能,常常需要结合其他分析技术,如气相色谱(GC)和液相色谱(LC)。
GC-MS-MS和LC-MS-MS是常见的串联质谱技术组合,它们可以充分发挥GC和LC的分离能力,使得对复杂样品的分析更加准确和可靠。
气相色谱串联质谱法
气相色谱串联质谱(GC-MS)是一种在有机物质中常用的分析方法,依赖于色谱分离和质谱检测,可以快速、准确地识别出有机物质中构成它们的细微组件及其相对含量。
GC-MS可以同时进行快速分离及检测,使得分析结果更加准确可靠。
GC-MS的基本原理是将样品中的有机物质分离出来,如烃类,然后用质谱仪进行检测,以精确测定其化学特征和结构。
具体来说,主要包括3个步骤:样品预处理、气相色谱(GC)和质谱(MS)。
首先,样品经过预处理,以增强其能够与柱表面的疏水性,使有机物质能够从样品中分离出来。
然后,将样品放入气相色谱仪,有机物将被吸入柱内,经过一段时间,有机物被分开并从柱顶端吐出,通过特定的温度和加压条件来提高速度。
最后,有机物质分离出来之后就可以使用质谱仪对其进行结构测定和组成成分分析,进而求出其相对含量,完成分析任务。
GC-MS是非常有用的有机分析技术,它运用简单及高效的方式,可以快速、准确的识别出有机物质中构成它们的细微组件及含量,在化学和分析造纸、食品、石油、药物和有机合成等领域中广泛应用。
液相色谱串联质谱原理
液相色谱串联质谱原理是一种新的蛋白质结构分析方法,它将液相色谱和质谱技术结合在一起,使得可以精确地鉴定蛋白质结构。
液相色谱串联质谱原理是一种快速、准确的蛋白质结构分析方法,可以用来分析蛋白质的活性、交联、糖基化、加氧、翻译后修饰等特征。
液相色谱串联质谱技术(LC-MS/MS)将液相色谱和质谱技术结合起来,这也是当今常用的蛋白质鉴定的主要技术。
其原理是将样品中的蛋白质分解成多个碎片,然后将这些碎片分别通过液相色谱技术和质谱技术进行分离、测量和鉴定。
在液相色谱技术中,样品经过处理后会以离子化形式分离,因为各种不同的离子具有不同的活性,所以它们会在柱子上分离,并以时间序列的形式释放出来。
在质谱技术中,样品经过离子化后,会按照质量-电荷比(m/z)比例进行分析,以获得离子质量谱图,从而可以鉴定出蛋白质中的碎片。
液相色谱串联质谱技术的步骤主要包括三个部分:样品处理、液相色谱分离离子化和质谱鉴定。
首先,需要对样品进行前处理,以获得蛋白质的纯化悬液。
然后,将悬液通过液相色谱系统进行处理,将蛋白质分解成
离子,并将离子分离出来。
最后,通过质谱技术对离子进行测量,以获得离子质量谱图,从而实现蛋白质的鉴定。
液相色谱串联质谱的特点是它可以快速、准确地鉴定蛋白质的结构、功能和活性,是目前最常用的蛋白质结构分析方法之一。
它可以用来分析蛋白质的活性、交联、糖基化、加氧、翻译后修饰等特征,而且它可以精确地鉴定蛋白质结构,可以提供准确的蛋白质信息。
此外,液相色谱串联质谱技术还可以用来研究蛋白质的组装、结构变化、抗性变化和活性差异等,为蛋白质结构分析提供了更为准确的数据。
第42 卷第 11 期2023 年11 月Vol.42 No.111469~1478分析测试学报FENXI CESHI XUEBAO(Journal of Instrumental Analysis)超高效液相色谱-串联质谱法测定化妆品中15种N-亚硝胺化合物汪毅1,梁文耀1,何国山1,陈张好2,周智明2,吴谦1,席绍峰1,谭建华1*(1.广州质量监督检测研究院,国家化妆品质量检验检测中心(广州),广东广州511447;2.广东省药品检验所,广东广州510663)摘要:采用超高效液相色谱-串联质谱(UPLC-MS/MS)建立了化妆品中15种痕量N-亚硝胺化合物的分析方法。
水剂样品以水或乙腈分组超声提取,膏霜乳液样品采用亚铁氰化钾-乙酸锌溶液沉淀大分子或者饱和氯化钠-乙腈盐析分组处理后,以Agilent Poroshell 120 SB-Aq(100 mm×3.0 mm,2.7 μm)色谱柱分离,经大气压化学电离源(APCI)电离,多反应监测模式检测,以同位素内标法定量。
结果表明,15种N-亚硝胺化合物在相应质量浓度范围内线性关系良好(r2>0.995),检出限和定量下限分别为5~15 ng/g和15~45 ng/g。
水、乳、膏霜3种化妆品基质在25、50、100 ng/g加标水平下的平均回收率为88.0%~111%,相对标准偏差(RSD,n=6)为1.4%~9.8%。
该方法用于市售化妆品检测,发现13批次样品检出N-亚硝基二乙醇胺(NDELA),其中1批次超限量值。
方法的专属性强,灵敏度高,精密度好,解决了N-亚硝胺化合物稳定性差、易被干扰等问题,适用于化妆品中15种N-亚硝胺化合物的痕量测定。
关键词:N-亚硝胺化合物;化妆品;超高效液相色谱-串联质谱法(UPLC-MS/MS);大气压化学电离源中图分类号:O657.63;O623.732文献标识码:A 文章编号:1004-4957(2023)11-1469-10 Determination of Fifteen N-nitrosamine Compounds in Cosmetics by Ultra Performance Liquid Chromatography-TandemMass SpectrometryWANG Yi1,LIANG Wen-yao1,HE Guo-shan1,CHEN Zhang-hao2,ZHOU Zhi-ming2,WU Qian1,XI Shao-feng1,TAN Jian-hua1*(1.Guangzhou Quality Supervision and Testing Institute,National Quality Supervision and Testing Center for Cosmetics(Guangzhou),Guangzhou 511447,China;2.Guangdong Institute for Drug Control,Guangzhou 510663)Abstract:An ultra performance liquid chromatography-tandem mass spectrometric(UPLC-MS/MS)method was established for detecting 15 trace N-nitrosamine compounds in cosmetics. The final estab⁃lished method involved ultrasonic extraction of cosmetics using water or acetonitrile for different com⁃pounds. The samples were treated with potassium ferrocyanide-zinc acetate solution for precipitating macromolecules or saturated sodium chloride-acetonitrile for salting out.An Agilent Poroshell 120 SB-Aq(100 mm × 3.0 mm,2.7 μm) chromatography column was used for separation,followed by atmospheric pressure chemical ionization(APCI) source and multiple reaction monitoring mode detec⁃tion in the isotope internal standard method for quantification. The result showed good linearity(r2> 0.995) for the 15 N-nitrosamine compounds in their respective concentration ranges,with detection and quantitation limits of 5-15 ng/g and 15-45 ng/g,respectively.The average recoveries for the three cosmetic matrices(aqueous,emulsion,cream) at spiked levels of 25,50,100 ng/g were be⁃tween 88.0% and 111%,with relative standard deviations(RSD,n=6) of 1.4%-9.8%. The method was applied to the detection of commercial cosmetics and N-nitrosodiethanolamine(NDELA) was de⁃tected in 13 batches,with one batch exceeding the limit. The strong specificity,high sensitivity,and good precision made the method could solve the problems of poor stability and easy interference ofdoi:10.19969/j.fxcsxb.23051602收稿日期:2023-05-16;修回日期:2023-06-10基金项目:广东省药品监督管理局化妆品风险评估重点实验室专项(2021ZDZ03);广东省市场监督管理局科技项目(2022CZ06)∗通讯作者:谭建华,博士,正高级工程师,研究方向:色谱-质谱检测技术研究,E-mail:tanjianhua0734@第 42 卷分析测试学报N-nitrosamine compounds,and was suitable for the trace determination of 15 N-nitrosamine com⁃pounds in cosmetics.Key words:N-nitrosamine compounds;cosmetics;ultra performance liquid chromatography-tan⁃dem mass spectrometry(UPLC-MS/MS);atmospheric pressure chemical ionization(APCI) sourceN-亚硝胺化合物是一类具有N-亚硝基结构的化合物,因取代基的不同,形成了种类繁多的同系物,目前已发现超过300种[1]。
技术的基本情况1. 技术原理:(包括技术方法、所采用的仪器设备及技术的先进性、科学性等)质谱技术的基本原理是将被测的化合物分子电离成不同质量电荷比(m/z)的带电离子,按其质荷比的不同进行分离,从而对化合物的成分和结构进行分析的一种方法,并通过测定离子峰的强度计算出待测化合物的浓度。
串联质谱(MS/MS)是由2个质谱仪串联而成,一级质谱将化合物按不同质荷比进行分离并对化合物进行能量修饰,二级质谱检测被测物质及惰性气体碰撞后的碎片离子的子离子,由被测物质的质荷比及其碎片子离子的质荷比共同对一个物质进行定性、定量分析,串联质谱是一种特异性更高,更准确的物质定性、定量分析技术。
串联质谱用于新生儿代谢病的筛查的实际操作中通过利用含有稳定同位素内标的溶液对滤纸干血片样本进行萃取,然后用串联质谱系统进行检测。
每个分析物的检测结果及它们对应的稳定同位素内标相关并及分析物浓度成正比。
串联质谱分析中数据的采集是通过中性粒子丢失、母离子扫描和多反应监测三种模式来完成,获得的数据通过串联质谱系统中的软件处理完成。
应用液相串联质谱联用仪测定新生儿外周血液中40余种氨基酸、游离肉碱和酰基肉碱,根据外周血液血液中氨基酸、游离肉碱和酰基肉碱浓度的变化筛查出氨基酸代谢病、有机酸代谢病和脂肪酸代谢病共三大类40余种遗传性代谢病,并对其中一部分疾病做出诊断和鉴别诊断。
仪器选用了国内目前在新生儿遗传代谢病筛查和诊断中普遍采用的AB SCIEX API 3200型液相串联质谱联用仪,该款仪器具有较高的灵敏度和超宽的动态范围和极高的可靠性,完全适用于遗传代谢病的筛查及诊断。
试剂采用广州市丰华生物工程有限公司提供的氨基酸、肉碱检测试剂,试剂盒采用了目前国内外应用普遍的先进非衍生化测定技术,临床应用于新生儿外周血氨基酸和肉碱的测定有较高的精密度和准确性,能极大限度的通过一次实验筛查出40余种遗传代谢病。
2. 技术在国内外的应用(包括该项技术在国内外的应用时间、范围、例数及该项技术的相关综述、参考文献,最好能提供准入批件)目前欧、美、澳洲及中国台湾地区都已经普及串联质谱疾病筛查方案,此方案可以更有效的一次性检测多达40余种遗传代谢性疾病,为针对性治疗提供有效依据,开辟了新的代谢病预防领域。
高效液相色谱-串联质谱法高效液相色谱-串联质谱法(HPLC-MS/MS)是一种现代化分析技术。
它结合了高效液相色谱(HPLC)和串联质谱(MS/MS)两种分析方法,能够快速、准确、灵敏地分析复杂的混合样品中的多种化合物。
HPLC-MS/MS技术的基本原理是将样品通过高效液相色谱进行分离,然后以极高的分辨率将分离后的化合物导入串联质谱分析仪中进行质谱检测和分析。
HPLC部分能够通过改变流速、温度、化合物间隔、载气、反应物、固相分离等方法来分离样品中的成分。
MS/MS 部分则能够通过改变离子源、离子传输、离子选择和离子检测等方式检测化合物。
具体来说,HPLC-MS/MS技术的实现过程如下:需要准备一定量的样品。
样品通常是一种混合物,需要进行分离和净化。
这可以通过一系列的化学方法和生物技术实现。
将样品注入到高效液相色谱仪中进行分离。
高效液相色谱仪通过改变环境条件可以分离出复杂混合物中的单个分量,比如改变洗脱剂的浓度、PH值、离子强度来调整样品中化合物的排列顺序。
高效液相色谱仪具有高速分离和高效洗脱的特点,具有处理大量和复杂样品的能力。
接着,通过HPLC输出的流缓和制备离子源,离子源生成的离子对化合物分子进行离子化。
这个过程利用化合物分子上的R基或者H+来形成游离气态的化合物离子。
然后,将产生的离子通过串接质谱进行分析。
在离子进入串联质谱仪的离子源之前,需要将它们选择性的分离为固定质量和电荷比的离子,这可以通过一系列的电子和电场进行控制来实现。
所得到的离子被送至陷入式离子阱,通过对离子的激发和断裂等过程,形成包含多种离子片段的离子质谱图谱。
这些离子片段遵循一定的质量电荷比的规律,可以通过特征峰和离子质量比等独特的质谱性质来鉴别。
将这些片段的数据输入到质谱数据库中,与已知化合物的质谱数据进行比对。
这样,就能够得到混合物中的每个化合物的特定质谱图谱,从而通过质量分析进行结构确认和鉴定。
HPLC-MS/MS技术的优点是明显的,该技术具有高效和灵敏的特点,能够分析非常低的浓度样品成分。
技术的基本情况1. 技术原理:(包括技术方法、所采用的仪器设备与技术的先进性、科学性等)质谱技术的基本原理是将被测的化合物分子电离成不同质量电荷比(m/z)的带电离子,按其质荷比的不同进行分离,从而对化合物的成分和结构进行分析的一种方法,并通过测定离子峰的强度计算出待测化合物的浓度。
串联质谱(MS/MS)是由2个质谱仪串联而成,一级质谱将化合物按不同质荷比进行分离并对化合物进行能量修饰,二级质谱检测被测物质与惰性气体碰撞后的碎片离子的子离子,由被测物质的质荷比与其碎片子离子的质荷比共同对一个物质进行定性、定量分析,串联质谱是一种特异性更高,更准确的物质定性、定量分析技术。
串联质谱用于新生儿代谢病的筛查的实际操作中通过利用含有稳定同位素内标的溶液对滤纸干血片样本进行萃取,然后用串联质谱系统进行检测。
每个分析物的检测结果与它们对应的稳定同位素内标相关并与分析物浓度成正比。
串联质谱分析中数据的采集是通过中性粒子丢失、母离子扫描和多反应监测三种模式来完成,获得的数据通过串联质谱系统中的软件处理完成。
应用液相串联质谱联用仪测定新生儿外周血液中40余种氨基酸、游离肉碱和酰基肉碱,根据外周血液血液中氨基酸、游离肉碱和酰基肉碱浓度的变化筛查出氨基酸代谢病、有机酸代谢病和脂肪酸代谢病共三大类40余种遗传性代谢病,并对其中一部分疾病做出诊断和鉴别诊断。
仪器选用了国内目前在新生儿遗传代谢病筛查和诊断中普遍采用的AB SCIEX API 3200型液相串联质谱联用仪,该款仪器具有较高的灵敏度和超宽的动态范围和极高的可靠性,完全适用于遗传代谢病的筛查与诊断。
试剂采用广州市丰华生物工程提供的氨基酸、肉碱检测试剂,试剂盒采用了目前国内外应用普遍的先进非衍生化测定技术,临床应用于新生儿外周血氨基酸和肉碱的测定有较高的精密度和准确性,能极大限度的通过一次实验筛查出40余种遗传代谢病。
2. 技术在国内外的应用(包括该项技术在国内外的应用时间、范围、例数与该项技术的相关综述、参考文献,最好能提供准入批件)目前欧、美、澳洲与中国台湾地区都已经普与串联质谱疾病筛查方案,此方案可以更有效的一次性检测多达40余种遗传代谢性疾病,为针对性治疗提供有效依据,开辟了新的代谢病预防领域。
串联质谱C5DC-C6HO 0.64_ _ _串联质谱C5DC-C6HO 0.64:有效解决分子结构鉴定难题一、什么是串联质谱串联质谱(MS/MS)是分子结构鉴定中最重要的技术之一。
它是一种高级质谱技术,可以用来准确测定分子的结构。
串联质谱是通过将一个分子的离子分解成多个不同的离子,从而可以更精确地测定分子的结构。
串联质谱分析也可以用来识别未知分子,并可以用来确定未知分子的结构。
二、C5DC-C6HO 0.64的作用C5DC-C6HO 0.64可以有效解决分子结构鉴定的难题,它可以帮助分析人员准确测定特定分子的结构。
这是一种新型的串联质谱技术,它可以将不同分子的离子分解成多个不同的离子,从而可以更精确地测定分子的结构。
C5DC-C6HO 0.64还可以帮助分析人员识别未知分子,并可以用来确定未知分子的结构。
此外,它还可以帮助分析人员准确测定未知分子的结构,从而帮助分析人员更好地理解未知物质的特性和性质。
三、C5DC-C6HO 0.64的优势C5DC-C6HO 0.64具有很多优势,首先,它可以准确测定特定分子的结构,这有助于识别未知物质。
此外,它还能够快速准确地测定未知物质的结构,这有助于分析人员快速准确地了解未知物质的特性和性质。
另外,该技术还可以帮助分析人员快速准确地识别未知物质,并可以用来准确测定未知物质的具体信息。
四、C5DC-C6HO 0.64在生物医学领域的应用C5DC-C6HO 0.64在生物医学领域有广泛应用,如在生物医学研究中,串联质谱可以用来测定特定生物样品中的特定分子的结构。
此外,串联质谱还可以用于快速准确地识别未知物质,并可以用来准确测定未知物质的具体信息,例如其化学性质、形态、配位数和氧化性能。
此外,串联质谱还可以用于生物样品中特异性检测复合物,如多肽、多核酸和生物大分子。
五、C5DC-C6HO 0.64的未来前景随着对C5DC-C6HO 0.64应用场景不断扩大,对该技术发展前景充满了希望。
高效液相色谱串联质谱
液相色谱串联质谱(LC-MS)是生物分析学中一种常用的分析技术。
在最近
几十年中,液相色谱串联质谱技术已经发展成为分析各种微量和痕量物质的主要手段之一,在食品检测、农产品果实分析、药物分析等领域都有重要的应用价值。
液相色谱串联质谱技术在分析微量物质方面有着出色的性能,它对环境中各类
芳香烃具有极高的敏感度,可以检测低于几ppb水平的物质,它还能够实现高通量的检测,检测速度快,检测精度高。
液相色谱串联质谱是将液相色谱与质谱联用的技术,它的特点是高灵敏度、高
准确度和高分辨率,可以实现良好的平衡,使得液相色谱串联质谱在分析不易量化的少量物质方面表现优良。
其尤其适合检测混合物,可获得质谱分析中清晰突出的峰型,便于检测各成分的特征。
液相色谱串联质谱是一种高效、简便、精确的技术,通过其高灵敏度和准确性,随着许多研究项目的需求,这种技术的应用也会在不断推广,比如生物分析和医疗领域的各种检测任务,都可以采用液相色谱串联质谱来实现精准测试,也能有效解决检测部分微量物质过程中出现的困难。