子弹打木块模型及其应用教学文案
- 格式:doc
- 大小:295.00 KB
- 文档页数:10
子弹打木块模型及其应用Document number:NOCG-YUNOO-BUYTT-UU986-1986UT子弹打木块模型及其应用江苏省海安县立发中学 杨本泉迁移能力的培养是物理教学过程中的重要组成部分。
在物理习题教学过程中,注重培养学生构建正确的物理模型,掌握基本模型的思维方法并能合理的迁移,可以受到事半功倍的效果。
子弹打木块问题是高中物理主干知识:动量与能量相结合应用的重要模型之一。
一、 原型一质量为M 的木块放在光滑的水平面上,一质量m 的子弹以初速度v 0水平飞来打进木块并留在其中,设相互作用力为f问题1 子弹、木块相对静止时的速度v由动量守恒得:mv 0=(M+m)v ∴ 0v mM mv += 问题2 子弹在木块内运动的时间由动量定理得: 对木块0-=⋅Mv t f或对子弹 0mv mv t f -=⋅- 1图∴ )(0m M f Mmv t +=问题3 子弹、木块发生的位移以及子弹打进木块的深度 由动能定理得:对子弹:20212121mv mv s f -=⋅- 221)(2)2(m M f v m M Mm s ++=∴ 对木块:2221Mv fs =2222)(2m M f v Mm s +=∴ 打进深度就是相对位移 S 相=S 1-S 2=)(22m M f Mmv +问题4 系统损失的机械能、系统增加的内能E 损=)(2)(212120220m M Mmv v m M mv +=+-由问题3可得: )(2)(2021m M Mmv s f s s f Q +=⋅=-=相说明: 相互作用力与相对位移(或路程)的乘积等于系统机械能的减小,这是一个重要关系,通常都可直接运用。
问题5 比较S 1、S 2、S 相的大小关系2图运用图象法:子弹做匀减速直线运动 木块做匀加速直线运动 由图可以判定:① 不论m 、M 关系怎样总有S 相>S 2 S 1>2S 2 ②若m <M则S 相>2S 2 S 1>3S 2问题6 要使子弹不穿出木块,木块至少多长(v 0、m 、M 、f 一定)运用能量关系fL=220)(2121v m M mv +-)(22m M f Mmv L +=∴二、应用例1.木板M 放在光滑水平面上,木块m 以初速度V 0滑上木板,最终与木板一起运动,两者间动摩擦因数为μ,求: 1.木块与木板相对静止时的速度; 2.木块在木板上滑行的时间; 3.在整个过程中系统增加的内能; 4.为使木块不从木板上掉下,木板至少多长3图0V解略:例2.光滑水平面上,木板以V 0向右运动,木块m 轻轻放上木板的右端,令木块不会从木板上掉下来,两者间动摩擦因数为μ,求①从m 放上M 至相对静止,m 发生的位移;②系统增加的内能;③木板至少多长④若对长木板施加一水平向右的作用力,使长木板速度保持不变,则相对滑动过程中,系统增加的内能以及水平力所做的功为多少解析:①根据动量守恒定律得:v m M Mv )(0+=⑴ mM Mv v +=⑵对木块使用动能定理:2121mv mgs =μ ⑶ 22021)(2m M g v M s +=μ ⑷ ②根据能的转化和守恒定律:)(2)(212120220m M Mmv v m M Mv Q +=+-= ⑸③220min )(2121v m M Mv mgL +-=μ ⑹ )(220min m M f Mv L +=∴μ ⑺④相对滑动过程,木块做初速度为零的匀加速运动,而木板做匀速运动4图∴木块发生位移t v s ⋅=2/1 ⑻ 木板发生位移t v s 0/2= (9) 相对位移/10/1/22s t v s s s ==-=相 (10) 系统增加内能2021mv s mg Q =⋅=相μ (11) 水平力所做的功20mv Q E W km =+∆= (12)例3 如图所示,一质量为M ,长为L 的长方形木板,B 放在光滑水平地面上,在其右端放上质量为m 的小木块A ,m<M ,现以地面为参照系,给A 、B 以大小相等,方向相反的初速度,使A 开始向左运动,B 开始向右运动,最后A 刚好没有滑离木板B ,以地面为参照系。
专题二 “子弹打木块”模型及“追赶”模型【学习目标】1、理解“子弹打木块”模型中物体的相互作用过程,掌握解决这类问题的方法。
2、会分析“追赶”模型中两物体的位移关系,知道两物体相距最近或最远的条件。
【自主学习】一、动量守恒定律的公式: ,公式中的各个v 必须是对参考系的。
末状态两物体速度相同时,动量守恒的表达式为: 。
初状态两物体均处于静止状态,动量守恒的表达式为: 。
二、“子弹打木块”模型: 木块放在光滑水平面上子弹以初速度v 0射击木块。
1、运动性质:子弹对地在滑动摩擦力作用下做 直线运动;木块在滑动摩擦力作用下做 直线运动。
2、图象描述:从子弹击中木块时刻开始,在同一个v —t 坐标中,两者的速度图线如下图中甲或乙。
甲和乙的区别是 。
图中,两图线间阴影部分面积则对应了子弹相对于木块的 。
3、解决方法:把子弹和木块看成一个系统,利用水平方向动量守恒,有:mv 0=mv+MV …………①对木块和子弹分别利用动能定理,对子弹 -f(s+L )=2022121mv mv - …………②对木块 f s =0212-MV …………③由②、③得系统的动能定理: f L 2220212121MV mv mv --=)+(=2220212121MV mv mv - 4、打木块模型及推广:⑴一物块在木板上滑动(E mgs Q ∆==相对μ,Q 为摩擦在系统中产生的热量)。
⑵小球在置于光滑水平面上的竖直平面内弧形光滑轨道上向上滑动,系统损失的动能转化为m 的重力势能。
⑶一静一动的同种电荷追碰运动,系统损失的动能转化为电势能三.典型例题:例1.一质量为M 的木块放在光滑的水平面上,一质量m 的子弹以初速度v 0水平飞来打进木块并留在其中,设相互作用力为f问题1 子弹、木块相对静止时的速度v?问题2 子弹、木块发生的位移以及子弹打进木块的深度?问题3 系统损失的机械能、系统增加的内能?问题4 要使子弹不穿出木块,木块至少多长?(v 0、m 、M 、f 一定)小结:⑴系统损失的机械能等于阻力乘以相对位移,即ΔE =Q =fs 相对⑵系统内相互作用的两物体间的一对摩擦力做功的总和恒为 值。
专题21子弹打木块模型和板块模型1.子弹打木块模型分类模型特点示例子弹嵌入木块中(1)子弹水平打进木块的过程中,系统的动量守恒.(2)系统的机械能有损失.两者速度相等,机械能损失最多(完全非弹性碰撞) 动量守恒:m v0=(m+M)v能量守恒:Q=F f·s=12m v02-12(M+m)v2子弹穿透木块(1)子弹水平打进木块的过程中,系统的动量守恒.(2)系统的机械能有损失.动量守恒:m v0=m v1+M v2能量守恒:Q=F f·d=12m v02-(12M v22+12m v12)2.子板块模型分类模型特点示例滑块未滑离木板木板M放在光滑的水平地面上,滑块m以速度v0滑上木板,两者间的摩擦力大小为f。
①系统的动量守恒;②系统减少的机械能等于摩擦力与两者相对位移大小的乘积,即摩擦生成的热量。
类似于子弹打木块模型中子弹未穿出的情况。
①系统动量守恒:mv0=(M+m)v;②系统能量守恒:Q=f·x=12m v02-12(M+m)v2。
滑块滑离木板M放在光滑的水平地面上,滑块m以速度v0滑上木板,两者间的摩擦力大小为f。
模型归纳木板 ①系统的动量守恒;②系统减少的机械能等于摩擦力与两者相对位移大小的乘积,即摩擦生成的热量。
类似于子弹穿出的情况。
①系统动量守恒:mv 0=mv 1+Mv 2; ②系统能量守恒:Q =fl =12m v 02-(12mv 12+12Mv 22)。
1.三个角度求解子弹打木块过程中损失的机械能 (1)利用系统前、后的机械能之差求解; (2)利用Q =f ·x 相对求解;(3)利用打击过程中子弹克服阻力做的功与阻力对木块做的功的差值进行求解。
2.板块模型求解方法(1)求速度:根据动量守恒定律求解,研究对象为一个系统; (2)求时间:根据动量定理求解,研究对象为一个物体;(3)求系统产生的内能或相对位移:根据能量守恒定律Q =F f Δx 或Q =E 初-E 末,研究对象为一个系统.模型1 子弹击木块模型【例1】(2023秋•渝中区校级月考)如图所示,木块静止在光滑水平面上,子弹A 、B 从两侧同时水平射入木块,木块始终保持静止,子弹A 射入木块的深度是B 的3倍。
子弹打击木块模型原理方法
子弹打击木块模型是一个经典的物理实验,它可以帮助我们理
解动量、能量和力学原理。
这个实验的原理和方法涉及到多个方面。
首先,让我们从原理方面来看。
当一颗子弹以一定的速度击中
木块时,它会传递动能给木块。
根据动量守恒定律,子弹的动量会
转移给木块,使得木块获得一个与子弹动量相等但方向相反的动量。
这个过程中,子弹和木块之间会发生碰撞,从而产生力。
根据牛顿
第三定律,子弹对木块施加的力与木块对子弹施加的力大小相等、
方向相反。
这些原理帮助我们理解了子弹打击木块的基本过程。
其次,我们来看具体的实验方法。
首先需要准备一个木块作为
靶标,然后使用枪支发射子弹来击中木块。
在实验过程中,需要测
量子弹的速度、木块的质量以及木块被击中后的速度变化,以便计
算动量转移和能量转化的情况。
通过实验数据的分析,我们可以验
证动量守恒和能量守恒定律,并进一步理解碰撞和力学原理。
除了物理原理和实验方法,我们还可以从工程应用、安全性等
角度来考虑子弹打击木块模型。
在工程应用方面,这个实验可以帮
助我们设计防弹材料和结构,以增强对子弹的抵抗能力。
在安全性
方面,这个实验也提醒我们在使用枪支时要格外小心,以避免意外伤害。
总的来说,子弹打击木块模型涉及了动量、能量、力学原理以及实验方法、工程应用和安全性等多个方面。
通过全面理解和研究这个模型,我们可以更好地认识物理规律,指导工程实践,并加强安全意识。
关于子弹打木块模型的分析及拓宽在高中力学的教学和复习中,经常会碰到子弹打击木块模型,我在多年的高中教学和复习实践中,把它作为一种典型的物理模型加以分析和拓宽。
因为该模型的分析思想和解题方法具有普遍性和可操作性,通过系统的分析和拓宽,学生若能熟练掌握其分析方法,这对许多物理问题的分析和解决带来意想不到的效果。
下面就该物理模型谈谈分析方法及应用。
一.关于子弹打木块的分析。
子弹打击木块,由于被打击的木块所处情况不同,可分为两种类型:一是被打的木块固定不动;二是被打的木块置于光滑的水平面上,木块被打击后在水平面上作匀速直线运动。
若木块被固定,子弹和木块构成的系统所受合外力不为零,系统动量不守恒,系统内力是一对相互作用的摩擦力,子弹对木块的摩擦力不做功,相反,木块对子弹的摩擦力做负功,使子弹动能的一部分或全部转化为系统的内能。
由动能定理可得:222221mv mv s f -=⋅-,式中f 为子弹受到的平均摩擦力,s 为子弹相对于木块的距离。
若木块置于光滑水平面上,子弹和木块构成系统不受外力作用,系统动量守恒,系统内力是一对相互作用的摩擦力,子弹受到的摩擦力做负功,木块受到的摩擦力做正功,如图(1)所示,设子弹质量为m ,水平初速度为v 0,置于光滑水平面上的木块质量为M 。
若子弹刚好穿过木块,则子弹和木块最终具有共同速度u 。
由动量守恒定律:u m M mv )(0+= (1)对于子弹,由动能定理:2021mv mu s f -=⋅- (2) 对于木块,由动能定理:222Mu s f =⋅ (3)从图形中可得:L s s =-21 (4)由(2) (3) (4)可得:L f u m M mv ⋅++=2)(2220 (5) 其中L 为木块长度,即子弹相对木块发生的相对位移。
(5)式说明子弹打击木块的过程中遵守能的转化和守恒定律,即作用前系统的总能量为子弹的动能等于作用后系统的总能量(即子弹和木块的动能)与转化为系统内能的和。
龙文教育一对一个性化辅导教案学生董威宏学校广外附中年级高二次数第次科目物理教师吕陈翔日期2015-07-27 时段8:00-10:00课题动能定理之子弹打木块模型,机械能守恒的两个模型,传送带的能量守恒教学重点动能定理之子弹打木块模型,机械能守恒的两个模型,传送带的能量守恒教学难点灵活使用动能定理,机械能守恒,能量守恒定律建立方程,理解有摩擦生热时系统能量的分配教学目标(1)理解动能定理与做功的关系(2)会用动能定理,机械能守恒,能量守恒定律列出物体运动方程并求解,理解本课的几个模型教学步骤及教学内容一课前热身:(1)准确了解同学的兴趣爱好,上次课学习情况等。
((2)了解同学对知识的掌握和理解程度。
二、内容讲解:考点一子弹打木块模型考点二连接体的机械能守恒考点三机械能守恒之水柱模型杂例传送带与摩擦生热三、课堂小结:四、作业布置:管理人员签字:日期:年月日作业布置1、学生上次作业评价:○好○较好○一般○差备注:2、本次课后作业:课堂小结家长签字:日期:年月日Sdv 0Ld动能定理之一一、教学衔接(1)了解 同学的兴趣爱好,上次课学习情况等。
(2)了解 同学对知识的掌握和理解程度。
(3)本次课内容是功和功率知识点复习及习题巩固,二、教学内容考点一 动能定理之子弹打木块模型掌握一个模型:子弹打木块这是一个重要的模型,在没学动量守恒之前我们先从动能定理和能量守恒角度认识此模型。
主要是弄清楚相对摩擦力做功和产生热量的关系例1质量为M 的木块放在光滑的水平面上,质量为m 的子弹以速度v 0沿水平方向射中木块并最终留在木块中与木块一起以速度v 运动.当子弹进入木块的深度为s 时相对木块静止,这时木块前进的距离为L .若木块对子弹的阻力大小F 视为恒定,下列关系正确的是( )A .FL =Mv 2/2B .Fs =mv 2/2C .Fs =mv 20/2-(m +M )v 2/2D .F (L +s )=mv 20/2-mv 2/23飞行的子弹质量为m ,速度为v 0打入放在光滑水平面上质量为M 的木块中深入d ,未穿出,同时木块滑动了s ,已知动摩擦因数为μ,则子弹动能的变化、木块获得的动能、由于摩擦增加的内能的比是多少。
案例20 子弹打木块模型之二[模型概述]子弹打木块模型及推广:⑴一物块在木板上滑动(E s F Q f ∆==相对μ,Q 为摩擦在系统中产生的热量)。
⑵小球在置于光滑水平面上的竖直平面内弧形光滑轨道上滑动。
⑶一静一动的同种电荷追碰运动等。
[模型讲解]例1. 如图1所示,一个长为L 、质量为M 的长方形木块,静止在光滑水平面上,一个质量为m 的物块(可视为质点),以水平初速度v 0从木块的左端滑向右端,设物块与木块间的动摩擦因数为μ,当物块与木块达到相对静止时,物块仍在长木块上,求系统机械能转化成内能的量Q 。
图1解析:可先根据动量守恒定律求出m 和M 的共同速度,再根据动能定理或能量守恒求出转化为内能的量Q 。
对物块,滑动摩擦力F f 做负功,由动能定理得:即F f 对物块做负功,使物块动能减少。
对木块,滑动摩擦力F f 对木块做正功,由动能定理0212-=Mv s F f 得,即F f 对木块做正功,使木块动能增加,系统减少的机械能为:本题中 ,物块与木块相对静止时, ,则上式可简化为:又以物块、木块为系统,系统在水平方向不受外力,动量守恒,则:联立式<2>、<3>得:故系统机械能转化为内能的量为:点评:系统内一对滑动摩擦力做功之和(净功)为负值,在数值上等于滑动摩擦力与相对位移的乘积,其绝对值等于系统机械能的减少量,即。
从牛顿运动定律和运动学公式出发,也可以得出同样的结论。
由于子弹和木块都在恒力作用下做匀变速运动,位移与平均速度成正比:所以一般情况下,所以,这说明,在子弹射入木块过程中,木块的位移很小,可以忽略不计。
这就为分阶段处理问题提供了依据。
象这种运动物体与静止物体相互作用,动量守恒,最后共同运动的类型,全过程动能的损失量可用公式:[模型要点]子弹打木块的两种常见类型:①木块放在光滑的水平面上,子弹以初速度v0射击木块。
运动性质:子弹对地在滑动摩擦力作用下做匀减速直线运动;木块在滑动摩擦力作用下做匀加速运动。
子弹打木块模型及其应用仅供学习与交流,如有侵权请联系网站删除 谢谢2子弹打木块模型及其应用江苏省海安县立发中学 杨本泉迁移能力的培养是物理教学过程中的重要组成部分。
在物理习题教学过程中,注重培养学生构建正确的物理模型,掌握基本模型的思维方法并能合理的迁移,可以受到事半功倍的效果。
子弹打木块问题是高中物理主干知识:动量与能量相结合应用的重要模型之一。
一、 原型一质量为M 的木块放在光滑的水平面上,一质量m 的子弹以初速度v 0水平飞来打进木块并留在其中,设相互作用力为f问题1 子弹、木块相对静止时的速度v由动量守恒得:mv 0=(M+m)v ∴ 0v mM mv += 问题2 子弹在木块内运动的时间由动量定理得: 对木块0-=⋅Mv t f或对子弹 0mv mv t f -=⋅- 1图仅供学习与交流,如有侵权请联系网站删除 谢谢3∴ )(0m M f Mmv t +=问题3 子弹、木块发生的位移以及子弹打进木块的深度 由动能定理得:对子弹:20212121mv mv s f -=⋅- 221)(2)2(m M f v m M Mm s ++=∴ 对木块:2221Mv fs =2222)(2m M f v Mm s +=∴ 打进深度就是相对位移 S 相=S 1-S 2=)(22m M f Mmv +问题4 系统损失的机械能、系统增加的内能E 损=)(2)(212120220m M Mmv v m M mv +=+-由问题3可得: )(2)(2021m M Mmv s f s s f Q +=⋅=-=相说明: 相互作用力与相对位移(或路程)的乘积等于系统机械能的减小,这是一个重要关系,通常都可直接运用。
问题5 比较S 1、S 2、S 相的大小关系2图仅供学习与交流,如有侵权请联系网站删除 谢谢4运用图象法:子弹做匀减速直线运动 木块做匀加速直线运动 由图可以判定:① 不论m 、M 关系怎样总有S 相>S 2 S 1>2S 2 ②若m <M则S 相>2S 2 S 1>3S 2问题6 要使子弹不穿出木块,木块至少多长?(v 0、m 、M 、f 一定)运用能量关系fL=220)(2121v m M mv +-)(22m M f Mmv L +=∴二、应用例1.木板M 放在光滑水平面上,木块m 以初速度V 0滑上木板,最终与木板一起运动,两者间动摩擦因数为μ,求: 1.木块与木板相对静止时的速度; 2.木块在木板上滑行的时间; 3.在整个过程中系统增加的内能;4.为使木块不从木板上掉下,木板至少多长?3图0V仅供学习与交流,如有侵权请联系网站删除 谢谢5解略:例2.光滑水平面上,木板以V 0向右运动,木块m 轻轻放上木板的右端,令木块不会从木板上掉下来,两者间动摩擦因数为μ,求①从m 放上M 至相对静止,m 发生的位移;②系统增加的内能;③木板至少多长?④若对长木板施加一水平向右的作用力,使长木板速度保持不变,则相对滑动过程中,系统增加的内能以及水平力所做的功为多少?解析:①根据动量守恒定律得:v m M Mv )(0+=⑴ mM Mv v +=⑵对木块使用动能定理:2121mv mgs =μ ⑶ 22021)(2m M g v M s +=μ ⑷ ②根据能的转化和守恒定律:)(2)(212120220m M Mmv v m M Mv Q +=+-= ⑸③220min )(2121v m M Mv mgL +-=μ ⑹ )(220min m M f Mv L +=∴μ ⑺④相对滑动过程,木块做初速度为零的匀加速运动,而木板做匀速运动4图仅供学习与交流,如有侵权请联系网站删除 谢谢6∴木块发生位移t v s ⋅=2/1 ⑻ 木板发生位移t v s 0/2= (9) 相对位移/10/1/22s t v s s s ==-=相 (10) 系统增加内能2021mv s mg Q =⋅=相μ (11) 水平力所做的功20mv Q E W km =+∆= (12)例3 如图所示,一质量为M ,长为L 的长方形木板,B 放在光滑水平地面上,在其右端放上质量为m 的小木块A ,m<M ,现以地面为参照系,给A 、B 以大小相等,方向相反的初速度,使A 开始向左运动,B 开始向右运动,最后A 刚好没有滑离木板B ,以地面为参照系。
⑴若已知A 和B 的初速度大小V 0,求A 、B 间的动摩擦因数,A 、B 相对滑动过程中,A 向左运动的最大距离; ⑵若初速度大小未知,求A 向左运动的最大距离。
解析:⑴由动量守恒定律得:v m M mv Mv )(00+=- ①0v mM mM v +-=② 由能量关系得:22)(21)(21v m M v m M mgL +-+=μ ③ gLm M Mv )(20+=∴μ ④5图AV仅供学习与交流,如有侵权请联系网站删除 谢谢7根据动能定理:20210mv mgs -=-μ ⑤gv s μ220= ⑥⑵解①、③、⑤得:L MmM s 2/+=⑦ 例4 如图所示,质量为M 的水平木板静止在光滑的水平地面上,板在左端放一质量为m 的铁块,现给铁块一个水平向右的瞬时冲量使其以初速度V 0开始运动,并与固定在木板另一端的弹簧相碰后返回,恰好又停在木板左端。
求:⑴整个过程中系统克服摩擦力做的功。
⑵若铁块与木板间的动摩擦因数为μ,则铁块对木块相对位移的最大值是多少?⑶系统的最大弹性势能是多少? 解析:该题表面上看多了一个弹簧,且在与弹簧发生相互作用时,其相互作用力的变力,但解题关键,仍然是抓住动量、能量这两条主线:⑴设弹簧被压缩至最短时,共同速度为V 1,此时弹性势能最大设为E P ,铁块回到木板左端时,共同速度V 2,则由动量守恒定律得: 10)(v m M mv += ① 20)(v m M mv += ②仅供学习与交流,如有侵权请联系网站删除 谢谢8整个过程系统克服摩擦做的功 2220)(2121v m M mv W f +-=③ )(22m M Mmv W f +=∴ ④⑵系统克服摩擦做的功mgL W f μ2= ⑤)(420m M g Mv L +=∴μ ⑥⑶根据能的转化和守恒定律,得2120)(212121v m M mv E W p f +-=+ ⑦)(42m M Mmv E p +=∴ ⑧例5 在光滑的水平轨道上有两个半径都是r 的小球A 和B ,质量分别为m 和2m ,当两球心间的距离大小为L(L>>2r)时,两球间无相互作用力;当两球心间的距离等于或小于L 时,两球间有恒定斥力F ,设A 球从较远处以初速v 0正对静止的B 球开始运动,欲使两球不发生碰撞,则v 0必须满足什么条件? 解析:欲使两球不发生碰撞类似于子弹刚好不穿出木块,故A 、B 间距离最短时,A 、B 两球速度相等。
V仅供学习与交流,如有侵权请联系网站删除 谢谢9由动量守恒定律得:mv mv 30= ① 由能量关系:22032121mv mv Fs -=② 而r L s 2-≤ ③ )2(30r L mFv -≤∴ ④ 例6 如图所示,电容器固定在一个绝缘座上,绝缘座放在光滑水平面上。
平行板电容器板间距离为d ,电容为C 。
右极板有一个小孔,通过小孔有一长为d 23的绝缘杆,左端固定在左极板上,电容器极板连同底座、绝缘杆总质量为M 。
给电容器充入电量Q 后,有一质量为m 、带电量+q 的环套在杆上以某一初速度v 0 对准小孔向左运动(M =3m )。
设带电环不影响电容器板间电场的分布,电容器外部电场忽略不计。
带电环进入电容器后距左板最小距离为21d ,试求: ⑴带电环与左极板间相距最近时的速度;⑵带电环受绝缘杆的摩擦力。
解析:⑴带电环距左板最近时,类似于子弹,木块相对静止时8图仅供学习与交流,如有侵权请联系网站删除 谢谢10由动量守恒定律得:v m M mv )(0+= ① 0041v v m M m v =+=∴ ② ⑵带电环与其余部分间的相互作用力,做功的有电场力 cdqQqE F ==电 ③ 摩擦力f 由能的转化和守恒定律得220)(2121)223(2v m M mv d d f d F +-=-+⋅电 ④ cdqQ d mv f 28320-=∴ ⑤三、小结:子弹打木块这类问题,关键是要抓住动量与能量这两条主线,弄清系统内参与做功的是什么力?其相对位移(或相对路程)是多少?从而顺利建立等量关系,以上几例从形式上、条件上、问法上都有不同之处,但解决问题的思路却是相同的,这就要求我们在物理教学过程中,注重培养学生学会透过现象抓住本质,吃透基本模型,从而可使学生跳出题海,既学会了怎样学习,又提高了学习效率。