常用概率分布
- 格式:ppt
- 大小:4.07 MB
- 文档页数:85
目录1. 均匀分布 (1)2. 正态分布(高斯分布) (2)3. 指数分布 (2)4. Beta分布(:分布) (2)5. Gamm 分布 (3)6. 倒Gamm分布 (4)7. 威布尔分布(Weibull分布、韦伯分布、韦布尔分布) (5)8. Pareto 分布 (6)9. Cauchy分布(柯西分布、柯西-洛伦兹分布) (7)210. 分布(卡方分布) (7)8 11. t分布................................................9 12. F分布 ...............................................10 13. 二项分布............................................10 14. 泊松分布(Poisson 分布).............................11 15. 对数正态分布........................................1. 均匀分布均匀分布X ~U(a,b)是无信息的,可作为无信息变量的先验分布。
2. 正态分布(高斯分布)当影响一个变量的因素众多,且影响微弱、都不占据主导地位时,这个变量 很可能服从正态分布,记作X~N (」f 2)。
正态分布为方差已知的正态分布N (*2)的参数」的共轭先验分布。
1 空f (x ): —— e 2-J2 兀 o'E(X), Var(X) _ c 23. 指数分布指数分布X ~Exp ( )是指要等到一个随机事件发生,需要经历多久时间。
其 中,.0为尺度参数。
指数分布的无记忆性:Plx s t|X = P{X t}。
f (X )二 y oiE(X) 一4. Beta 分布(一:分布)f (X )二 E(X)Var(X)=(b-a)2 12Var(X)二1~2Beta 分布记为X 〜Be(a,b),其中Beta(1,1)等于均匀分布,其概率密度函数 可凸也可凹。
目录1. 均匀分布 ...................................................................................................... 1 2. 正态分布(高斯分布) ........................................................................... 2 3. 指数分布 ...................................................................................................... 2 4. Beta 分布(β分布) ............................................................................. 2 5. Gamma 分布 .................................................................................................. 3 6. 倒Gamma 分布 ............................................................................................. 4 7. 威布尔分布(Weibull 分布、韦伯分布、韦布尔分布) ................. 5 8. Pareto 分布 ................................................................................................ 6 9. Cauchy 分布(柯西分布、柯西-洛伦兹分布) . (7)10. 2χ分布(卡方分布) (7)11. t 分布 ........................................................................................................ 8 12. F 分布 ........................................................................................................ 9 13. 二项分布 ................................................................................................ 10 14. 泊松分布(Poisson 分布) ............................................................. 10 15.对数正态分布 .......................................................................................111. 均匀分布均匀分布~(,)X U a b 是无信息的,可作为无信息变量的先验分布。
常见概率分布概率分布是概率论的一个重要概念,用于描述一个随机变量可能取得的所有值及其对应的概率分布情况。
常见的概率分布包括均匀分布、二项分布、泊松分布、正态分布等。
本文将对这些常见的概率分布进行介绍和讨论。
一、均匀分布均匀分布是最简单且最常见的概率分布之一。
在一个有限区间内,每个取值的概率都是相等的。
均匀分布的概率密度函数可以表示为:f(x) = 1 / (b - a),其中a ≤ x ≤ b其中 a 和 b 分别表示区间的起始值和终止值。
均匀分布通常用于在一个确定的范围内随机选择一个值的情况,例如随机抽奖或随机选取一个数。
二、二项分布二项分布是描述多次独立重复试验中成功次数的分布。
每次试验只有两个可能结果,通常分别表示为成功(记为 S)和失败(记为 F)两种情况。
二项分布的概率函数可以表示为:P(x) = C(n, x) * p^x * (1-p)^(n-x)其中 n 表示试验次数,x 表示成功的次数,p 表示每次试验成功的概率。
三、泊松分布泊松分布适用于描述单位时间或单位面积内某事件发生的次数的概率分布。
泊松分布的概率函数可以表示为:P(x) = (e^(-λ) * λ^x) / x!其中λ 表示单位时间或单位面积内事件的平均发生率,x 表示事件发生的次数。
泊松分布常用于描述稀有事件的发生情况,例如单位时间内交通事故的发生次数、单位面积内电子元件的故障数等。
四、正态分布正态分布,又称高斯分布,是自然界中最常见的分布之一。
正态分布具有钟形曲线,均值和标准差决定了分布的位置和形态。
正态分布的概率密度函数可以表示为:f(x) = (1 / (σ * √(2π))) * e^(-((x - μ)^2 / (2σ^2)))其中μ 表示分布的均值,σ 表示分布的标准差。
正态分布广泛应用于统计学和自然科学中,通常用于描述一群数值型数据的分布情况,例如身高、体重、考试分数等。
除了上述四种常见的概率分布外,还存在许多其他常见的概率分布,如指数分布、伽玛分布、贝塔分布等。
统计学中的常用概率分布及其性质概率论是数学中的一个分支,它研究的是随机事件的发生概率以及由随机变量带来的影响。
概率分布则是衡量随机变量取值的可能性的一种方法。
概率分布可以用来得出某些随机变量出现的概率,同时可以用来比较多个随机变量之间的差异。
在统计学中,常用的概率分布有正态分布、伯努利分布、泊松分布、指数分布、二项分布、负二项分布以及几何分布。
正态分布正态分布是一种非常常见的概率分布,也叫高斯分布。
正态分布的概率密度函数是一个钟形曲线,其均值、方差以及标准差的值决定了曲线的位置与形态。
伯努利分布伯努利分布是一种离散概率分布,其只有两个可能结果,即成功或失败。
在伯努利分布中,成功的概率为p,失败的概率为1-p。
伯努利分布可以用来估计投掷硬币等随机事件的概率。
泊松分布泊松分布是一种离散概率分布,它用来衡量独立随机事件在一段时间内发生的次数。
泊松分布的概率密度函数为: P(X=k)= e^-λ * λ^k/k!,其中λ为平均发生次数。
指数分布指数分布是一种连续概率分布,其用途非常广泛,例如在可靠性工程学中,指数分布可以用来描述设备故障发生之间的时间间隔。
指数分布的概率密度函数为: f(x) = λ * e^-λx,其中λ为发生比例。
二项分布二项分布是一种离散概率分布,其表示在n次试验中成功的次数。
二项分布的概率函数为:P(X=k)= (n!/(k!*(n-k)!)) * p^k * (1-p)^(n-k),其中p为成功概率,n为试验次数。
负二项分布负二项分布是一种离散概率分布,其表示在成功x次之前,需要进行n次试验中失败的次数。
负二项分布的概率密度函数为:P(X=k)= (k-1)!((r-1)!*(k-r)!)p^r(1-p)^(k-r)几何分布几何分布是二项分布的一个特例,其表示在n次试验中,首次发生成功的次数。
几何分布的概率密度函数为:P(X=k)=(1-p)^(k-1)* p,其中p为成功概率,k为试验次数。
概率分布公式深入了解不同概率分布的公式概率分布函数被广泛应用于统计学和概率论中,用于描述随机变量的取值概率。
不同的概率分布具有不同的特点和应用场景。
本文将深入探讨几种常见的概率分布,并介绍它们的公式。
一、离散型概率分布的公式离散型概率分布用于描述取有限个值的随机变量的概率分布。
在离散型概率分布中,随机变量的可能取值是可数的。
1. 二项分布(Binomial Distribution):二项分布是指在一系列相互独立的伯努利试验中,成功(事件发生)的次数的离散概率分布。
其表达式为:P(X = k) = C(n, k) * p^k * (1-p)^(n-k)其中,n表示试验次数,k表示成功次数,p表示每次试验成功的概率,C(n, k)表示组合数。
2. 泊松分布(Poisson Distribution):泊松分布用于描述在一段固定时间或空间上随机事件发生的次数的离散概率分布。
其表达式为:P(X = k) = (lambda^k * e^(-lambda)) / k!其中,lambda表示事件发生的平均次数。
二、连续型概率分布的公式连续型概率分布用于描述取数轴上任意值的随机变量的概率分布。
在连续型概率分布中,随机变量的可能取值是无限的。
1. 正态分布(Normal Distribution):正态分布是一种在统计学中特别常见且重要的连续型概率分布。
它的特点是呈钟形曲线,均值和标准差决定了其具体形状。
其概率密度函数为:f(x) = (1 / (sigma * sqrt(2pi))) * e^(-((x-mu)^2 / (2 * sigma^2)))其中,mu表示均值,sigma表示标准差。
2. 指数分布(Exponential Distribution):指数分布用于描述随机事件发生的时间间隔的概率分布。
它的概率密度函数为:f(x) = lambda * e^(-lambda * x)其中,lambda表示事件发生的速率。
目录1. 均匀分布 ...................................................................................................... 1 2. 正态分布(高斯分布) ........................................................................... 2 3. 指数分布 ...................................................................................................... 2 4. Beta 分布(β分布) ............................................................................. 2 5. Gamma 分布 .................................................................................................. 3 6. 倒Gamma 分布 ............................................................................................. 4 7. 威布尔分布(Weibull 分布、韦伯分布、韦布尔分布) ................. 5 8. Pareto 分布 ................................................................................................ 6 9. Cauchy 分布(柯西分布、柯西-洛伦兹分布) . (7)10. 2χ分布(卡方分布) (7)11. t 分布 ........................................................................................................ 8 12. F 分布 ........................................................................................................ 9 13. 二项分布 ................................................................................................ 10 14. 泊松分布(Poisson 分布) ............................................................. 10 15.对数正态分布 .......................................................................................111. 均匀分布均匀分布~(,)X U a b 是无信息的,可作为无信息变量的先验分布。
16种常见概率分布概率密度函数意义及其应用1. 常数分布(Constant distribution):概率密度函数(Probability Density Function,PDF)为常数,表示特定区间内的概率相等。
这种分布常用于模拟实验或作为基线分布进行比较。
2. 均匀分布(Uniform distribution):概率密度函数为一个常数,表示在特定区间内的各个取值的概率相等。
均匀分布经常用于随机抽样,以确保样本的代表性。
3. 二项分布(Binomial distribution):概率密度函数描述了进行n次独立二类试验中成功次数的概率分布。
二项分布在实验设计、质量控制和市场研究中广泛应用。
4. 泊松分布(Poisson distribution):5. 正态分布(Normal distribution):概率密度函数为指数函数形式,常用来描述自然界中众多连续变量的分布,例如身高、体重等。
正态分布在统计学和金融学中广泛应用。
6. χ2分布(Chi-square distribution):概率密度函数描述了n个独立标准正态分布随机变量的平方和的分布,是假设检验和方差分析中常用的分布。
7. t分布(t-distribution):概率密度函数描述了标准正态分布随机变量与一个自由度为n的卡方分布随机变量的比值的分布。
t分布在小样本推断和回归分析中常用。
8. F分布(F-distribution):概率密度函数描述了两个自由度为m和n的卡方分布随机变量的比值的分布。
F分布在方差分析、回归分析和信号处理中常应用。
9. 负二项分布(Negative binomial distribution):概率密度函数描述了进行一系列独立二类试验中直到第r次取得第k 次成功的概率。
负二项分布在可靠性工程和传染病模型中常用。
10. 伽马分布(Gamma distribution):概率密度函数描述了多个指数分布随机变量的和的分布,常被用于描述连续事件的时间间隔。
概率论常见的几种分布常见的概率论分布有:均匀分布、正态分布、泊松分布和指数分布。
1. 均匀分布均匀分布是指在一段区间内,各个取值的概率是相等的。
比如在一个骰子的例子中,每个面出现的概率是相等的,为1/6。
均匀分布在实际应用中常用于随机数生成、样本抽取等场景。
2. 正态分布正态分布又被称为高斯分布,是最常见的概率分布之一。
正态分布的特点是呈钟形曲线,数据集中在均值周围,并且具有对称性。
正态分布在自然界中广泛存在,比如人的身高、体重等都近似服从正态分布。
在统计学和数据分析中,正态分布的应用非常广泛,例如在建模、假设检验和置信区间估计等方面。
3. 泊松分布泊松分布是一种离散概率分布,描述了在一段时间或空间内,某事件发生的次数的概率分布。
泊松分布的特点是事件之间是独立的,并且事件发生的平均速率是恒定的。
泊松分布在实际应用中常用于描述稀有事件的发生概率,比如电话呼叫中心的接听次数、交通事故的发生次数等。
4. 指数分布指数分布是描述连续随机变量的概率分布,用于描述时间间隔的概率分布。
指数分布的特点是事件之间是独立的,并且事件发生的速率是恒定的。
指数分布在实际应用中常用于描述如等待时间、寿命等连续性事件的概率分布。
这四种分布在概率论和统计学中都有广泛的应用。
它们分别适用于不同的场景和问题,能够帮助人们理解和分析数据。
在实际应用中,我们常常需要通过对数据进行建模和分析来确定数据的分布类型,从而更好地理解数据的特征和规律。
除了这四种常见的分布外,还有其他许多概率分布,例如二项分布、伽玛分布、贝塔分布等。
每种分布都有其独特的特点和应用领域。
在实际应用中,选择合适的分布模型对数据进行建模和分析是非常重要的,可以帮助我们更好地理解数据,做出准确的推断和预测。
概率论中常见的几种分布包括均匀分布、正态分布、泊松分布和指数分布。
每种分布都有其特点和应用场景,在实际问题中选择合适的分布模型对数据进行建模和分析是非常重要的。
通过对数据的分布进行研究,我们能够更好地理解数据的规律和特征,为决策提供科学依据。
概率论三大分布
概率论中,三大分布指的是正态分布、泊松分布和指数分布。
这些分布都有自己独特的性质和应用。
正态分布是一种连续分布,也被称为高斯分布。
它是自然界中最常见的分布之一,例如人类身高、智力测试分数和环境因素等。
正态分布的特点是呈钟形曲线,它的中心是对称的,平均值和标准差可以用来描述它的形状。
泊松分布是一种离散分布,它通常用于描述事件发生的次数。
例如,在一段时间内到达某个地点的车辆数量或在一天内接收到的电子邮件数量。
泊松分布的特点是事件的发生是独立的,且所有事件发生的概率相等。
指数分布是一种连续分布,它通常用于描述时间间隔或持续时间。
例如,两个人之间的通话时间或两次地震之间的时间间隔。
指数分布的特点是它的概率密度函数呈指数形式衰减,即随着时间的增加,事件发生的概率逐渐减少。
这三种分布在统计学和数据分析中都有广泛的应用,特别是在模型构建和预测分析中。
因此,熟悉它们的性质和应用是非常重要的。
- 1 -。
常见的概率分布离散分布0-1分布(伯努利分布)它的分布律为:\[P\{X=k\}=p^k(1-p)^{1-k}, k=0,1, (0<p<1)\]0-1分布记作:\(X \sim b(1,p)\)期望:\(E(X)=p\)⽅差:\(D(X)=p(1-p)\)常⽤的场景:新⽣婴⼉性别的登记,招⽣考试的录取,产品的是否合格,硬币的正反⾯。
⼆项分布⼆项分布为\(n\)重伯努利实验的概率分布。
分布律为:\[P\{X=k\}=\begin{pmatrix}n\\k\end{pmatrix}p^k(1-p)^{n-k},k=0,1,2,...,n,(0<p<1)\]\[\sum\limits_{k=0}^{n}P\{X=k\}=\sum\limits_{k=0}^{n}\begin{pmatrix}n\\k\end{pmatrix}p^k(1-p)^{n-k}=(p+1-p)^n=1\]⼆项分布记作:\( X \sim b(n,p)\)期望:\(E(X)=np\)⽅差:\(D(X)=np(1-p)\)常⽤的场景:⽐如⼀个⼈射击\(n\)次,其中\(k\)次命中的概率,抽查50台设备,其中10台出故障的概率等等。
从下⾯的图中,我们可以看到命中次数先增加,到了3达到最⼤,之后⼜逐渐减少,⼀般来说,对于固定的\(n,p\),都具有这⼀性质。
(1)当\((n+1)p\)不为整数时,⼆项概率\(P\{X=k\}\)在\(k=[(n+1)p]\)时达到最⼤值;(2)当\((n+1)p\)为整数时,⼆项概率\(P\{X=k\}\)在\(k=(n+1)p,k=(n+1)p-1\)时达到最⼤值。
%每轮射击10次,命中概率0.3,射击10000轮,x中返回的是每轮中命中的次数x=binornd(10,0.3,10000,1);%bin的数⽬为10hist(x,10);N=100;p=0.4;k=0:N;%事件发⽣k次的概率pdf=binopdf(k,N,p);%事件发⽣不⼤于k次的概率cdf=binocdf(k,N,p);plotyy(k,pdf,k,cdf);grid on;多项分布多项式分布是⼆项式分布的扩展,在多项式分布所代表的实验中,⼀次实验会有多个互斥结果,⽽⼆项式分布所代表的实验中,⼀次实验只有两个互斥结果。
常用概率分布的特征及应用概率分布是概率论中的重要概念之一,用于描述随机变量的可能取值及其对应的概率。
在实际应用中,常用的概率分布包括离散型分布和连续型分布。
本文将介绍常用概率分布的特征及其应用。
一、离散型分布1. 伯努利分布伯努利分布是最简单的离散型分布,用于描述只有两个可能结果的随机试验。
伯努利分布的特征是每次试验只有成功和失败两种结果,成功的概率记为p,失败的概率记为1-p。
伯努利分布的应用场景包括投硬币正反面、赌博游戏的胜负等。
2. 二项分布二项分布是由n次独立的伯努利试验组成,每次试验的成功概率为p,失败概率为1-p。
二项分布的特征是试验成功的次数服从参数为n 和p的二项分布。
二项分布的应用场景包括统计调查、质量抽样检验等。
3. 泊松分布泊松分布适用于描述单位时间(或单位面积、单位长度等)内某事件发生次数的概率分布。
泊松分布的特征是事件发生的平均次数λ,该分布的概率可以通过泊松定理计算得出。
泊松分布的应用场景包括电话呼线、交通事故发生、网站访问量等。
二、连续型分布1. 均匀分布均匀分布是最简单的连续型分布,用于描述随机变量在一个区间内取值的概率分布。
均匀分布的特征是在给定区间内每个取值的概率相等。
均匀分布的应用场景包括随机数生成、题库出题等。
2. 正态分布正态分布也被称为高斯分布,其特征是呈钟形曲线分布,对称轴是均值。
正态分布的应用非常广泛,包括量化投资、质量控制、IQ测试等。
3. 指数分布指数分布描述了连续时间之间的等候时间。
其特征是呈右偏态分布,逐渐递减至零。
指数分布的应用场景包括网络传输延迟、设备寿命等。
4. 法雷分布法雷分布用于描述极端事件的概率分布。
其特征是呈右偏态分布,尾部的概率密度函数迅速递减。
法雷分布的应用场景包括金融风险评估、天灾风险预测等。
总结:以上介绍了常用的概率分布以及它们的特征和应用。
离散型分布主要用于描述随机试验的结果,如伯努利分布、二项分布和泊松分布;而连续型分布则用于描述随机变量值的分布,如均匀分布、正态分布、指数分布和法雷分布。