的单调性时,由于x1,x2的取值具有任意性,它代表区间内的每一个数,
所以在证明时,不能用特殊值来代替它们);
2.作差变形:作差Δy=f(x2)-f(x1),并将差向有利于判断差值的符号
的方向变形(作差后,尽量把差化成几个简单因式的乘积或几个完
全平方式的和的形式,这是值得学习的解题技巧,在判断因式的正
则 f(x2)-f(x1)= 2+1 − 1+1 =
2
1
3(2 -1 )
.
(2 +1)(1 +1)
(22 -1)(1 +1)-(21 -1)(2+1)
(2 +1)(1 +1)
因为 x1<x2,所以 x2-x1>0.
又因为 x1,x2∈[1,+∞),所以 x2+1>0,x1+1>0,
课堂篇
探究学习
探究一
探究二
探究三
思维辨析
当堂检测
方法点睛1.讨论一个含参数的函数的单调性与证明一个函数的
单调性的方法类似,都是利用定义,通过运算,判断f(x1)-f(x2)的正负,
从而得出结论,若所含参数符号不确定,必须分类讨论.
2.本题的规范解答中每一个环节都不能省略,既有开头和结尾形
式上的要求,也有对f(x1)-f(x2)的正负判定进行实质性说明.
-Δ·(1 +2 )
=
=
,
21 ·22
21 ·22
∵12 ·22 >0,x1+x2<0,-Δx<0,∴Δy>0.
∴函数
1
f(x)=2 在(-∞,0)内是增函数.
课堂篇
探究学习