第10章 周环反应
- 格式:ppt
- 大小:2.83 MB
- 文档页数:39
周环反应2007年4月周环反应1928午Diels和A1der发现了二烯加成反应,在以后的几十年中,对这个反应的历程进行了大量的研究工作,积累起来的实验事实使当时的化学工作者迷惑不解。
Diels—Alder反应在没有催化剂齐在下加热就可以完成,在气相和液相中都可以进行,溶剂的极性对反应速度的影响很小,在这些方面它同自由基反应相似。
但是,引发剂和抑制剂对反应都没有影响。
二烯或亲二烯体中取代基的极性对反应速度的影响很大,这与离子反应有相似的地方,但溶剂的极性对反应速度的影响小又说明它不是离子反应。
因此,曾经认为Diels—A1der反应是“部分均裂”(Partially homolytic)或“部分异裂”(Partially hetero1ytic)反应。
Diels—A1der反应是立体定向的顺式加成反应,这使许多化学工作者认为反应中两个新的碳-碳键是同时生成的。
在研究Diels—A1der反应的历程中所遇到的问题也存在于1912年发现的C1aisen重排中和1940年发现的Cope重排。
在这些反应中键的生成和断裂是在四个原于间进行的,因此Bartlett把它们叫作四中心反应。
为了强调这些反应具有一般自由基反应和离子反应的特征,但又不能用实验证明它们是自由基反应或离子反应,Doering曾把它们叫作“无历程反应”(no methanism reactions)。
五十年代后期,Huisgen研究了1,3—偶极加成反应的动力学、立体化学和应用范围,证明1,3—偶极加成具有与二烯加成相同的特征。
Huisgen把二烯加成、1,3—偶极加成和烯烃衍生物的成环二聚(如四氟乙烯在加热时生成全氟环丁烷)统称为环化加成。
这些反应虽然都是生成环状化合物的加成反应,但它们的历程不同,二烯加成和l,3—偶极加成是立体定向反应,而烯烃衍生物的二聚则是自由基反应。
在同一时期还研究了共扼多烯烃的加热环化和光化环化反应。
1961年Havinga和Schlatmann指出:加热环化和光化环化的立体化学过程不同。
♦轨道对称性守恒原理和前线轨道理论;♦电环化反应的规律;♦环加成反应的规律;♦σ迁移反应,氢迁移和碳迁移。
♦用前线轨道理论解释反应规律;♦用三个反应的规律解决实际问题。
从反应机理上看,有机反应的类型:离子型反应自由基型反应周环反应:不形成离子或自由基中间体,而是由电子重新组织,经过环状的过渡态而进行的。
分析周环反应和离子反应、自由基反应不同,要使用分子轨道理论。
1周环反应②反应不受溶剂极性影响,不被酸碱所催化,也不受自由基引发剂和抑制剂的影响。
①反应过程中没有自由基或离子等活性中间体产生,为多中心的一步完成的协同反应。
周环反应的特征:+CHO CHOΔCHO③反应进行的动力是加热或光照。
④反应具有高度的立体专一性,加热和光照下分别生成不同的立体异构体。
R R R RΔh νRR周环反应的过程,要用轨道来分析和说明。
φ1φ2ψψ*分析周环反应常用到π分子轨道。
图形是表示轨道的简单直观的方法。
2分子轨道对称守恒原理分子轨道对称守恒原理的中心内容:化学反应是分子轨道重新组合的过程,分子轨道的对称性控制化学反应的进程,在一个协同反应中,分子轨道对称性守恒。
三种理论解释:前线轨道理论;能量相关理论;Hückel-Möbius芳香过渡态理论。
3前线轨道理论前线轨道和前线电子}最高占有轨道HOMO前线轨道FMO最低空轨道LUMO前线轨道理论的中心思想分子中的前线电子类似于单个原子的价电子,因此在化学反应过程中,最先作用的分子轨道是前线轨道,起关键作用的电子是前线电子。
4直链共轭多烯的π分子轨道2ψ3ψ4ψ1ψ2ψ3ψ4ψ丁二烯的π分子轨道图形电子分布基态激发态1ψHOMO LUMO HOMO LUMO直链共轭多烯的π分子轨道的一些特点:①π分子轨道的数目与参与共轭体系的碳原子数相同。
②对镜面按对称-反对称-对称交替变化;对二重对称轴按反对称-对称-反对称交替变化。
③结(节)面数由0→1→2……逐渐增多。