天津市高三数学总复习 模块专题30 平面向量与三角形心的应用举例(学生版)
- 格式:doc
- 大小:266.50 KB
- 文档页数:3
第07讲 平面向量奔驰定理与三角形四心问题(高阶拓展、竞赛适用)(2类核心考点精讲精练)平面向量问题是高中数学中的一个热点,在高考中考查比重不会很大,一般以选择填空形式出现,难度一般也会控制在中等,有时也会以压轴题命题。
平面向量中有很多重要的应用,比如系数和(等和线)、极化恒等式、本节我们继续学习另一个重要的结论-奔驰定理。
它将三角形的四心与向量完美地融合到一起,高中的同学们可以将这个内容当成课外拓展知识,同时也是加强对三角形的认识,加深对数学的理解。
奔驰定理”揭示的是平面向量与三角形面积之间所蕴含的一个优美规律并因其图形与奔驰的logo 相似而得名“奔驰定理”,会提升解题效率,可强化学习。
1. 奔驰定理如图,已知P 为ABC V 内一点,则有0PBC PAC PAB S OA S OB S OC ⋅+⋅+⋅= △△△.由于这个定理对应的图象和奔驰车的标志很相似,我们把它称为“奔驰定理”.2. 奔驰定理的证明如图:延长OA 与BC 边相交于点D则BOD ABD BOD ABD ACD COD ACD COD AOCAOBS S S S S BD DC S S S S S -====-V V V V V V V V V DC BD OD OB OCBC BC=+ AOCAOB AOC AOBAOC AOB S S OB OCS S S S =+++V V V V V V BOD COD BOD CODBOA COA BOA BOC AOC AOBCOA S S S S S OD OA S S S S S S +====++V V VBOCAOC AOBS OD OAS S ∴=-+V V V BOCAOC AOB AOC AOBAOC AOB AOC AOB S S S OA OB OCS S S S S S ∴-=++++V V V V V V V V V 0BOC AOC AOB S OA S OB S OC ∴⋅+⋅+⋅=V V V3. 奔驰定理的推论及四心问题推论O 是ABC V 内的一点,且0x OA y OB z OC ⋅+⋅+⋅=,则::::BOC COA AOB S S S x y z=V V V 有此定理可得三角形四心向量式(1)三角形的重心:三角形三条中线的交点叫做三角形的重心,重心到顶点的距离与重心到对边中点的距离之比为2:1.(2)三角形的垂心:三角形三边上的高的交点叫做三角形的垂心,垂心和顶点的连线与对边垂直.(3)三角形的内心:三角形三条内角平分线的交点叫做三角形的内心,也就是内切圆的圆心,三角形的内心到三边的距离相等,都等于内切圆半径r .(4)三角形的外心:三角形三条边的垂直平分线的交点叫做三角形的外心,也就是三角形外接圆的圆心,它到三角形三个顶点的距离相等.研究三角形“四心”的向量表示,我们就可以把与三角形“四心”有关的问题转化为向量问题,充分利用平面向量的相关知识解决三角形的问题,这在一定程度上发挥了平面向量的工具作用,也很好地体现了数形结合的数学思想.3.设P 是ΔABC 所在平面内的一点,若2AB CB CA AB CP ⋅+=⋅且222AB AC BC AP =-⋅.则点P 是ΔABC 的( )A .外心B .内心C .重心D .垂心4.已知点P 是ABC D 所在平面内一点,且满足()()cos cos AB ACAP R AB B AC C l l =+Î v vv v v ,则直线AP 必经过ABC D 的A .外心B .内心C .重心D .垂心5.设是平面上一定点,A 、B 、C 是平面上不共线的三点, 动点P 满足,,则动点P 的轨迹一定通过△ABC 的A .外心B .内心C .重心D .垂心1.若O 是ABC V 内一点,且OA OB OA OC OC OB ⋅=⋅=⋅,则O 为ABC V 的( )A .垂心B .重心C .外心D .内心2.已知点O 是ABC V 所在平面上的一点,ABC V 的三边为,,a b c ,若0a OA bOB cOC ®®®®++=,则点O 是ABC V 的( )A .外心B .内心C .重心D .垂心3.已知点O 为ABC V 所在平面内一点,在ABC V 中,满足22AB AO AB ⋅= ,22AC AO AC ⋅= ,则点O 为该三角形的( )A .内心B .外心C .垂心D .重心4.已知A ,B ,C 是不在同一直线上的三个点,O 是平面ABC 内一动点,若12OP OA AB BC l æö-=+ç÷èø,[)0,l Î+¥,则点P 的轨迹一定过ABC V 的( )A .外心B .重心C .垂心D .内心5.在平面上有ABC V 及内一点O 满足关系式:0OBC OAC OAB S OA S OB S OC ⋅+⋅+⋅=△△△即称为经典的“奔驰定理”,若ABC V 的三边为a ,b ,c ,现有0a OA b OB c OC ⋅+⋅+⋅=则O 为ABC V 的( )A .外心B .内心C .重心D .垂心6.已知G ,O ,H 在ABC V 所在平面内,满足0GA GB GC ++=,||||||OA OB OC == ,AH BH BH CH CH AH ⋅=⋅=⋅,则点G ,O ,H 依次为ABC V 的( )A .重心,外心,内心B .重心、内心,外心C .重心,外心,垂心D .外心,重心,垂心1.奔驰定理:已知O 是ABC D 内的一点,BOC D ,AOC D ,AOB D 的面积分别为A S ,B S ,C S,则0A B C S OA S OB S OC ⋅+⋅+⋅=v v v .“奔驰定理”是平面向量中一个非常优美的结论,因为这个定理对应的图形与“奔驰”轿车(Mercedes benz )的logo 很相似,故形象地称其为“奔驰定理”若O 是锐角ABC D 内的一点,A ,B ,C 是ABCD 的三个内角,且点O 满足OA OB OB OC OC OA ⋅=⋅=⋅ v v v v v v,则必有( )A .sin sin sin 0A OAB OBC OC ⋅+⋅+⋅=v v v B .cos cos cos 0A OAB OBC OC ⋅+⋅+⋅= v v v vC .tan tan tan 0A OAB OBC OC ⋅+⋅+⋅=v v v D .sin 2sin 2sin 20A OAB OBC OC ⋅+⋅+⋅=v v v 2.(多选)“奔驰定理”因其几何表示酷似奔驰的标志得来,是平面向量中一个非常优美的结论.奔驰定理与三角形四心(重心、内心、外心、垂心)有着神秘的关联.它的具体内容是:已知M 是ABC V 内一点,BMC AMC AMB △,△,△的面积分别为A B C S S S ,,,且0A B C S MA S MB S MC ⋅+⋅+⋅=.以下命题正确的有( )A .若::1:1:1ABC S S S =,则M 为AMC V 的重心B .若M 为ABC V 的内心,则0BC MA AC MB AB MC ⋅+⋅+⋅=C .若M 为ABC V 的外心,则()()()MA MB AB MB MC BC MA MC AC +⋅=+⋅=+⋅=D .若M 为ABC V 的垂心,3450MA MB MC ++= ,则cos AMB Ð=1.奔驰定理:已知点O 是ABC V 内的一点,若,,BOC AOC AOB V V V 的面积分别记为123,,S S S ,则1230S OA S OB S OC ⋅+⋅+⋅= .“奔驰定理”是平面向量中一个非常优美的结论,因为这个定理对应的图形与“奔驰”轿车的logo 很相似,故形象地称其为“奔驰定理”.如图,已知O 是ABC V 的垂心,且230OA OB OC ++=,则cos C =( )A B C D 2.(多选)如图.P 为ABC V 内任意一点,角,,A B C 的对边分别为,,a b c ,总有优美等式0PBC PAC PAB S PA S PB S PC ++=V V V成立,因该图形酯似奔驰汽车车标,故又称为奔驰定理.则以下命题是真命题的有( )A .若P 是ABC V 的重心,则有0PA PB PC ++=B .若0aPA bPB cPC ++=成立,则P 是ABC V 的内心C .若2155AP AB AC =+,则:2:5ABP ABC S S =△△D .若P 是ABC V 的外心,π4A =,PA mPB nPC =+ ,则)m n é+Îë6.(多选)“奔驰定理”是平面向量中一个非常优美的结论,因为这个定理对应的图形与“奔驰”轿车,(Mercedesbenz )的logo 很相似,故形象地称其为“奔驰定理”,奔驰定理:已知O 是△ABC 内一点,△BOC ,△AOC ,△AOB 的面积分别为A S ,B S ,C S ,且0A B C S OA S OB S OC ⋅+⋅+⋅=.设O 是锐角△ABC 内的一点,∠BAC ,∠ABC ,∠ACB 分别是的△ABC 三个内角,以下命题正确的有( )A .若230OA OB OC ++=,则::1:2:3A B C S S S =B .若2OA OB == ,5π6AOB Ð=,2340OA OB OC ++= ,则92ABC S =V C .若O 为△ABC 的内心,3450OA OB OC ++= ,则π2C Ð=D .若O 为△ABC 的垂心,3450OA OB OC ++= ,则cos AOB Ð=一、单选题1.在ABC V 中,动点P 满足222CA CB AB CP =-⋅,则P 点轨迹一定通过ABC V 的( )A .外心B .内心C .重心D .垂心2.若O ,M ,N 在ABC V 所在平面内,满足||||||,OA OB OC MA MB MB MC MC MA ==⋅=⋅=⋅,且0NA NB NC ++=,则点O ,M ,N 依次为ABC V 的( )A .重心,外心,垂心B .重心,外心,内心C .外心,重心,垂心D .外心,垂心,重心3.已知O 为ABC V 内一点,若分别满足①OA OB OC == ;②OA OB OB OC OC OA ⋅=⋅=⋅;③0OA OB OC ++= ;④0aOA bOB cOC ++=(其中,,a b c 为ABC V 中,角,,A B C 所对的边).则O 依次是ABC V 的A .内心、重心、垂心、外心B .外心、垂心、重心、内心C .外心、内心、重心、垂心D .内心、垂心、外心、重心4.给定△ABC ,则平面内使得到A ,B ,C 三点距离的平方和最小的点是△ABC 的( )A .重心B .垂心C .外心D .内心5.若H 为ABC V 所在平面内一点,且222222HA BC HB CA HC AB +=+=+ 则点H 是ABC V 的( )A .重心B .外心C .内心D .垂心6.已知O ,A ,B ,C 是平面上的4个定点,A ,B ,C 不共线,若点P 满足()OP =OA+AB+AC l,其中R l Î,则点P 的轨迹一定经过ABC V 的( )A .重心B .外心C .内心D .垂心7.平面上有ABC V 及其内一点O ,构成如图所示图形,若将OAB V ,OBC △, O C A V 的面积分别记作c S ,a S ,b S ,则有关系式0a bc S OA S OB S OC ⋅+⋅+⋅=.因图形和奔驰车的logo 很相似,常把上述结论称为“奔驰定理”.已知ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,若满足0a OA b OB c OC ⋅+⋅+⋅=,则O 为ABC V 的( )A .外心B .内心C .重心D .垂心8.已知点O 在平面ABC 中,且2220||||OA AB OA AC OB BA OB BC OC CA OC CB AB AC BA BC CA CB æöæöæö⋅⋅⋅⋅⋅⋅ç÷ç÷-+-+-=ç÷ç÷ç÷èøèøèø,则点O 是ABC V 的( )A .重心B .垂心C .外心D .内心9.奔驰定理:已知O 是ABC V 内的一点,若BOC V 、AOC V 、AOB V 的面积分别记为1S 、2S 、3S ,则1230S OA S OB S OC ⋅+⋅+⋅=.“奔驰定理”是平面向量中一个非常优美的结论,这个定理对应的图形与“奔驰”轿车的logo 很相似,故形象地称其为“奔驰定理”.如图,已知O 是ABC V 的垂心,且240OA OB OC ++=,则cos B =( )AB .13C .23D10.已知O 是ABC V 所在平面上的一点,角A 、B 、C 所对的边分别为a,b ,c ,若aPA bPB cPCPO a b c ++=++ v v vv (其中P 是ABC V 所在平面内任意一点),则O 点是ABC V 的( )A .外心B .内心C .重心D .垂心11.“奔驰定理”是平面向量中一个非常优美的结论,因为这个定理对应的图形与“奔驰”轿车的三叉车标很相似,故形象地称其为“奔驰定理”.奔驰定理:已知O 是△ABC 内的一点,△BOC ,△AOC ,△AOB 的面积分别为A S 、B S 、C S ,则有0A B C S OA S OB S OC ++=,设O 是锐角△ABC 内的一点,∠BAC ,∠ABC ,∠ACB 分别是△ABC 的三个内角,以下命题错误的是()A .若0OA OB OC ++=,则O 为△ABC 的重心B .若230OA OB OC ++=,则::1:2:3A B C S S S =C .则O 为△ABC (不为直角三角形)的垂心,则tan tan tan 0BAC OA ABC OB ACB OCÐ⋅+Ð⋅+Ð⋅=D .若2OA OB == ,5π6AOB Ð=,2340OA OB OC ++= ,则92ABC S =V 二、多选题12.“奔驰定理”是平面向量中一个非常优美的结论,因为这个定理对应的图形与“奔驰”(Mercedesbenz )的logo 很相似,故形象地称其为“奔驰定理”奔驰定理:已知O 是ABC V 内的一点,BOC V ,AOC V ,AOB V 的面积分别为A S ,B S ,C S ,则0A B C S OA S OB S OC ⋅+⋅+⋅=.若O 是锐角ABC V 内的一点,A ,B ,C 是ABCV 的三个内角,且点O 满足OA OB OB OC OA OC ⋅=⋅=⋅.则( )A .O 为ABC V 的外心B .BOC A pÐ+=C .::cos :cos :cos OA OB OC A B C=D .::tan :tan :tan A B C S S S A B C=13.“奔驰定理”是平面向量中一个非常优美的结论,因为这个定理对应的图形与“奔驰”轿车的logo 很相似,故形象地称其为“奔驰定理”.奔驰定理:已知O 是ABC V 内的一点,BOC V ,AOC V ,AOB V 的面积分别为,,A B C S S S ,则有0A B C S OA S OB S OC ⋅+⋅+⋅=.设O 是锐角ABC V 内的一点,BAC Ð,ABC Ð,ACB Ð分别是ABC V 的三个内角,以下命题正确的有( )A .若0OA OB OC ++=,则O 为ABC V 的重心B .若230OA OB OC ++=,则::1:2:3A B C S S S =C .若||||2OA OB == ,5π6AOB Ð=,2340OA OB OC ++= ,则92ABC S =V D .若O 为ABC V 的垂心,则tan tan tan 0BAC OA ABC OB ACB OC Ð⋅+Ð⋅+Ð⋅=14.“奔驰定理”因其几何表示酷似奔驰的标志得来,是平面向量中一个非常优美的结论.奔驰定理与三角形四心(重心、内心、外心、垂心)有着神秘的关联.它的具体内容是:已知M 是ABC V 内一点,BMC △,AMC V ,AMB V 的面积分别为A S ,B S ,C S ,且0A B C S MA S MB S MC ⋅+⋅+⋅=.以下命题正确的是( )A .若::1:1:1ABC S S S =,则M 为AMC V 的重心B .若M 为ABC V 的内心,则0BC MA AC MB AB MC ⋅+⋅+⋅=C .若45BAC Ð=°,60ABC Ð=°,M 为ABC V 的外心,则::2:1A B C S S S =D .若M 为ABC V 的垂心,230MA MB MC ++= ,则cos BAC Ð=15.奔驰定理:已知O 是ABC V 内的一点,BOC V ,AOC V ,AOB V 的面积分别为A S ,B S ,C S ,则0A B C S OA S OB S OC ⋅+⋅+⋅=.“奔驰定理”是平面向量中一个非常优美的结论,因为这个定理对应的图形与“奔驰”轿车(Mercedesbenz )的logo 很相似,故形象地称其为“奔驰定理”.若O 、P 是锐角ABC V 内的点,A 、B 、C 是ABC V 的三个内角,且满足13PA PB PC CA ++=,OA OB OB OC OC OA ⋅=⋅=⋅ ,则( )A .::4:2:3PAB PBC PCA S S S =△△△B .πA BOC Ð+Ð=C .::cos :cos :cos OA OB OC A B C=D .tan tan tan 0⋅+⋅+⋅=A OAB OBC OC 三、填空题16.在面上有ABC V 及内一点O 满足关系式:0OBC OAC OAB S OA S OB S OC ⋅+⋅+⋅= △△△即称为经典的“奔驰定理”,若ABC V 的三边为a ,b ,c ,现有0a OA b OB c OC ⋅+⋅+⋅= ,则O 为ABC V 的 心.17.已知O 是平面上一定点,A 、B 、C 是平面上不共线的三个点,动点P 满足2cos cos OA OB CA CB OP CA A CB B l æö+ç÷=++ç÷èø,R l Î,则P 的轨迹一定经过ABC V 的 .(从“重心”,“外心”,“内心”,“垂心”中选择一个填写)18.请你根据“奔驰定理”对以下命题进行判断:①若P 是ABC V 的重心,则有0PA PB PC ++= ;②若0aPA bPB cPC ++= 成立,则P 是ABC V 的内心;③若2155AP AB AC =+ ,则:2:5ABP ABC S S =△△;④若P 是ABC V 的外心,π4A =,PA mPB nPC =+,则)m n é+Îë;⑤若ABC V 的内角A ,B ,C 的对边分别为a ,b ,c ,且7cos 8A =,O 为ABC V 内的一点且为内心.若AO x AB y AC =+ ,则x y +的最大值为45.则正确的命题有 .(填序号)19.1909年,戴姆勒公司申请登记了“三叉星”做为奔驰轿车的标志,象征着陆上,水上和空中的机械化,而此圆环中的星形标志演变成今天的图案,沿用至今,并成为世界十大著名的商标之一(图一).已知O 为ABC V 内一点,OBC △,OAC V ,OAB V 的面积分别为A S ,B S ,C S ,则有0A B C S OA S OB S OC ++= ,我们称之为“奔驰定理”(图二).已知ABC V 的内角,,A B C 的对边分别为,,a b c ,且7cos 8A =,O 为ABC V 内的一点且为内心.若AO x AB y AC =+ ,则x y +的最大值为.20.“奔驰定理”因其几何表示酷似奔驰车的标志而来,是平面向量中一个非常优美的结论,奔驰定理与三角形的四心(重心、内心、外心、垂心)有着美丽的邂逅.它的具体内容是:如图,若P 是ABC V 内一点,,,BPC APC APB V V V 的面积分别为,,A B C S S S ,则有0A B C S PA S PB S PC ⋅+⋅+⋅= .已知O 为ABC V 的内心,且1cos 3BAC Ð=,若AO mAB nAC =+ ,则m n +的最大值为 .。
高考数学备考攻略平面向量与三角函数的综合应用高考数学备考攻略:平面向量与三角函数的综合应用在高考数学中,平面向量与三角函数是两个重要的概念和工具。
它们在各种数学问题中都有广泛的应用,特别是在几何和三角函数的综合题目中。
本文将介绍一些关于平面向量与三角函数的综合应用。
希望通过这些攻略,能够帮助大家在高考中更好地理解和应用这些知识点。
一、平面向量的几何应用平面向量的几何应用主要体现在它们的加法、减法、数量积、向量积等运算上。
下面将介绍其中的一些典型应用。
1. 平面向量的加法平面向量的加法可以用来解决平面上的位移问题。
例如,在平面直角坐标系中,有一个点A(2,3),以向量a(1,2)为位移,求终点B的坐标。
我们可以通过向量加法得到:B = A + a = (2,3) + (1,2) = (3,5)通过这个简单的例子,我们可以看到,平面向量的加法可以用来求解平面上的位移问题,这在几何中有着重要的应用。
2. 平面向量的数量积平面向量的数量积可以用来解决两个向量之间的夹角问题。
例如,已知两个向量a(3,4)和b(5,12),求它们的夹角θ。
我们可以通过向量的数量积求解:a·b = |a||b|cosθ其中,“·”表示向量的数量积,|a|和|b|分别表示向量的模,θ表示夹角。
根据给定的向量值代入公式计算,可以得到θ≈0.68弧度。
3. 平面向量的向量积平面向量的向量积可以用来解决平行四边形的面积、三角形的有向面积问题。
例如,在平面直角坐标系中,已知两个向量a(2,3)和b(4,1),求平行四边形的面积。
我们可以通过向量的向量积求解:S = |a×b|其中,“×”表示向量的向量积,|a×b|为向量的模。
根据给定的向量值代入公式计算,可以得到平行四边形的面积为2。
二、三角函数的综合应用三角函数是数学中的一个重要分支,在高考数学中占有很大的比重。
下面将介绍一些关于三角函数综合应用的例子。
平面向量“四心”知识点总结与经典习题【强烈推荐】平面向量的“四心”是指三角形的外心、内心、重心和垂心,它们各自具有特殊的性质。
在高中数学中,向量问题经常与“四心”问题结合考查。
因此,熟悉向量的代数运算和几何意义是解决这类问题的关键。
四心知识点总结如下:重心:1.重心是三角形三条中线的交点,也是重心到三角形三个顶点距离之和最小的点。
2.重心坐标为$(\frac{1}{3}(x_A+x_B+x_C),\frac{1}{3}(y_A+y_B+y_C))$。
垂心:1.垂心是三角形三条高线的交点,也是垂足到三角形三边距离之积最大的点。
2.若垂心为$O$,则有$OA\cdot OB=OA\cdot OC=OB\cdot OC$。
外心:1.外心是三角形三条中垂线的交点,也是到三角形三个顶点距离相等的点。
2.若外心为$O$,则有$OA=OB=OC$,或$(OA+OB)\cdot AB=(OB+OC)\cdot BC=(OC+OA)\cdot CA$。
内心:1.内心是三角形三条角平分线的交点,也是到三角形三边距离之和最小的点。
2.若内心为$O$,则有$a\cdot OA+b\cdot OB+c\cdotOC=0$,其中$a,b,c$为三角形三边的长度。
下面是一些经典题:1.在$\triangle ABC$中,$D,E,F$分别为$BC,CA,AB$的中点,$M$为重心,则$\vec{AM}$等于()。
A。
$\frac{1}{3}(\vec{AD}+\vec{BE}+\vec{CF})$B。
$\frac{1}{2}(\vec{AD}+\vec{BE}+\vec{CF})$C。
$\frac{1}{3}(\vec{AD}+\vec{BE}+\vec{CF})+\vec{OG}$ D。
$\frac{1}{2}(\vec{AD}+\vec{BE}+\vec{CF})+\vec{OG}$ 答案:C2.在$\triangle ABC$中,$O$为坐标原点,$P$满足$\vec{OP}=\frac{1}{3}(\vec{OA}+\vec{OB}+\vec{OC})$,则$P$一定在()上。
平面向量与三角形“四心”(较全面)一、“四心”概念(1)重心——中线的交点:重心将中线长度分成2:1; (2)垂心——高线的交点:高线与对应边垂直;(3)内心——角平分线的交点(内切圆的圆心):角平分线上的点到角两边的距离相等; (4)外心——中垂线的交点(外接圆的圆心1):外心到三角形各顶点的距离相等.二、“四心”的充要条件(1)⇔=++→→→→0OC OB OA 是△ABC 的重心.【证法1】:设()y x O ,,()11,y x A ,()22,y x B ,()33,y x C⇔=++→→→→0OC OB OA ()()()()()()⎩⎨⎧=-+-+-=-+-+-00321321y y y y y y x x x x x x ⎪⎩⎪⎨⎧++=++=⇔33321321y y y y x x x x ⇔是的重心.【证法2】:∵→→→→→→=+=++02ODOAOCOBOA,∴→→=ODAO2∴A,O,D三点共线,且O分AD为2:1,∴是△ABC的重心.(2)⇔⋅=⋅=⋅→→→→→→OA OC OC OB OB OA 为△ABC 的垂心.【证明】:如图,O 是三角形ABC 的垂心,BE 垂直AC ,AD 垂直BC ,D 、E 是垂足.→→→→→→→→→→→⊥⇔=⋅=-⇔⋅=⋅AC OB CA OB OC OA OB OC OB OB OA 0)(同理→→⊥OB OA ,⇔⊥→→AB OC O 为△ABC 的垂心. (3) ⇔=++→→→→0OC c OB b OA a O 为△ABC 的内心. 【证明】:∵bAC c AB →→,分别为→→AC AB ,方向上的单位向量,bACc AB →→+平分BAC ∠,(λ=→AO )bAC c AB →→+,令c b a bc ++=λ cb a bcAO ++=→)(bAC c AB →→+,化简得→→→→=++++0)(AC c AB b OA c b a ,→→→→=++0OC c OB b OA a .(4)⇔==→→→||||||OC OB OA 为△ABC 的外心.三、“四心”的向量表达1.⇒⎪⎩⎪⎨⎧+=+=→→→→→→)(31)(31BC BA BO AC AB AO O 为△ABC 的重心;【证】:由),0[,sin sin +∞∈⎪⎪⎪⎭⎫ ⎝⎛++=→→→→λλC b AC B c AB OA OP ,即)(sin →→→+=AC B A C b AP λ,故→AP 与→→+AC AB 共线,又→→+AC AB 过BC 中点D ,故P 点的轨迹也过中点D , 故点P 过三角形的重心.2. ⇒⎪⎩⎪⎨⎧=⋅=⋅→→→→00AC BO BC AO O 为△ABC 的垂心.(1)由C B A S S S AOB AOC BOC tan :tan :tan ::=∆∆∆⇒→→→→=++0tan tan tan OC C OB B OA A . (2)222222→→→→→→+=+=+B A OC CA OB BC OA .【证】:由⎪⎭⎫ ⎝⎛++=→→→→AC b B A c OA OP λ知,⎪⎭⎫ ⎝⎛+=→→→AC b B B A c C AP cos cos λ, =⋅→→BC AP )cos cos (→→→→⋅+⋅⋅BC AC bB C B AB c C λ 0)cos cos cos cos (=+-=C B C B a λ,故→AP 与向量→BC 垂直, 故点P 的轨迹过垂心.【证】:由),0[,2sin 2sin 22+∞∈⎪⎪⎪⎭⎫ ⎝⎛++=→→→→λλC b AC B c AB OA OP 知,,2sin 2sin 22⎪⎪⎪⎭⎫ ⎝⎛+=→→→C b AC B c AB AP λ故⎪⎪⎪⎭⎫ ⎝⎛⋅+⋅=⋅→→→→→→C b BC AC B c BC AB BC AP 2sin 2sin 22λ,则0)sin sin (2=+-=⋅→→C b a B c a BC AP λ, 故点P 轨迹过三角形的垂心.【解】:AD 垂直BC ,BE 垂直AC , D 、E 是垂足.→→→→→⋅⎪⎪⎪⎭⎫ ⎝⎛+BC C AC AC B AB AB cos ||cos ||C AC BC AC B AB BC AB cos ||cos ||→→→→→→⋅+⋅=C AC C BC AC B AB B BC AB cos ||cos ||||cos ||cos ||||→→→→→→⋅+⋅-=0=+-=→→BC BC ∴点的轨迹一定通过△ABC 的垂心.3. ⇒⎪⎪⎪⎩⎪⎪⎪⎨⎧>+=>+=→→→→→→→→→→0),||||(0),||||(t BC BCBA BA t BO AC AC AB AB AO λλO 为△ABC 的内心;(1)c b a S S S AOB AOC BOC ::::=∆∆∆⇒→→→→=++0sin sin sin OC C OB B OA A(2)→→→→→→→→→→→→→→→→=⎪⎪⎪⎭⎫ ⎝⎛-⋅=⎪⎪⎪⎭⎫ ⎝⎛-⋅=⎪⎪⎪⎭⎫ ⎝⎛-⋅0||||||||||||CB CB CA CAOC BC BC BA BA OB AC AC AB AB OA【解】:由),0[,sin sin 22+∞∈⎪⎪⎪⎭⎫ ⎝⎛++=→→→→λλC b AC B c AB OA OP 知,)0)(||||(sin >+=→→→→→λλAC AC AB AB B c AP , 故动点P 的轨迹一定通过ABC ∆的内心.满足⎪⎪⎪⎭⎫ ⎝⎛++=→→→→→→||||AC AC AB AB OA OP λ,),0[+∞∈λ ,则点的轨迹一定通过△ABC 的____.【解】:∵如图,设||,||→→→→→→==AC AC AF AB ABAE 分别为→→AC AB ,方向上的单位向量, 易知四边形AETF 是菱形,∴||||→→→→+AC AC AB AB 平分BAC ∠,∴点的轨迹一定通过△ABC的内心.4.两点分别是△ABC的边上的中点,且⇒⎪⎩⎪⎨⎧⋅=⋅⋅=⋅→→→→→→→→OA EO OC EO OC DO OB DO O 为△ABC 的外心; (1)0=++→∆→∆→∆OC S OB S OA S AOB AOC BOC (外心向量定理) (2)由AOB AOC BOC S S S AOB AOC BOC ∠∠∠=∆∆∆sin :sin :sin ::C B A 2sin :2sin :2sin =⇒→→→→=⋅+⋅+⋅02sin 2sin 2sin OC C OB B OA A .四、欧拉线及其向量法证明三角形的外心、重心、九点圆圆心、垂心,依次位于同一直线上,这条直线叫三角形的欧拉线. 在△ABC 中,已知Q 、G 、H 分别是三角形的外心、重心、垂心.求证:Q 、G 、H 三点共线,且QG:GH=1:2. 【证明】:以A 为原点,AB 所在的直线为x 轴,建立直角坐标系。
平面向量痛点问题之三角形“四心”问题【题型归纳目录】题型一:重心定理题型二:内心定理题型三:外心定理题型四:垂心定理【知识点梳理】一、四心的概念介绍:(1)重心:中线的交点,重心将中线长度分成2:1.(2)内心:角平分线的交点(内切圆的圆心),角平分线上的任意点到角两边的距离相等.(3)外心:中垂线的交点(外接圆的圆心),外心到三角形各顶点的距离相等.(4)垂心:高线的交点,高线与对应边垂直.二、三角形四心与推论:(1)O 是△ABC 的重心:S △BOC :S △COA :S △A 0B =1:1:1⇔OA +OB +OC =0.(2)O 是△ABC 的内心:S △B 0C :S △COA :S △AOB =a :b :c ⇔aOA +bOB +cOC =0.(3)O 是△ABC 的外心:S △B 0C :S △COA :S △AOB =sin2A :sin2B :sin2C ⇔sin2AOA +sin2BOB +sin2COC =0 .(4)O 是△ABC 的垂心:S △B 0C :S △COA :S △AOB =tan A :tan B :tan C ⇔tan AOA +tan BOB +tan COC =0.【方法技巧与总结】(1)内心:三角形的内心在向量AB AB +ACAC所在的直线上.AB ⋅PC +BC ⋅PC +CA⋅PB =0 ⇔P 为△ABC 的内心.(2)外心:PA =PB =PC⇔P 为△ABC 的外心.(3)垂心:PA ⋅PB =PB ⋅PC =PC ⋅PA⇔P 为△ABC 的垂心.(4)重心:PA +PB +PC =0⇔P 为△ABC 的重心.【典型例题】题型一:重心定理1(2024·重庆北碚·高一西南大学附中校考阶段练习)如图所示,已知点G 是△ABC 的重心,过点G 作直线分别与AB ,AC 两边交于M ,N 两点(点N 与点C 不重合),设AM =xAB ,AN =yAC ,则1x +1y的值为()A.3B.4C.5D.62(2024·全国·高一随堂练习)已知△ABC 中,点G 为△ABC 所在平面内一点,则“AB +AC -3AG=0”是“点G 为△ABC 重心”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3(2024·全国·高一专题练习)已知O 是三角形ABC 所在平面内一定点,动点P 满足OP =OA+λAB AB sin B +AC AC sin C λ≥0 ,则P 点轨迹一定通过三角形ABC 的()A.内心B.外心C.垂心D.重心题型二:内心定理1(2024·全国·高一专题练习)在△ABC 中,cos ∠BAC =13,若O 为内心,且满足AO =xAB +yAC ,则x +y 的最大值为.2(2024·江苏南通·高一如皋市第一中学期末)已知点P 为△ABC 的内心,∠BAC =23π,AB =1,AC =2,若AP =λAB +μAC,则λ+μ=.3(2024·广西柳州·高一统考期末)设O 为△ABC 的内心,AB =AC =5,BC =8,AO =mAB+nBCm ,n ∈R ,则m +n =题型三:外心定理1(2024·吉林长春·高一东北师大附中校考阶段练习)已知点O 是△ABC 的外心,AB =4,AC =2,∠BAC 为钝角,M 是边BC 的中点,则AM ⋅AO=.2(2024·安徽六安·高一六安市裕安区新安中学校考期末)已知O 是平面上一定点,A 、B 、C 是平面上不共线的三个点,动点P 满足OP =OA +OB 2+λCA CA cos A +CBCB cos B ,λ∈R ,则P 的轨迹一定经过△ABC 的.(从“重心”,“外心”,“内心”,“垂心”中选择一个填写)3(2024·四川遂宁·高一射洪中学校考阶段练习)已知△ABC 中,∠A =60°,AB =6,AC =4,O 为△ABC 的外心,若AO =λAB +μAC,则λ+μ的值为()A.1B.2C.1118D.12题型四:垂心定理1(2024·江苏泰州·高一统考期末)已知△ABC 的垂心为点D ,面积为15,且∠ABC =45°,则BD ⋅BC=;若BD =12BA +13BC ,则BD=.2(2024·湖北黄冈·高一校联考期末)若O 为△ABC 的垂心,2OA +3OB +5OC =0 ,则S △AOB S △AOC=,cos ∠BOC =.3(2024·山西·高一校联考阶段练习)已知H 为△ABC 的垂心(三角形的三条高线的交点),若AH=13AB+25AC ,则sin ∠BAC =.【过关测试】一、单选题1(2024·全国·高一专题练习)在直角三角形ABC 中,A =90°,△ABC 的重心、外心、垂心、内心分别为G 1,G 2,G 3,G 4,若AG i =λi AB +μi AC(其中i =1,2,3,4),当λi +μi 取最大值时,i =()A.1B.2C.3D.42(2024·黑龙江牡丹江·高一牡丹江一中校考阶段练习)若O 是△ABC 所在平面上一定点,H ,N ,Q 在△ABC 所在平面内,动点P 满足OP =OA +λAB AB +ACAC,λ∈0,+∞ ,则直线AP 一定经过△ABC 的心,点H 满足HA = HB = HC ,则H 是△ABC 的心,点N 满足NA +NB +NC=0,则N 是△ABC 的心,点Q 满足QA ·QB =QB ·QC =QC ·QA ,则Q 是△ABC 的心,下列选项正确的是()A.外心,内心,重心,垂心B.内心,外心,重心,垂心C.内心,外心,垂心,重心D.外心,重心,垂心,内心二、多选题3(2024·河南郑州·高一校联考期末)点O 为△ABC 所在平面内一点,则()A.若OA +OB +OC =0 ,则点O 为△ABC 的重心B.若OA ⋅AC AC -AB AB =OB ⋅BC BC -BABA =0,则点O 为△ABC 的垂心C.若OA +OB ⋅AB =OB +OC ⋅BC=0.则点O 为△ABC 的垂心D.在△ABC 中,设AC 2 -AB 2 =2AO ⋅BC,那么动点O 的轨迹必通过△ABC 的外心4(2024·内蒙古呼和浩特·高一呼市二中校考阶段练习)设点M 是△ABC 所在平面内一点,则下列说法正确的是()A.若AM =12AB +12AC ,则点M 是边BC 的中点B.若AM =2AB -AC ,则点M 是边BC 的三等分点C.若AM =-BM -CM ,则点M 是边△ABC 的重心D.若AM =xAB +yAC ,且x +y =13,则△MBC 的面积是△ABC 面积的235(2024·山东枣庄·高一校考阶段练习)数学家欧拉在1765年发表的《三角形的几何学》一书中提出定理:三角形的外心、重心、垂心依次位于同一条直线上,且重心到外心的距离是重心到垂心距离的一半,此直线被称为三角形的欧拉线,该定理则被称为欧拉线定理.设点O 、G 、H 分别是△ABC 的外心、重心、垂心,且M 为BC 的中点,则()A.OH =OA +OB +OCB.S △ABG =S △BCG =S △ACGC.AH =3OMD.AB +AC =4OM +2HM6(2024·安徽池州·高一统考期末)已知△ABC 的重心为O ,边AB ,BC ,CA 的中点分别为D ,E ,F ,则下列说法正确的是()A.OA +OB =2ODB.若△ABC 为正三角形,则OA ⋅OB +OB ⋅OC +OC ⋅OA=0C.若AO ⋅AB -AC=0,则OA ⊥BC D.OD +OE +OF =07(2024·广东广州·高一校考期末)下列命题正确的是()A.若A ,B ,C ,D 四点在同一条直线上,且AB =CD ,则AB =CDB.在△ABC 中,若O 点满足OA +OB +OC =0,则O 点是△ABC 的重心C.若a =(1,1),把a 右平移2个单位,得到的向量的坐标为(3,1)D.在△ABC 中,若CP =λCA |CA |+CB|CB |,则P 点的轨迹经过△ABC 的内心8(2024·新疆·高一兵团第三师第一中学校考阶段练习)点O 在△ABC 所在的平面内,则下列结论正确的是()A.若OA ⋅OB =OB ⋅OC =OC ⋅OA ,则点O 为△ABC 的垂心B.若OA +OB +OC =0 ,则点O 为△ABC 的外心C.若2OA +OB +3OC =0,则S △AOB :S △BOC :S △AOC =3:2:1D.若AO ⋅AB AB =AO ⋅AC AC 且CO ⋅CA CA =CO ⋅CB CB ,则点O 是△ABC 的内心三、填空题9(2024·甘肃武威·高一校联考期末)记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若O 为△ABC 的重心,OB ⊥OC ,3b =4c ,则cos A =.10(2024·全国·高一专题练习)点O 是平面上一定点,A 、B 、C 是平面上△ABC 的三个顶点,∠B 、∠C 分别是边AC 、AB 的对角,以下命题正确的是(把你认为正确的序号全部写上).①动点P 满足OP =OA +PB +PC,则△ABC 的重心一定在满足条件的P 点集合中;②动点P 满足OP =OA +λAB |AB |+AC|AC |(λ>0),则△ABC 的内心一定在满足条件的P 点集合中;③动点P 满足OP =OA +λAB |AB |sin B +AC|AC|sin C(λ>0),则△ABC 的重心一定在满足条件的P 点集合中;④动点P 满足OP =OA+λAB |AB |cos B +AC|AC|cos C(λ>0),则△ABC 的垂心一定在满足条件的P 点集合中;⑤动点P 满足OP =OB +OC 2+λAB |AB |cos B +AC|AC|cos C(λ>0),则△ABC 的外心一定在满足条件的P 点集合中.11(2024·辽宁·高一校联考期末)某同学在学习和探索三角形相关知识时,发现了一个有趣的性质:将锐角三角形三条边所对的外接圆的三条圆弧(劣弧)沿着三角形的边进行翻折,则三条圆弧交于该三角形内部一点,且此交点为该三角形的垂心(即三角形三条高线的交点).如图,已知锐角△ABC 外接圆的半径为2,且三条圆弧沿△ABC 三边翻折后交于点P .若AB =3,则sin ∠PAC =;若AC :AB :BC =6:5:4,则PA +PB +PC 的值为.12(2024·宁夏银川·高一银川唐徕回民中学校考期末)已知P 为△ABC 所在平面内一点,有下列结论:①若P 为△ABC 的内心,则存在实数λ使AP =λAB |AB |+AC|AC |;②若PA +PB +PC =0 ,则P 为△ABC 的外心;③若PA =PB =PC ,则P 为△ABC 的内心;④若AP =13AB +23AC ,则△ABC 与△ABP 的面积比为2:3.其中正确的结论是.(写出所有正确结论的序号)13(2024·广西河池·高一校联考阶段练习)在△ABC 中,已知AB =5,AC =3,A =2π3,I 为△ABC 的内心,CI 的延长线交AB 于点D ,则△ABC 的外接圆的面积为,CD =.14(2024·四川遂宁·高一遂宁中学校考阶段练习)已知O 是平面上的一定点,A ,B ,C 是平面上不共线的三个点,动点P 满足OP =OB +OC 2+λAB AB cos B +ACAC cos C ,λ∈0,+∞ ,则动点P 的轨迹一定通过△ABC 的(填序号).①内心 ②垂心 ③ 重心 ④外心15(2024·高一课时练习)已知O 为△ABC 的内心,∠BAC =π3,且满足AO =xAB +yAC ,则x +y 的最大值为.16(2024·高一课时练习)已知A ,B ,C 是平面内不共线的三点,O 为ΔABC 所在平面内一点,D 是AB 的中点,动点P 满足OP =132-2λ OD +1+2λ OCλ∈R ,则点P 的轨迹一定过△ABC 的(填“内心”“外心”“垂心”或“重心”).17(2024·高一课时练习)已知点O 是ΔABC 的内心,若AO =37AB +17AC,则cos ∠BAC =.18(2024·四川成都·高一成都市锦江区嘉祥外国语高级中学校考阶段练习)已知点O 是△ABC 的外心,AB =6,BC =8,B =2π3,若BO =xBA +yBC ,则3x +4y =.19(2024·湖北武汉·高一期末)△ABC 中,AB =2,BC =26,AC =4,点O 为△ABC 的外心,若AO=mAB +nAC ,则实数m =.20(2024·湖北·高一校联考阶段练习)在△ABC 中,已知AB =2,AC =5,∠BAC =60°,P 是△ABC 的外心,则∠APB 的余弦值为.21(2024·四川达州·高一达州中学校考阶段练习)设O 为△ABC 的外心a ,b ,c 分别为角A ,B ,C 的对边,若b =3,c =5,则OA ⋅BC=.22(2024·广东汕头·高一金山中学校考期末)已知O 为△ABC 的外心,若AO ⋅BC =4BO ⋅AC ,则cos A 最小值.23(2024·重庆渝中·高一重庆巴蜀中学校考期末)某同学在查阅资料时,发现一个结论:已知O 是△ABC 内的一点,且存在x ,y ,z ∈R ,使得xOA +yOB +zOC =0,则S △AOB :S △AOC :S △COB =z :y :x .请以此结论回答:已知在△ABC 中,∠A =π4,∠B =π3,O 是△ABC 的外心,且AO =λAB +μAC λ,μ∈R ,则λ+μ=.24(2024·辽宁大连·高一育明高中校考期末)已知点P 在△ABC 所在的平面内,则下列各结论正确的有①若P 为△ABC 的垂心,AB ⋅AC =2,则AP ⋅AB =2②若△ABC 为边长为2的正三角形,则PA ⋅PB +PC的最小值为-1③若△ABC 为锐角三角形且外心为P ,AP =xAB +yAC且x +2y =1,则AB =BC④若AP =1AB cos B +12 AB +1ACcos C+12AC ,则动点P 的轨迹经过△ABC 的外心25(2024·全国·高一专题练习)(1)已知O 是平面上的一定点,A ,B ,C 是平面上不共线的三个动点,若动点P 满足OP =OA +λ(AB +AC),λ∈(0,+∞),则点P 的轨迹一定通过△ABC 的(填“内心”“外心”“重心”或“垂心” ).(2)已知O 是平面上的一定点,A ,B ,C 是平面上不共线的三个动点,若动点P 满足OP =OA +λAB |AB |+AC |AC |,λ∈(0,+∞),则点P 的轨迹一定通过△ABC 的.(填“内心”“外心”“重心”或“垂心” )四、解答题26(2024·全国·高一专题练习)已知△ABC 中,过重心G 的直线交边AB 于P ,交边AC 于Q ,设△APQ 的面积为S 1,△ABC 的面积为S 2,AP =pPB ,AQ =qQC.(1)求GA +GB +GC ;(2)求证:1p +1q =1.(3)求S1S 2的取值范围.。
1.三角形的有关公式:(1)在△ABC 中:sin(A +B )= ,sinA +B2= (2)正弦定理:(3)余弦定理: _____________________________________________________________________ (4)面积公式:S =12ah a =12ab sin C =12r (a +b +c )(其中r 为三角形内切圆半径).2.平面向量的数量积a ·b = .特别地,a 2=a·a =|a|2,|a|=a 2.当θ为锐角时,a ·b >0,且a·b >0是θ为锐角的必要非充分条件;当θ为钝角时,a·b <0,且a·b <0是θ为钝角的必要非充分条件.3.b 在a 上的射影为|b |cos_θ. 4.平面向量坐标运算设a =(x 1,y 1),b =(x 2,y 2),且a≠0,b≠0,则:(1)a·b = ;(2)|a |= ,a 2=|a |2= ; (3)a ∥b ⇔a =λb ⇔ =0;(4)a ⊥b ⇔a ·b =0⇔|a +b |=|a -b |⇔ =0.(5)若a 、b 的夹角为θ,则cos θ= = . 5.△ABC 中向量常用结论(1)PA →+PB →+PC →=0⇔P 为△ABC 的 ; (2)PA →·PB →=PB →·PC →=PC →·PA →⇔P 为△ABC 的 ;(3)向量λ⎝ ⎛⎭⎪⎪⎫AB →|AB →|+AC →|AC →|(λ≠0)所在直线过△ABC 的 ;(4)|PA →|=|PB →|=|PC →|⇔P 为△ABC 的 . 考点一 解三角形例 1-1设△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,若b =2,B =π3,C =π4,则△ABC 的面积为( )A .1+33 +1 C .1-33-1 例 1-2△ABC 中,已知3b =23a sin B ,角A ,B ,C 成等差数列,则△ABC 的形状为( ) A .直角三角形 B .等腰三角形 C .等边三角形 D .等腰直角三角形 例 1-3若△ABC 的三个内角满足sin A ∶sin B ∶sin C =5∶11∶13,则△ABC ( ) A .一定是锐角三角形 B .一定是直角三角形C .一定是钝角三角形D .可能是锐角三角形,也可能是钝角三角形变式训练【1-1】设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =2,c =23,cos A =32,且b <c ,则【1-2】设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( ) A .直角三角形 B .锐角三角形 C .钝角三角形 D .不确定 【1-3】在锐角△ABC 中,AB =3,AC =4,S △ABC =33,则BC =( ) A .5 或37例 1-4已知A 、B 、C 分别为△ABC 的三边a 、b 、c 所对的角,向量m =(sin A ,sin B ),n =(cos B ,cos A ),且m ·n = sin 2C . (1)求角C 的大小;(2)若sin A ,sin C ,sin B 成等差数列,且CA →·(AB →-AC →)=18,求边c 的长.变式训练 【1-4】 (2015·兰州诊断)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知a3cos A=csin C .(1)求A 的大小; (2)若a =6,求b +c 的取值范围.【1-5】 (2014·黄冈模拟)△ABC 的外接圆的直径为1,三个内角A 、B 、C 的对边为a 、b 、c ,m =(a ,cos B ),n =(cos A ,-b ),a ≠b ,已知m ⊥n .(1)求sin A +sin B 的取值范围;(2)若abx =a +b ,试确定实数x 的取值范围.例 1-5如图,渔船甲位于岛屿A 的南偏西60°方向的B 处,且与岛屿A 相距12海里,渔船乙以10海里/时的速度从岛屿A 出发沿正北方向航行,若渔船甲同时从B 处出发沿北偏东α的方向追赶渔船乙,刚好用2小时追上.(1)求渔船甲的速度;(2)求sin α的值.变式训练【1-6】如图,游客从某旅游景区的景点A C 处有两种路径.一种是从A 沿直线步行到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到C .现有甲、乙两位游客从A 处下山,甲沿AC 匀速步行,速度为50 m/min.在甲出发2 min 后,乙从A 乘缆车到B ,在B 处停留1 min 后,再从B 匀速步行到C .假设缆车匀速直线运行的速度为130 m/min ,山路AC 长为1 260 m ,经测量,cos A =1213,cos C =35.(1)求索道AB 的长;(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短(3)为使两位游客在C 处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内考点二 平面向量例 2-1已知正三角形ABC 的顶点A (3,1),B (33,1),顶点C 在第一象限,若点M (x ,y )在△ABC 的内部或边界,则z =OA →·OM →取最大值时,3x 2+y 2有( )A .定值52B .定值82C .最小值52D .最小值50例 2-2如图所示,在平行四边形ABCD 中,已知AB =8,AD =5,CP →=3PD →,AP →·BP →=2,则AB →·AD →的值是________.例 2-3如图在等腰直角△ABC 中,点O 是斜边BC 的中点,过点O 的直线分别交直线AB 、AC 于不同的两点M 、N ,若AB →=mAM →,AC →=nAN →,则mn 的最大值为( )B .1C .2D .3变式训练【2-1】设a =(a 1,a 2),b =(b 1,b 2),定义一种向量积a ·b =(a 1,a 2)·(b 1,b 2)=(a 1b 1,a 2b 2).已知m =⎝ ⎛⎭⎪⎫2,12,n =⎝ ⎛⎭⎪⎫π3,0,点P (x ,y )在y =sinx 的图象上运动,点Q 在y =f (x )的图象上运动,且满足OQ →=m ·OP →+n (其中O 为坐标原点),则y =f (x )的最大值为________.【2-2】在△ABC 中,∠ACB 为钝角,AC =BC =1,CO →=xCA →+yCB →且x +y =1,函数f (m )=|CA →-mCB →|的最小值为32,则|CO →|的最小值为______.易错题在△ABC 中,sin A +cos A =22,AC =2,AB =3,求tan A 的值和△ABC 的面积.练习题1.向量a =(1,-1),b =(-1,2),则(2a +b )·a =( ) A .-1 B .0 C .1 D .2 2.在△ABC 中,若sin 2A +sin 2B <sin 2C ,则△ABC 的形状是( ) A .锐角三角形 B .直角三角形 C .钝角三角形D .不能确定 3.在△ABC 中,AB =2,AC =3,AB →·BC →=1,则BC =( ) C .2 24.锐角△ABC 中,若A =2B ,则a b的取值范围是( )A .(1,2)B .(1,3)C .(2,2)D .(2,3) 5.如图,在△ABC 中,D 是边AC 上的点,且AB =AD ,2AB =3BD ,BC =2BD ,则sin C 的值为( )6.如图,从气球A 上测得正前方的河流的两岸B 、C 的俯角分别为75°、30°,此时气球的高是60 m ,则河流的宽度BC 等于( )A .240(3-1) mB .180(2-1) mC .120(3-1) mD .30(3+1) m7.记max{x ,y }=⎩⎪⎨⎪⎧x ,x ≥y ,y ,x <y ,min{x ,y }=⎩⎪⎨⎪⎧y ,x ≥y ,x ,x <y ,设a ,b 为平面向量,则( ) A .min{|a +b |,|a -b |}≤min{|a |,|b |} B .min{|a +b |,|a -b |}≥min{|a |,|b |} C .max{|a +b |2,|a -b |2}≤|a |2+|b |2D .max{|a +b |2,|a -b |2}≥|a |2+|b |28.如图为函数f (x )=3sin(ωx +φ)(ω>0)的部分图象,B ,C 分别为图象的最高点和最低点,若AB →·BC →=|AB →|2,则ω=( )9.设△ABC 的内角A 、B 、C 所对的边长分别为a 、b 、c ,且a cos B -b cos A =35c ,则tan Atan B 的值为______.10.在△ABC 中,内角A 、B 、C 所对的边分别为a ,b ,c ,已知△ABC 的面积为315,b -c =2,cos A =-14,则a 的值为________.11.如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30°的方向上,行驶600 m 后到达B 处,测得此山顶在西偏北75°的方向上,仰角为 30°,则此山的高度CD =________m.12.△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知a =3,cos A =63,B =A +π2. (1)求b 的值; (2)求△ABC 的面积.13.△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,向量m =(a ,3b )与n =(cos A ,sin B )平行. (1)求A ; (2)若a =7,b =2,求△ABC 的面积.14.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知tan ⎝⎛⎭⎪⎫π4+A =2. (1)求sin 2A sin 2A +cos 2A 的值; (2)若B =π4,a =3,求△ABC 的面积.15.已知向量m =(cos x ,-1),n =⎝ ⎛⎭⎪⎫sin x ,-32,f (x )=(m -n )·m . (1)求函数f (x )的单调递增区间; (2)锐角△ABC 中角A ,B ,C 的对边分别为a ,b ,c ,其面积S =3,f ⎝⎛⎭⎪⎫A -π8=-24,a =3,求b +c 的值.。
专题三 三角函数与平面向量的综合应用1. 三角恒等变换(1)公式:同角三角函数基本关系式、诱导公式、和差公式.(2)公式应用:注意公式的正用、逆用、变形使用的技巧,观察三角函数式中角之间的联系,式子之间以及式子和公式间的联系.(3)注意公式应用的条件、三角函数的符号、角的范围. 2. 三角函数的性质(1)研究三角函数的性质,一般要化为y =A sin(ωx +φ)的形式,其特征:一角、一次、一函数.(2)在讨论y =A sin(ωx +φ)的图象和性质时,要重视两种思想的应用:整体思想和数形结合思想,一般地,可设t =ωx +φ,y =A sin t ,通过研究这两个函数的图象、性质达到目的. 3. 解三角形解三角形问题主要有两种题型:一是与三角函数结合起来考查,通过三角变换化简,然后运用正、余弦定理求值;二是与平面向量结合(主要是数量积),判断三角形形状或结合正、余弦定理求值.试题一般为中档题,客观题、解答题均有可能出现. 4. 平面向量平面向量的线性运算,为证明两线平行提供了重要方法.平面向量数量积的运算解决了两向量的夹角、垂直等问题.特别是平面向量的坐标运算与三角函数的有机结合,体现了向量应用的广泛性.1. 已知角α终边上一点P (-4,3),则cos ⎝⎛⎭⎫π2+αsin (-π-α)cos ⎝⎛⎭⎫11π2-αsin ⎝⎛⎭⎫9π2+α的值为________.答案 -34解析cos ⎝⎛⎭⎫π2+αsin (-π-α)cos ⎝⎛⎭⎫11π2-αsin (9π2+α)=-sin α·sin α-sin α·cos α=tan α.根据三角函数的定义得tan α=y x =-34.所以cos ⎝⎛⎭⎫π2+αsin (-π-α)cos ⎝⎛⎭⎫11π2-αsin ⎝⎛⎭⎫9π2+α=-34.2. 已知f (x )=sin(x +θ)+3cos(x +θ)的一条对称轴为y 轴,且θ∈(0,π),则θ=________.答案 π6解析 f (x )=sin(x +θ)+3cos(x +θ)=2sin ⎝⎛⎭⎫x +θ+π3,由θ+π3=k π+π2 (k ∈Z )及θ∈(0,π),可得θ=π6.3. 如图所示的是函数f (x )=A sin(ωx +φ)+B (A >0,ω>0,|φ|∈⎝⎛⎭⎫0,π2)图象 的一部分,则f (x )的解析式为____________. 答案 f (x )=2sin ⎝⎛⎭⎫23x +π6+1解析 由于最大值和最小值之差等于4,故A =2,B =1. 由于2=2sin φ+1,且|φ|∈⎝⎛⎭⎫0,π2,得φ=π6. 由图象知ω(-π)+φ=2k π-π2 (k ∈Z ),得ω=-2k +23(k ∈Z ).又2πω>2π,∴0<ω<1.∴ω=23.∴函数f (x )的解析式是f (x )=2sin ⎝⎛⎭⎫23x +π6+1.4. (2012·四川改编)如图,正方形ABCD 的边长为1,延长BA 至E ,使AE =1,连接EC 、ED ,则sin ∠CED =________. 答案1010解析 方法一 应用两角差的正弦公式求解. 由题意知,在Rt △ADE 中,∠AED =45°, 在Rt △BCE 中,BE =2,BC =1, ∴CE =5,则sin ∠CEB =15,cos ∠CEB =25.而∠CED =45°-∠CEB , ∴sin ∠CED =sin(45°-∠CEB ) =22(cos ∠CEB -sin ∠CEB ) =22×⎝⎛⎭⎫25-15=1010.方法二 利用余弦定理及同角三角函数基本关系式求解. 由题意得ED =2,EC =12+22= 5.在△EDC 中,由余弦定理得cos ∠CED =CE 2+DE 2-DC 22CE ·DE =31010,又0<∠CED <π, ∴sin ∠CED =1-cos 2∠CED=1-⎝⎛⎭⎫310102=1010.5. 如图,在梯形ABCD 中,AD ∥BC ,AD ⊥AB ,AD =1,BC =2,AB=3,P 是BC 上的一个动点,当PD →·P A →取得最小值时,tan ∠DP A 的 值为________. 答案1235解析 如图,以A 为原点,建立平面直角坐标系xAy ,则A (0,0), B (3,0),C (3,2),D (0,1),设∠CPD =α,∠BP A =β, P (3,y ) (0≤y ≤2).∴PD →=(-3,1-y ),P A →=(-3,-y ), ∴PD →·P A →=y 2-y +9=⎝⎛⎭⎫y -122+354, ∴当y =12时,PD →·P A →取得最小值,此时P ⎝⎛⎭⎫3,12, 易知|DP →|=|AP →|,α=β. 在△ABP 中,tan β=312=6,tan ∠DP A =-tan(α+β)=2tan βtan 2β-1=1235.题型一 三角恒等变换例1 设π3<α<3π4,sin ⎝⎛⎭⎫α-π4=35,求sin α-cos 2α+1tan α的值. 思维启迪:可以先将所求式子化简,寻求和已知条件的联系. 解 方法一 由π3<α<3π4,得π12<α-π4<π2,又sin ⎝⎛⎭⎫α-π4=35, 所以cos ⎝⎛⎭⎫α-π4=45. 所以cos α=cos[(α-π4)+π4]=cos ⎝⎛⎭⎫α-π4cos π4-sin ⎝⎛⎭⎫α-π4sin π4=210, 所以sin α=7210.故原式=sin α+2sin 2αsin αcos α=cos α(1+2sin α)=14+5250.方法二 由sin ⎝⎛⎭⎫α-π4=35,得sin α-cos α=325, 两边平方,得1-2sin αcos α=1825,即2sin αcos α=725>0.由于π3<α<3π4,故π3<α<π2.因为(sin α+cos α)2=1+2sin αcos α=3225,故sin α+cos α=425,解得sin α=7210,cos α=210.下同方法一.探究提高 三角变换的关键是寻求已知和所求式子间的联系,要先进行化简,角的转化是三角变换的“灵魂”.要注意角的范围对式子变形的影响.已知cos ⎝⎛⎭⎫α-π6+sin α=435,则sin ⎝⎛⎭⎫α+7π6的值是( )A .-235B.235 C .-45D.45答案 C解析 cos ⎝⎛⎭⎫α-π6+sin α=435⇒32sin α+32cos α=435⇒sin ⎝⎛⎭⎫α+π6=45, 所以sin ⎝⎛⎭⎫α+7π6=-sin ⎝⎛⎭⎫α+π6=-45. 题型二 三角函数的图象与性质例2 (2011·浙江)已知函数f (x )=A sin(π3x +φ),x ∈R ,A >0,0<φ<π2,y =f (x )的部分图象如图所示,P 、Q 分别为该图象的最高点和最低点, 点P 的坐标为(1,A ).(1)求f (x )的最小正周期及φ的值;(2)若点R 的坐标为(1,0),∠PRQ =2π3,求A 的值.思维启迪:三角函数图象的确定,可以利用图象的周期性、最值、已知点的坐标列方程来解决.解 (1)由题意得T =2ππ3=6.因为P (1,A )在y =A sin(π3x +φ)的图象上,所以sin(π3+φ)=1.又因为0<φ<π2,所以φ=π6.(2)设点Q 的坐标为(x 0,-A ).由题意可知π3x 0+π6=3π2,得x 0=4,所以Q (4,-A ).连接PQ ,在△PRQ 中,∠PRQ =2π3,由余弦定理得cos ∠PRQ =RP 2+RQ 2-PQ 22RP ·RQ =A 2+9+A 2-(9+4A 2)2A ·9+A 2=-12,解得A 2=3.又A >0,所以A= 3.探究提高 本题确定φ的值时,一定要考虑φ的范围;在三角形中利用余弦定理求A 是本题的难点.已知函数f (x )=A sin ωx +B cos ωx (A ,B ,ω是常数,ω>0)的最小正周期为2,并且当x =13时,f (x )max =2.(1)求f (x )的解析式;(2)在闭区间⎣⎡⎦⎤214,234上是否存在f (x )的对称轴?如果存在,求出其对称轴方程;如果不存在,请说明理由. 解 (1)因为f (x )=A 2+B 2sin(ωx +φ),由它的最小正周期为2,知2πω=2,ω=π,又因为当x =13时,f (x )max =2,知13π+φ=2k π+π2 (k ∈Z ),φ=2k π+π6 (k ∈Z ),所以f (x )=2sin ⎝⎛⎭⎫πx +2k π+π6=2sin ⎝⎛⎭⎫πx +π6. 故f (x )的解析式为f (x )=2sin ⎝⎛⎭⎫πx +π6. (2)当垂直于x 轴的直线过正弦曲线的最高点或最低点时,该直线就是正弦曲线的对称轴,令πx +π6=k π+π2 (k ∈Z ),解得x =k +13,由214≤k +13≤234,解得5912≤k ≤6512,又k ∈Z ,知k =5,由此可知在闭区间⎣⎡⎦⎤214,234上存在f (x )的对称轴,其方程为x =163. 题型三 三角函数、平面向量、解三角形的综合应用 例3 已知向量m =⎝⎛⎭⎫3sin x 4,1,n =⎝⎛⎭⎫cos x 4,cos 2x4. (1)若m·n =1,求cos ⎝⎛⎭⎫2π3-x 的值;(2)记f (x )=m·n ,在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,且满足(2a -c )cos B =b cos C ,求函数f (A )的取值范围.思维启迪:(1)由向量数量积的运算转化成三角函数式,化简求值.(2)在△ABC 中,求出∠A 的范围,再求f (A )的取值范围. 解 (1)m·n =3sin x 4·cos x 4+cos 2x4=32sin x2+1+cosx22=sin ⎝⎛⎭⎫x 2+π6+12,∵m·n =1,∴sin ⎝⎛⎭⎫x 2+π6=12. cos ⎝⎛⎭⎫x +π3=1-2sin 2⎝⎛⎭⎫x 2+π6=12, cos ⎝⎛⎭⎫2π3-x =-cos ⎝⎛⎭⎫x +π3=-12. (2)∵(2a -c )cos B =b cos C ,由正弦定理得(2sin A -sin C )cos B =sin B cos C , ∴2sin A cos B -sin C cos B =sin B cos C . ∴2sin A cos B =sin(B +C ).∵A +B +C =π,∴sin(B +C )=sin A ≠0. ∴cos B =12,∵0<B <π,∴B =π3.∴0<A <2π3.∴π6<A 2+π6<π2,sin ⎝⎛⎭⎫A 2+π6∈⎝⎛⎭⎫12,1. 又∵f (x )=sin ⎝⎛⎭⎫x 2+π6+12. ∴f (A )=sin ⎝⎛⎭⎫A 2+π6+12.故函数f (A )的取值范围是⎝⎛⎭⎫1,32. 探究提高 (1)向量是一种解决问题的工具,是一个载体,通常是用向量的数量积运算或性质转化成三角函数问题.(2)三角形中的三角函数要结合正弦定理、余弦定理进行转化,注意角的范围对变形过程的影响.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且lg a -lg b =lg cos B -lg cos A ≠0.(1)判断△ABC 的形状;(2)设向量m =(2a ,b ),n =(a ,-3b ),且m ⊥n ,(m +n )·(n -m )=14,求a ,b ,c 的值.解 (1)因为lg a -lg b =lg cos B -lg cos A ≠0, 所以a b =cos B cos A ≠1,所以sin 2A =sin 2B 且a ≠b .因为A ,B ∈(0,π)且A ≠B ,所以2A =π-2B ,即A +B =π2且A ≠B .所以△ABC 是非等腰的直角三角形. (2)由m ⊥n ,得m·n =0.所以2a 2-3b 2=0.① 由(m +n )·(n -m )=14,得n 2-m 2=14, 所以a 2+9b 2-4a 2-b 2=14,即-3a 2+8b 2=14.② 联立①②,解得a =6,b =2.所以c =a 2+b 2=10.故所求的a ,b ,c 的值分别为6,2,10.高考中的平面向量、三角函数客观题典例1:(5分)(2012·山东)函数y =2sin ⎝⎛⎭⎫πx 6-π3(0≤x ≤9)的最大值与最小值之和为( )A .2- 3B .0C .-1D .-1- 3考点分析 本题考查三角函数的性质,考查整体思想和数形结合思想. 解题策略 根据整体思想,找出角π6x -π3的范围,再根据图象求函数的最值.解析 由题意-π3≤πx 6-π3≤7π6.画出y =2sin x 的图象如图,知, 当π6x -π3=-π3时,y min =- 3. 当π6x -π3=π2时,y max =2. 故y max +y min =2- 3. 答案 A解后反思 (1)函数y =A sin(ωx +φ)可看作由函数y =A sin t 和t =ωx +φ构成的复合函数.(2)复合函数的值域即为外层函数的值域,可以通过图象观察得到.典例2:(5分)(2012·天津)在△ABC 中,∠A =90°,AB =1,AC =2.设点P ,Q 满足AP →=λAB →,AQ →=(1-λ)AC →,λ∈R .若BQ →·CP →=-2,则λ等于( )A.13B.23C.43D .2考点分析 本题考查向量的线性运算,考查向量的数量积和运算求解能力.解题策略 根据平面向量基本定理,将题中的向量BQ →,CP →分别用向量AB →,AC →表示出来,再进行数量积计算.解析 BQ →=AQ →-AB →=(1-λ)AC →-AB →, CP →=AP →-AC →=λAB →-AC →,BQ →·CP →=(λ-1)AC →2-λAB →2=4(λ-1)-λ=3λ-4=-2,即λ=23.答案 B解后反思 (1)利用平面向量基本定理结合向量的线性运算表示向量是向量问题求解的基础;(2)本题在求解过程中利用了方程思想.方法与技巧1.研究三角函数的图象、性质一定要化成y =A sin(ωx +φ)+B 的形式,然后利用数形结合思想求解.2.三角函数与向量的综合问题,一般情况下向量知识作为一个载体,可以先通过计算转化为三角函数问题再进行求解. 失误与防范1.三角函数式的变换要熟练公式,注意角的范围.2.向量计算时要注意向量夹角的大小,不要混同于直线的夹角或三角形的内角.A 组 专项基础训练 (时间:35分钟,满分:57分)一、选择题(每小题5分,共20分)1. (2012·大纲全国)△ABC 中,AB 边的高为CD ,若CB →=a ,CA →=b ,a ·b =0,|a |=1,|b |=2,则AD →等于( )A.13a -13b B.23a -23b C.35a -35bD.45a -45b 答案 D解析 利用向量的三角形法则求解.如图,∵a ·b =0,∴a ⊥b , ∴∠ACB =90°, ∴AB =AC 2+BC 2= 5.又CD ⊥AB ,∴AC 2=AD ·AB ,∴AD =455.∴AD →=45AB →=45(a -b )=45a -45b .2. 已知向量a =(2,sin x ),b =(cos 2x,2cos x ),则函数f (x )=a·b 的最小正周期是( )A.π2B .πC .2πD .4π答案 B解析 f (x )=2cos 2x +2sin x cos x =1+cos 2x +sin 2x =1+2sin ⎝⎛⎭⎫2x +π4,T =2π2=π. 3. 已知a ,b ,c 为△ABC 的三个内角A ,B ,C 的对边,向量m =(3,-1),n =(cos A ,sin A ).若m ⊥n ,且a cos B +b cos A =c sin C ,则角A ,B 的大小分别为 ( )A.π6,π3B.2π3,π6C.π3,π6D.π3,π3答案 C解析 由m ⊥n 得m·n =0,即3cos A -sin A =0,即2cos ⎝⎛⎭⎫A +π6=0, ∵π6<A +π6<7π6,∴A +π6=π2,即A =π3. 又a cos B +b cos A =2R sin A cos B +2R sin B cos A =2R sin(A +B )=2R sin C =c =c sin C , 所以sin C =1,C =π2,所以B =π-π3-π2=π6.4. 已知向量OB →=(2,0),向量OC →=(2,2),向量CA →=(2cos α,2sin α),则向量OA →与向量OB→的夹角的取值范围是( )A.⎣⎡⎦⎤0,π4 B.⎣⎡⎦⎤π4,512π C.⎣⎡⎦⎤512π,π2D.⎣⎡⎦⎤π12,512π答案 D解析 由题意,得:OA →=OC →+CA →=(2+2cos α,2+2sin α),所以 点A 的轨迹是圆(x -2)2+(y -2)2=2,如图,当A 位于使向量OA →与圆相 切时,向量OA →与向量OB →的夹角分别达到最大、最小值,故选D. 二、填空题(每小题5分,共15分)5. (2012·北京)在△ABC 中,若a =3,b =3,∠A =π3,则∠C 的大小为________.答案 π2解析 利用正弦定理及三角形内角和性质求解. 在△ABC 中,由正弦定理可知a sin A =b sin B, 即sin B =b sin Aa=3×323=12. 又∵a >b ,∴∠B =π6.∴∠C =π-∠A -∠B =π2.6. 在直角坐标系xOy 中,已知点A (-1,2),B (2cos x ,-2cos 2x ),C (cos x,1),其中x ∈[0,π],若AB →⊥OC →,则x 的值为______.答案 π2或π3解析 因为AB →=(2cos x +1,-2cos 2x -2),OC →=(cos x,1), 所以AB →·OC →=(2cos x +1)cos x +(-2cos 2x -2)·1 =-2cos 2x +cos x =0,可得cos x =0或cos x =12,所以x 的值为π2或π3.7. 已知函数f (x )=sin x -cos x ,且f ′(x )=2f (x ),f ′(x )是f (x )的导函数,则1+sin 2xcos 2x -sin 2x=________. 答案 -195解析 由题意知,f ′(x )=cos x +sin x ,由f ′(x )=2f (x ), 得cos x +sin x =2(sin x -cos x ),得tan x =3, 所以1+sin 2xcos 2x -sin 2x =1+sin 2xcos 2x -2sin x cos x=2sin 2x +cos 2x cos 2x -2sin x cos x =2tan 2x +11-2tan x =-195.三、解答题(共22分)8. (10分)已知A ,B ,C 的坐标分别为A (3,0),B (0,3),C (cos α,sin α),α∈⎝⎛⎭⎫π2,3π2.(1)若|AC →|=|BC →|,求角α的值;(2)若AC →·BC →=-1,求2sin 2α+sin 2α1+tan α的值.解 (1)∵AC →=(cos α-3,sin α),BC →=(cos α,sin α-3), ∴AC →2=(cos α-3)2+sin 2α=10-6cos α, BC →2=cos 2α+(sin α-3)2=10-6sin α, 由|AC →|=|BC →|,可得AC →2=BC →2,即10-6cos α=10-6sin α,得sin α=cos α. 又α∈⎝⎛⎭⎫π2,3π2,∴α=5π4.(2)由AC →·BC →=-1,得(cos α-3)cos α+sin α(sin α-3)=-1, ∴sin α+cos α=23.①又2sin 2α+sin 2α1+tan α=2sin 2α+2sin αcos α1+sin αcos α=2sin αcos α.由①式两边分别平方,得1+2sin αcos α=49,∴2sin αcos α=-59.∴2sin 2α+sin 2α1+tan α=-59.9. (12分)设锐角三角形ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a =2b sin A .(1)求B 的大小;(2)求cos A +sin C 的取值范围. 解 (1)由a =2b sin A ,根据正弦定理得sin A =2sin B sin A ,所以sin B =12,由△ABC 为锐角三角形可得B =π6.(2)由(1)可知A +C =π-B =5π6,故C =5π6-A . 故cos A +sin C =cos A +sin ⎝⎛⎭⎫5π6-A =cos A +sin ⎝⎛⎭⎫π6+A =cos A +12cos A +32sin A =32cos A +32sin A =3⎝⎛⎭⎫32cos A +12sin A =3sin ⎝⎛⎭⎫A +π3, 由△ABC 为锐角三角形可得,0<C <π2,故0<5π6-A <π2,解得π3<A <5π6,又0<A <π2,所以π3<A <π2.故2π3<A +π3<5π6,所以12<sin ⎝⎛⎭⎫A +π3<32, 所以32<3sin ⎝⎛⎭⎫A +π3<32, 即cos A +sin C 的取值范围为⎝⎛⎭⎫32,32.B 组 专项能力提升 (时间:25分钟,满分:43分)一、选择题(每小题5分,共15分)1. (2012·江西)已知f (x )=sin 2⎝⎛⎭⎫x +π4,若a =f (lg 5),b =f ⎝⎛⎭⎫lg 15,则( )A .a +b =0B .a -b =0C .a +b =1D .a -b =1答案 C解析 将函数整理,利用奇函数性质求解. 由题意知f (x )=sin 2⎝⎛⎭⎫x +π4 =1-cos ⎝⎛⎭⎫2x +π22=1+sin 2x 2,令g (x )=12sin 2x ,则g (x )为奇函数,且f (x )=g (x )+12,a =f (lg 5)=g (lg 5)+12,b =f ⎝⎛⎭⎫lg 15=g ⎝⎛⎭⎫lg 15+12, 则a +b =g (lg 5)+g ⎝⎛⎭⎫lg 15+1=g (lg 5)+g (-lg 5)+1=1,故a +b =1. 2. 已知a =⎝⎛⎭⎫-12,32,b =(1,3),则|a +t b | (t ∈R )的最小值等于( )A .1 B.32C.12D.22答案 B解析 方法一 a +t b =⎝⎛⎭⎫-12+t ,32+3t ,∴|a +t b |2=⎝⎛⎭⎫-12+t 2+⎝⎛⎭⎫32+3t 2 =4t 2+2t +1=4⎝⎛⎭⎫t +142+34,∴当t =-14时,|a +t b |2取得最小值34,即|a +t b |取得最小值32. 方法二 如图所示,OA →=a ,OB →=b ,在OB 上任取一点T ,使得OT →=-t b (t <0),则|a +t b |=|TA →|,显然,当AT ⊥OB 时,取最小值. 由TA →·OB →=(a +t b )·b =a·b +t b 2=0,得t =-14,∴当t =-14时,|a +t b |取得最小值32.3. 在△ABC 中,AB →·BC →=3,△ABC 的面积S △ABC ∈⎣⎡⎦⎤32,32,则AB →与BC →夹角的取值范围是( )A.⎣⎡⎦⎤π4,π3B.⎣⎡⎦⎤π6,π4 C.⎣⎡⎦⎤π6,π3D.⎣⎡⎦⎤π3,π2答案 B解析 记AB →与BC →的夹角为θ,AB →·BC →=|AB →|·|BC →|·cos θ=3,|AB →|·|BC →|=3cos θ,S △ABC =12|AB→|·|BC →|·sin(π-θ)=12|AB →|·|BC →|sin θ=32tan θ,由题意得tan θ∈⎣⎡⎦⎤33,1,所以θ∈⎣⎡⎦⎤π6,π4,正确答案为B.二、填空题(每小题5分,共15分)4. (2011·安徽)已知函数f (x )=sin(2x +φ),其中φ为实数.f (x )≤⎪⎪⎪⎪f ⎝⎛⎭⎫π6对x ∈R 恒成立,且f ⎝⎛⎭⎫π2>f (π),则f (x )的单调递增区间是__________. 答案 ⎣⎡⎦⎤k π+π6,k π+2π3(k ∈Z ) 解析 由∀x ∈R ,有f (x )≤⎪⎪⎪⎪f ⎝⎛⎭⎫π6知,当x =π6时f (x )取最值,∴f ⎝⎛⎭⎫π6=sin ⎝⎛⎭⎫π3+φ=±1, ∴π3+φ=±π2+2k π(k ∈Z ), ∴φ=π6+2k π或φ=-5π6+2k π(k ∈Z ),又∵f ⎝⎛⎭⎫π2>f (π),∴sin(π+φ)>sin(2π+φ),∴-sin φ>sin φ,∴sin φ<0.∴φ取-5π6+2k π(k ∈Z ).不妨取φ=-5π6,则f (x )=sin ⎝⎛⎭⎫2x -5π6. 令-π2+2k π≤2x -5π6≤π2+2k π(k ∈Z ),∴π3+2k π≤2x ≤4π3+2k π(k ∈Z ), ∴π6+k π≤x ≤2π3+k π(k ∈Z ). ∴f (x )的单调递增区间为⎣⎡⎦⎤π6+k π,2π3+k π(k ∈Z ). 5.若0<α<π2,-π2<β<0,cos ⎝⎛⎭⎫π4+α=13, cos ⎝⎛⎭⎫π4-β2=33,则cos ⎝⎛⎭⎫α+β2=________. 答案593 解析 ∵0<α<π2,∴sin ⎝⎛⎭⎫π4+α=232, ∵-π2<β<0,∴sin ⎝⎛⎭⎫π4-β2=63, 则cos ⎝⎛⎭⎫α+β2=cos[⎝⎛⎭⎫π4+α-⎝⎛⎭⎫π4-β2] =13×33+232×63=593.6. (2012·山东)如图,在平面直角坐标系xOy 中,一单位圆的圆心的初始位置在(0,1),此时圆上一点P 的位置在(0,0),圆在x 轴上沿正向 滚动.当圆滚动到圆心位于(2,1)时,OP →的坐标为________. 答案 (2-sin 2,1-cos 2)解析 利用平面向量的坐标定义、解三角形知识以及数形结合思想求解.设A (2,0),B (2,1),由题意知劣弧P A 长为2,∠ABP =21=2.设P (x ,y ),则x =2-1×cos ⎝⎛⎭⎫2-π2 =2-sin 2,y =1+1×sin ⎝⎛⎭⎫2-π2=1-cos 2, ∴OP →的坐标为(2-sin 2,1-cos 2). 三、解答题7. (13分)已知f (x )=log a ⎝⎛⎭⎫sin 2x 2-sin 4x2(a >0且a ≠1),试讨论函数的奇偶性、单调性. 解 f (x )=log a ⎣⎡⎦⎤sin 2x 2⎝⎛⎭⎫1-sin 2x 2 =log a 1-cos 2x8.故定义域为cos 2x ≠1,即{x |x ≠k π,k ∈Z },关于原点对称且满足f (-x )=f (x ),所以此函数是偶函数. 令t =18(1-cos 2x ),则t 的递增区间为⎝⎛⎦⎤k π,k π+π2(k ∈Z ); 递减区间为⎣⎡⎭⎫k π-π2,k π(k ∈Z ). 所以,当a >1时,f (x )的递增区间为⎝⎛⎦⎤k π,k π+π2(k ∈Z );递减区间为⎣⎡⎭⎫k π-π2,k π(k ∈Z ). 当0<a <1时,f (x )的递增区间为⎣⎡⎭⎫k π-π2,k π(k ∈Z );递减区间为⎝⎛⎦⎤k π,k π+π2(k ∈Z ).。
平面向量种三角形“四心”与应用一.重要结论1.重心:三角形三条中线的交点,重心为O →→→→=++⇔0OC OB OA 证明:G 是ABC ∆所在平面内一点,GC GB GA ++=0⇔点G 是△ABC 的重心.证明:作图如右,图中GEGC GB =+连结BE 和CE ,则CE=GB ,BE=GC ⇔BGCE 为平行四边形⇒D 是BC 的中点,AD 为BC 边上的中线.将GE GC GB =+代入GC GB GA ++=0,得EG GA +=0⇒GD GE GA 2-=-=,故G 是△ABC 的重心.(反之亦然(证略))重心性质1.P 是△ABC 所在平面内任一点.G 是△ABC 的重心⇔)(31PC PB P A PG ++=.证明:CG PC BG PB AG P A PG +=+=+=⇒)()(3PC PB P A CG BG AG PG +++++=∵G 是△ABC 的重心∴GC GB GA ++=0⇒CG BG AG ++=0,即PC PB P A PG ++=3,由此可得)(31PC PB P A PG ++=.(反之亦然(证略))重心性质2.如图,已知点G 是ABC ∆的重心,过G 作直线与AB ,AC 两边分别交于M ,N两点,且AM xAB = ,AN y AC = ,则113x y+=.证明:点G 是ABC ∆的重心,知GA GB GC ++=O ,得()()AG AB AG AC AG -+-+-=O ,有1()3AG AB AC =+ .又M ,N ,G 三点共线(A不在直线MN 上),于是存在,λμ,使得(1)AG AM AN λμλμ=++=且,有AG xAB y AC λμ=+ =1()3AB AC +,得113x y λμλμ+=⎧⎪⎨==⎪⎩,于是得113x y +=2.外心:三角形三条中垂线的交点.外心O →→→==⇔OC OB OA 222OCOB OA ==⇔→→→→→→→→→=⋅⎪⎭⎫⎝⎛+=⋅⎪⎭⎫ ⎝⎛+=⋅⎪⎭⎫ ⎝⎛+⇔0CA OA OC BC OC OB AB OB OA 外心性质:如图,O 为ABC ∆的外心,证明:1.2||21→→→=⋅AB AB AO ;2||21→→→=⋅AC AC AO ,同理可得→→⋅BC BO 等.2.)|||(|4122→→→→+=⋅AC AB AF AO ,同理可得→→⋅BF BO 等.3.)|||(|2122→→→→-=⋅AB AC BC AO ,同理可得→→⋅AC BO 等.证明:结合三角形中线向量公式及极化恒等式即可完成证明.附:如图,直角三角形ABC 中,2||→→→=⋅AB AC AB .3.内心.三角形三条角平分线的交点.内心为O 0=⋅+⋅+⋅⇔→→→→→→OC AB OB CA OA BC 内心性质.O 是平面上的一定点,A,B,C 是平面上不共线的三个点,动点P 满足ACAC ABAB OA OP ++=λ,[)+∞∈,0λ则P 点的轨迹一定通过ABC ∆的()A.外心B.内心C.重心D.垂心解:ABAB AB 的单位向量设AB 与AC方向上的单位向量分别为21e e 和,又AP OA OP =-,则原式可化为)(21e e AP +=λ,由菱形的基本性质知AP 平分BAC ∠,那么在ABC ∆中,AP 平分BAC ∠,则知选B.4.垂心:三角形三条高线的交点.垂心为O →→→→→→⋅=⋅=⋅⇔OAOC OC OB OB OA 垂心性质.点H 是△ABC 所在平面内任一点,HA HC HC HB HB HA ⋅=⋅=⋅⇔点H 是△ABC 的垂心.由AC HB AC HB HA HC HB HC HB HB HA ⊥⇔=⋅⇔=-⋅⇔⋅=⋅00)(,同理AB HC ⊥,BC HA ⊥.故H 是△ABC 的垂心.(反之亦然(证略))二.典例分析1.若O 在△ABC 所在的平面内,a ,b ,c 是△ABC 的三边,满足以下条件0a OA b OB c OC ⋅+⋅+⋅=,则O 是△ABC 的()A .垂心B .重心C .内心D .外心解析:,OB OA AB OC OA AC =+=+ 且0a OA b OB c OC ⋅+⋅+⋅=,()0a b c OA b AB c AC ∴++⋅+⋅+⋅=,化简得bc AB AC AO a b c AB AC ⎛⎫ ⎪=+⎪++⎝⎭,设AB AC AP AB AC =+ ,又AB AB与AC AC 分别为AB 和AC 方向上的单位向量,AP ∴平分BAC ∠,又,AO AP共线,故AO 平分BAC ∠,同理可得BO 平分ABC ∠,CO 平分ACB ∠,故O 是△ABC 的内心.故选:C.2.在ABC 中,向量AB 与AC 满足0||||AB AC BC AB AC ⎛⎫+⋅= ⎪⎝⎭,且2||||BA BC BA BC ⋅=,则ABC为()A .等边三角形B .直角三角形C .锐角三角形D .等腰直角三角形解析:∵0||||AB AC BC AB AC ⎛⎫+⋅= ⎪⎝⎭,∴BAC ∠的角平分线垂直于BC ,根据等腰三角形三线合一定理得到ABC为等腰三角形,又∵2||||BA BC BA BC ⋅= ,∴=45ABC ∠︒,则ABC 为等腰直角三角形,故选:D.3.已知D 是ABC 内部(不含边界)一点,若::5:4:3ABD BCD CAD S S S =△△△,AD xAB y AC =+,则x y +=()A .23B .34C .712D .1解析:如图,连接AD 并延长交BC 与点M,设点B 到直线AD 的距离为B d ,点C 到直线AD 的距离为C d ,因为::5:4:3ABD BCD CAD S S S =△△△,所以设5,4,3ABD BCD CAD S k S k S k ===△△△,因为AM 与向量AD 共线,设AM AD xAB y AC ==+ λλλ,BM BC = μ,AM AB BM ∴=+AB BC =+ μ()(1),AB AC AB AB AC =+-=-+ μμμ所以1x y λμλμ=-⎧⎨=⎩,即11x y μμλλλ-+=+=,AM AD DM AD AD +==λ()()()B C B C AD DM d d AD d d +⨯+=⨯+111()53432221153222B B c B C C AD d AD d d d k k k k k AD d AD d ⨯+⨯+⨯+++===+⨯+⨯,所以123x y +==λ故选:A4.已知点P 是ABC 所在平面内的动点,且满足AB AC OP OA AB AC λ⎛⎫⎪=++⎪ ⎪⎝⎭(0)λ>,射线AP 与边BC 交于点D ,若23BAC π∠=,||1AD = ,则||BC 的最小值为()AB .2C.D.解析:AB AB 表示与AB 共线的单位向量,AC AC表示与AC共线的单位向量,所以点P 在BAC ∠的平分线上,即AD 为BAC ∠的角平分线,在ABD △中,3BAD π∠=,||1AD = ,利用正弦定理知:2sin sin 3sin AD BD B Bπ=⨯=同理,在ACD △中,2sin sin 3sin AD CD C Cπ=⨯=,1122sin sin 2sin sin BC BD CD B C B C ⎫=+==+⎝⎭,其中3B C π+=,分析可知当6B C π==时,BC取得最小值,即min 12sin 6BC π=⨯=5.已知点O 是锐角ABC 的外心,8AB =,12AC =,3A π=,若AO x AB y AC =+ ,则69x y +=()A .6B .5C .4D .3解析:如图所示,过点O 分别作⊥OD AB ,OE AC ⊥,垂足分别为D ,E ;则D ,E 分别为AB ,AC 的中点,∴221183222AO AB AB ⋅==⨯= ,2211127222AO AC AC ⋅==⨯= ;又3A π=,∴812cos 483AB AC π⋅=⨯⨯= ,∵AO x AB y AC =+ ,∴2AO AB xAB y AC AB ⋅=+⋅ ,2AO AC xAC AB y AC ⋅=⋅+ ,化为326448x y =+①,7248144x y =+②,联立①②解得16x =,49y =;∴695x y +=.故选:B6.已知ABC 外接圆圆心为O ,G 为ABC 所在平面内一点,且0GA GB GC ++=.若AB AC += 52AO,则sin BOG ∠=()A .12B .14C.4D解析:取BC 的中点D ,连接AD ,由0GA GB GC ++=,知G 为ABC 的重心,则G 在AD 上,所以12()33AG AB AC AD =+= ,而24()55AO AB AC AD =+=,所以A ,G ,O ,D 四点共线,所以AB AC =,即AD BC ⊥,不妨令5AD =,则4AO BO ==,1OD =.所以sin sin 4BD BOG BOD BO ∠=∠==.故选:C .7.设H 是ABC ∆的垂心,且3450HA HB HC ++=,则cos ABC ∠=______.解析:H 是ABC ∆的垂心⇔::tan :tan :tan BHC CHA AHB S S S A B C∆∆∆=⇔tan tan tan 0A HAB HBC HC∙∙∙++=由题设得tan tan tan345A B Cλ===.再由tan tan tan tan tan tan A B C A B C ++=,得λ=,tan 5B =.故cos 21ABC ∠=.故答案为:218.已知点O 为三角形ABC 所在平面内的一点,且满足1OA OB OC ===,3450OA OB OC ++=,则AB AC ⋅= ___.解析:∵1OA OB OC === ,3450OA OB OC ++= ,∴345OA OB OC +=-,两边同时平方可得,9162425OA OB ++⋅= ,∴0OA OB ⋅=,∵3455OC OA OB =--,则()()AB AC OB OA OC OA ⋅=-⋅- ()8455OB OA OA OB ⎛⎫=-⋅-- ⎪⎝⎭2284845555OB OA OB OA OB OA =-⋅-++⋅ 48400555=-++=,故答案为45.。
平面向量在解三角形中应用举例卢金宝向量是高中数学课程中很重要的数学概念,贯穿于高中数学课程体系中,同时向量法也是高中数学中比较重要的解题方法。
下面我就举几个例子说明向量在解三角形中的作用。
应用之一:向量法证明正弦定理及余弦定理1.证明正弦定理 过点A 作单位向量j AC ⊥, 由向量的加法可得A B A C C B=+则()j AB j AC CB ⋅=⋅+∴j AB j AC j CB ⋅=⋅+⋅()()0cos 900cos 90-=+- j AB A j CB C∴sin sin =c A a C ,即sin sin =a c A C同理,过点C作⊥ j BC,可得s i n s i n =b c B C从而sin sin abAB=sin cC=2.证明余弦定理在△ABC 中,BC AB AC +=,则有))((BC AB BC AB AC AC ++=⋅∴222)180cos(||||2BCB AC AB AB AC +-︒⋅+=∴B ac a c b cos 2222-+=同理,A bc c b a cos 2222-+=,C ab b a c cos 2222-+=评述:之所以将向量法推导正弦定理、余弦定理作为向量法在解三角形中作用例题,是因为解三角形最重要的工具就是正弦定理和余弦定理,作为最重要的工具,它们的推导过程是很重要的,而向量法推导正余弦定理是很好的方法,值得我们借鉴与学习。
应用之二:四心与向量的结合(1)⇔=++0OC OB OA O 是ABC ∆的重心.证法1:设),(),,(),,(),,(332211y x C y x B y x A y x O⇔=++0OC OB OA ⎩⎨⎧=-+-+-=-+-+-0)()()(0)()()(321321y y y y y y x x x x x x ⎪⎪⎩⎪⎪⎨⎧++=++=⇔33321321y y y y x x x x ⇔O 是ABC ∆的重心. 证法2:如图OC OB OA ++02=+=OD OA∴OD AO 2=∴D O A 、、三点共线,且O 分AD 为2:1 ∴O 是ABC ∆的重心(2)⇔⋅=⋅=⋅OA OC OC OB OB OA O 为ABC ∆的垂心.证明:如图所示O 是三角形ABC 的垂心,BE 垂直AC ,AD 垂直BC , D 、E 是垂足.0)(=⋅=-⇔⋅=⋅CA OB OC OA OB OC OB OB OAAC OB ⊥⇔同理BC OA ⊥,AB OC ⊥B CD⇔O 为ABC ∆的垂心(3)设a ,b ,c 是三角形的三条边长,O 是∆ABC 的内心O OC c OB b OA a ⇔=++0为ABC ∆的内心.证明:bACc AB 、分别为AC AB、方向上的单位向量,∴bACc AB +平分BAC ∠, (λ=∴AO b AC c AB +),令c b a bc++=λ ∴c b a bcAO ++=(bAC c AB +) 化简得0)(=++++AC c AB b OA c b a∴0=++OC c OB b OA a(4==⇔O 为ABC ∆的外心。
3.三角函数、解三角形、平面向量1. α终边与θ终边相同(α的终边在θ终边所在的射线上)⇔α=θ+2k π(k ∈Z ),注意:相等的角的终边一定相同,终边相同的角不一定相等.任意角的三角函数的定义:设α是任意一个角,P (x ,y )是α的终边上的任意一点(异于原点),它与原点的距离是r =x 2+y 2>0,那么sin α=y r ,cos α=x r ,tan α=yx ,(x ≠0),三角函数值只与角的大小有关,而与终边上点P 的位置无关.[问题1] 已知角α的终边经过点P (3,-4),则sin α+cos α的值为________. 答案 -152. 同角三角函数的基本关系式及诱导公式(1)平方关系:sin 2α+cos 2α=1. (2)商数关系:tan α=sin αcos α.(3)诱导公式记忆口诀:奇变偶不变、符号看象限[问题2] cos 9π4+tan ⎝⎭⎫-7π6+sin 21π的值为________. 答案22-333. 三角函数的图象与性质(1)五点法作图(一个最高点,一个最低点);(2)对称轴:y =sin x ,x =k π+π2,k ∈Z ;y =cos x ,x =k π,k ∈Z ;对称中心:y =sin x ,(k π,0),k ∈Z ;y =cos x ,⎝⎛⎭⎫k π+π2,0,k ∈Z ;y =tan x ,⎝⎛⎭⎫k π2,0,k ∈Z . (3)单调区间:y =sin x 的增区间:⎣⎡⎦⎤-π2+2k π,π2+2k π (k ∈Z ), 减区间:⎣⎡⎦⎤π2+2k π,3π2+2k π (k ∈Z ); y =cos x 的增区间:[]-π+2k π,2k π (k ∈Z ), 减区间:[2k π,π+2k π] (k ∈Z );y =tan x 的增区间:⎝⎛⎭⎫-π2+k π,π2+k π (k ∈Z ). (4)周期性与奇偶性:y =sin x 的最小正周期为2π,为奇函数;y =cos x 的最小正周期为2π,为偶函数;y =tan x 的最小正周期为π,为奇函数.易错警示:求y =A sin(ωx +φ)的单调区间时,容易出现以下错误: (1)不注意ω的符号,把单调性弄反,或把区间左右的值弄反; (2)忘掉写+2k π,或+k π等,忘掉写k ∈Z ;(3)书写单调区间时,错把弧度和角度混在一起.如[0,90°]应写为⎣⎡⎦⎤0,π2. [问题3] 函数y =sin ⎝⎛⎭⎫-2x +π3的递减区间是________. 答案 ⎣⎡⎦⎤k π-π12,k π+512π(k ∈Z ). 4. 两角和与差的正弦、余弦、正切公式及倍角公式sin(α±β)=sin αcos β±cos αsin β――→令α=βsin 2α=2sin αcos α.cos(α±β)=cos αcos β∓sin αsin β――→令α=βcos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α. tan(α±β)=tan α±tan β1∓tan αtan β.cos 2α=1+cos 2α2,sin 2α=1-cos 2α2,tan 2α=2tan α1-tan 2α.在三角的恒等变形中,注意常见的拆角、拼角技巧,如: α=(α+β)-β,2α=(α+β)+(α-β), α=12[(α+β)+(α-β)].α+π4=(α+β)-⎝⎛⎭⎫β-π4,α=⎝⎛⎭⎫α+π4-π4. [问题4] 已知α,β∈⎝⎛⎭⎫3π4,π,sin(α+β)=-35,sin ⎝⎛⎭⎫β-π4=1213,则cos ⎝⎛⎭⎫α+π4=________. 答案 -56655. 解三角形(1)正弦定理:a sin A =b sin B =csin C =2R (R 为三角形外接圆的半径).注意:①正弦定理的一些变式:(ⅰ)a ∶b ∶c =sin A ∶sin B ∶sin C ;(ⅱ)sin A =a 2R ,sin B =b 2R ,sin C =c2R;(ⅲ)a =2R sin A ,b =2R sin B ,c =2R sin C ;②已知三角形两边及一对角,求解三角形时,若运用正弦定理,则务必注意可能有两解,要结合具体情况进行取舍.在△ABC 中A >B ⇔sin A >sin B .(2)余弦定理:a 2=b 2+c 2-2bc cos A ,cos A =b 2+c 2-a 22bc等,常选用余弦定理鉴定三角形的形状.[问题5] 在△ABC 中,a =3,b =2,A =60°,则B =________. 答案 45° 6. 向量的平行与垂直设a =(x 1,y 1),b =(x 2,y 2),且b ≠0,则a ∥b ⇔b =λa ⇔x 1y 2-x 2y 1=0. a ⊥b (a ≠0)⇔a·b =0⇔x 1x 2+y 1y 2=0.0可以看成与任意向量平行,但与任意向量都不垂直,特别在书写时要注意,否则有质的不同.[问题6] 下列四个命题:①若|a |=0,则a =0;②若|a |=|b |,则a =b 或a =-b ;③若a ∥b ,则|a |=|b |;④若a =0,则-a =0.其中正确命题是________. 答案 ④ 7. 向量的数量积|a |2=a 2=a·a ,a·b =|a||b |cos θ=x 1x 2+y 1y 2, cos θ=a·b |a||b |=x 1x 2+y 1y 2x 21+y 21x 22+y 22,a 在b 上的投影=|a |cos 〈a ,b 〉=a·b |b|=x 1x 2+y 1y 2x 22+y 22. 注意:〈a ,b 〉为锐角⇔a·b >0且a 、b 不同向; 〈a ,b 〉为直角⇔a·b =0且a 、b ≠0; 〈a ,b 〉为钝角⇔a·b <0且a 、b 不反向.易错警示:投影不是“影”,投影是一个实数,可以是正数、负数或零.[问题7] 已知|a |=3,|b |=5,且a ·b =12,则向量a 在向量b 上的投影为________. 答案1258. 当a ·b =0时,不一定得到a ⊥b ,当a ⊥b 时,a ·b =0;a ·b =c ·b ,不能得到a =c ,消去律不成立;(a ·b )c 与a (b ·c )不一定相等,(a ·b )c 与c 平行,而a (b ·c )与a 平行.[问题8] 下列各命题:①若a ·b =0,则a 、b 中至少有一个为0;②若a ≠0,a ·b =a ·c ,则b =c ;③对任意向量a 、b 、c ,有(a ·b )c ≠a (b ·c );④对任一向量a ,有a 2=|a |2.其中正确命题是________. 答案 ④9. 几个向量常用结论:①P A →+PB →+PC →=0⇔P 为△ABC 的重心; ②P A →·PB →=PB →·PC →=PC →·P A →⇔P 为△ABC 的垂心; ③向量λ(AB →|AB →|+AC→|AC →|) (λ≠0)所在直线过△ABC 的内心;④|P A →|=|PB →|=|PC →|⇔P 为△ABC 的外心.易错点1 图象变换方向或变换量把握不准致误例1 要得到y =sin(-3x )的图象,需将y =22(cos 3x -sin 3x )的图象向______平移______个单位(写出其中的一种特例即可). 错解 右 π4或右 π12找准失分点 y =22(cos 3x -sin 3x )=sin ⎝⎛⎭⎫π4-3x =sin ⎣⎡⎦⎤-3⎝⎛⎭⎫x -π12. 题目要求是由y =sin ⎝⎛⎭⎫-3x +π4→y =sin(-3x ). 右移π4平移方向和平移量都错了;右移π12平移方向错了.正解 y =22(cos 3x -sin 3x )=sin ⎝⎛⎭⎫π4-3x =sin ⎣⎡⎦⎤-3⎝⎛⎭⎫x -π12, 要由y =sin ⎣⎡⎦⎤-3⎝⎛⎭⎫x -π12得到y =sin(-3x )只需对x 加上π12即可,因而是对y =22(cos 3x -sin 3x )向左平移π12个单位.答案 左π12易错点2 忽视隐含条件的挖掘致误例2 已知cos α=17,sin(α+β)=5314,0<α<π2,0<β<π2,求cos β.错解 由0<α<π2,0<β<π2,得0<α+β<π,则cos(α+β)=±1114.由cos α=17,0<α<π2,得sin α=437.故cos β=cos[(α+β)-α]=cos(α+β)cos α+sin(α+β)sin α=7198或12.找准失分点 由0<α+β<π,且sin(α+β)=5314<32,所以0<α+β<π3或2π3<α+β<π,又cos α=17<12,∴π3<α<π2,即α+β∈⎝⎛⎭⎫2π3,π,∴cos(α+β)=-1114. 正解 ∵0<α<π2且cos α=17<cos π3=12,∴π3<α<π2,又0<β<π2,∴π3<α+β<π,又sin(α+β)=5314<32,∴2π3<α+β<π. ∴cos(α+β)=-1-sin 2(α+β)=-1114,sin α=1-cos 2α=437. ∴cos β=cos[(α+β)-α]=cos(α+β)cos α+sin(α+β)sin α=12.易错点3 忽视向量共线致误例3 已知a =(2,1),b =(λ,1),λ∈R ,a 与b 的夹角为θ.若θ为锐角,则λ的取值范围是__________.错解 ∵cos θ=a·b|a|·|b |=2λ+15·λ2+1.因θ为锐角,有cos θ>0, ∴2λ+15·λ2+1>0⇒2λ+1>0,得λ>-12,λ的取值范围是⎝⎛⎭⎫-12,+∞. 找准失分点 θ为锐角,故0<cos θ<1,错解中没有排除cos θ=1即共线且同向的情况. 正解 由θ为锐角,有0<cos θ<1. 又∵cos θ=a·b|a|·|b |=2λ+15·λ2+1,∴0<2λ+15·λ2+1≠1, ∴⎩⎪⎨⎪⎧ 2λ+1>0,2λ+1≠5·λ2+1,解得⎩⎪⎨⎪⎧λ>-12,λ≠2.∴λ的取值范围是⎩⎨⎧⎭⎬⎫λ|λ>-12且λ≠2.答案 ⎩⎨⎧⎭⎬⎫λ|λ>-12且λ≠21. 已知α是第二象限角,其终边上一点P (x ,5),且cos α=24x ,则sin ⎝⎛⎭⎫α+π2等于( ) A .-104B .-64C.64D.104答案 B解析 根据题意得cos α=x5+x 2=24x , 解得x =3或x =-3或x =0. 又α是第二象限角,∴x =- 3. 即cos α=-64,sin ⎝⎛⎭⎫α+π2=cos α=-64. 2. 已知sin θ+cos θ=43 (0<θ<π4),则sin θ-cos θ的值为( )A.23B .-23C.13D .-13答案 B解析 ∵sin θ+cos θ=43,∴(sin θ+cos θ)2=1+sin 2θ=169,∴sin 2θ=79,又0<θ<π4,∴sin θ<cos θ. ∴sin θ-cos θ=-(sin θ-cos θ)2 =-1-sin 2θ=-23. 3. (2012·辽宁)已知两个非零向量a ,b 满足|a +b |=|a -b |,则下面结论正确的是( )A .a ∥bB .a ⊥bC .|a |=|b |D .a +b =a -b答案 B解析 因为|a +b |=|a -b |, 所以(a +b )2=(a -b )2, 即a ·b =0,故a ⊥b .4. 已知向量a =(1,2),b =(2,-3).若向量c 满足(c +a )∥b ,c ⊥(a +b ),则c 等于( )A.⎝⎛⎭⎫79,73 B.⎝⎛⎭⎫-73,-79 C.⎝⎛⎭⎫73,79D.⎝⎛⎭⎫-79,-73 答案 D解析 设c =(x ,y ),则c +a =(x +1,y +2), 又(c +a )∥b ,∴2(y +2)+3(x +1)=0.① 又c ⊥(a +b ),∴(x ,y )·(3,-1)=3x -y =0.②解①②得x =-79,y =-73.5. (2012·陕西)在△ABC 中,角A ,B ,C 所对边的长分别为a ,b ,c ,若a 2+b 2=2c 2,则cos C 的最小值为( )A.32B.22 C.12D .-12答案 C解析 利用余弦定理求解. ∵cos C =a 2+b 2-c 22ab =c 22ab ,又∵a 2+b 2≥2ab ,∴2ab ≤2c 2. ∴cos C ≥12.∴cos C 的最小值为12.6. 函数f (x )=A sin(2x +φ)(A ,φ∈R )的部分图象如图所示,那么f (0)=( )A .-12B .-1C .-32D .- 3答案 B解析 由题图可知,函数的最大值为2,因此A =2. 又因为函数经过点⎝⎛⎭⎫π3,2,则2sin ⎝⎛⎭⎫2×π3+φ=2, 即2×π3+φ=π2+2k π,k ∈Z ,得φ=-π6+2k π,k ∈Z .f (0)=2sin φ=2sin ⎝⎛⎭⎫-π6+2k π=-1. 7. 在△ABC 中,a =4,b =52,5cos(B +C )+3=0,则角B 的大小为________.答案 π6解析 由5cos(B +C )+3=0得cos A =35,则sin A =45,445=52sin B ,sin B =12.又a >b ,B 必为锐角,所以B =π6.8. 将函数y =sin x 的图象上所有的点向右平移π10个单位长度,再把所得各点的横坐标伸长到原来的2倍(纵坐标不变),所得图象的函数解析式是________. 答案 y =sin ⎝⎛⎭⎫12x -π10 9. 关于函数f (x )=4sin ⎝⎛⎭⎫2x +π3(x ∈R )有下列命题:①y =f (x )的图象关于直线x =-π6对称;②y =f (x )的表达式可改写为y =4cos ⎝⎛⎭⎫2x -π6;③y =f (x )的图象关于点⎝⎛⎭⎫-π6,0对称;④由f (x 1)=f (x 2)=0可得x 1-x 2必是π的整数倍.其中正确命题的序号是________. 答案 ②③解析 ①中,由2x +π3=k π+π2(k ∈Z ),得x =k π2+π12(k ∈Z ),若k π2+π12=-π6,可得k =-12Z ,故①错;②中,f (x )=4sin ⎝⎛⎭⎫2x +π3=4cos ⎝⎛⎭⎫π2-2x -π3=4cos ⎝⎛⎭⎫π6-2x =4cos ⎝⎛⎭⎫2x -π6,故正确;③中,由2x +π3=k π(k ∈Z ),得x =k π2-π6(k ∈Z ),当k =0时,可得对称中心是⎝⎛⎭⎫-π6,0,故③正确;④中,有2x 1+π3=k 1π,有2x 2+π3=k 2π(k 1,k 2∈Z ),所以x 1=k 1π2-π6,x 2=k 2π2-π6,所以x 1-x 2=(k 1-k 2)π2,由于k 1-k 2不一定是偶数,故x 1-x 2不一定是π的整数倍.10.在△ABC 中,角A ,B ,C 的对边分别是a ,b ,c ,已知sin C +cos C =1-sin C2.(1)求sin C 的值;(2)若a 2+b 2=4(a +b )-8,求边c 的值. 解 (1)由已知得sin C +sin C2=1-cos C ,即sin C 2⎝⎛⎭⎫2cos C 2+1=2sin 2C 2. 由sin C 2≠0得2cos C 2+1=2sin C2,即sin C 2-cos C 2=12.两边平方得sin C =34.(2)由sin C 2-cos C 2=12>0得π4<C 2<π2,即π2<C <π,则由sin C =34得cos C =-74.由a 2+b 2=4(a +b )-8得(a -2)2+(b -2)2=0, 则a =2,b =2.由余弦定理得c 2=a 2+b 2-2ab cos C =8+27, 所以c =7+1.。
向量与三角形内心、外心、重心、垂心知识的交汇一、四心的概念介绍(1)重心——中线的交点:重心将中线长度分成2:1; (2)垂心——高线的交点:高线与对应边垂直; (3)内心——角平分线的交点(内切圆的圆心):角平分线上的任意点到角两边的距离相等; (4)外心——中垂线的交点(外接圆的圆心):外心到三角形各顶点的距离相等。
二、四心与向量的结合(1)⇔=++0OC OB OA O 是ABC ∆的重心.证法1:设),(),,(),,(),,(332211y x C y x B y x A y x O⇔=++⎩⎨⎧=-+-+-=-+-+-0)()()(0)()()(321321y y y y y y x x x x x x ⎪⎪⎩⎪⎪⎨⎧++=++=⇔33321321y y y y x x x x ⇔O 是ABC ∆的重心.证法2:如图OC OB OA ++2=+=∴2=∴D O A 、、三点共线,且O 分AD为2:1∴O 是ABC ∆的重心(2)⇔⋅=⋅=⋅O 为ABC ∆的垂心.证明:如图所示O 是三角形ABC 的垂心,BE 垂直AC ,AD 垂直BC , D 、E 是垂足.0)(=⋅=-⇔⋅=⋅AC OB ⊥⇔同理⊥,⊥⇔O 为ABC ∆的垂心(3)设a ,b ,c 是三角形的三条边长,O 是∆ABC 的内心O c b a ⇔=++为ABC ∆的内心.证明:b ACc AB 、分别为AC AB 、方向上的单位向量, ∴bc +平分BAC ∠, (λ=∴bACc AB +),令c b a bc ++=λB CDBCD∴c b a bc AO ++=(bc +) 化简得)(=++++c b c b a∴=++c b a(4)==⇔O 为ABC ∆的外心。
典型例题分析[例题]已知点G 是ABC 内任意一点,点 M 是ABC 所在平面内一点.试根据下列条件判断G 点可能通过ABC 的_______心.(填“内心”或“外心”或“重心”或“垂心”).[提出问题](1)若存在常数λ,满足()(0)AB AC MG MA ABACλλ=++≠,则点G 可能通过ABC的__________.(2)若点D 是ABC 的底边BC 上的中点,满足GD GB GD GC =,则点G 可能通过ABC 的__________.(3)若存在常数λ,满足()(0)sin sin AB AC MG MA AB BAC Cλλ=++≠,则点G 可能通过ABC 的__________.(4)若存在常数λ,满足()(0)cos cos AB AC MG MA AB BAC Cλλ=++≠,则点G 可能通过ABC 的__________.[思路分析]以上四个问题的解决要求不同,除了熟悉三角形的“四心”的性质,同时更要熟悉平面向量的性质,对于平面向量与三角函数的结合也要相当熟悉. [解答过程](1)记12,AB AC e e ABAC==,则12()AG e e λ=+.由平面向量的平行四边形或三角形法则知,点G 是角平分线上的点,故应填内心.(2)简单的变形后发现点G 是BC 边中垂线上的点,故应填外心. (3)sin sin ,AB B AC C =∴记sin sin AB B AC C h ==,则''()()AG AB AC hλλλ=+=.由平面向量的平行四边形或三角形法则知,点G 是BC 边的中线上的点,故应填重心.(4)分析后发现,本题学生难以找到解决问题的突破口,主要在于平面向量的数量积的充分利用.由()(0)cos cos AB AC MG MA AB BAC Cλλ=++≠,得()(0)cos cos AB ACAG AB BAC C λλ=+≠,(关键点) ()(0)cos cos AB AC AG BC BC AB BAC Cλλ=+≠于是()(0)cos cos )()0AB BC AC BC AG BC AB BAC CBC B BC B BC BC λλλπλ=+≠=+-+=(cos(-cos )=.从而AG BC ⊥,点G 是高线上的点,故应填垂心.[点评]以上四个问题处理的方法各不相同,注意到平面向量及三角形的“四心”的性质在解答问题时的作用.特别注意第四问两边同乘以某个表达式的技巧.总结:(1)⇔=++0OC OB OA O 是ABC ∆的重心.(2)⇔⋅=⋅=⋅O 为ABC ∆的垂心. (3)设a ,b ,c 是三角形的三条边长,O 是∆ABC 的内心O c b a ⇔=++为ABC ∆的内心.(4)==⇔O 为ABC ∆的外心。
平面向量与三角形心的应用举例1、已知P N O ,,在ABC ∆所在平面内,且,0OA OB OC NA NB NC ==++=,且 PA PB PB PC PC PA •=•=•,则点P N O ,,依次是ABC ∆的( )A 、重心 外心 垂心B 、重心 外心 内心C 、外心 重心 垂心D 、外心 重心 内心2、O 是ABC ∆所在平面内的一点,满足OA OB OB OC OC OA ⋅=⋅=⋅u u u r u u u r u u u r u u u r u u u r u u u r ,则点O 是ABC ∆的( )A 、三个内角的角平分线的交点B 、三条边的垂直平分线的交点C 、三条中线的交点D 、三条高的交点3、在同一个平面上有ABC ∆及一点O 满足关系式:222222||||||||||||OA BC OB CA OC AB +=+=+u u u r u u u r u u u r u u u r u u u r u u u r ,则O 为ABC ∆的( )A 、外心B 、内心C 、重心D 、垂心4、已知ABC ∆,P 为三角形所在平面上的动点,且满足:0PA PC PA PB PB PC •+•+•=u u u r u u u r u u u r u u u r u u u r u u u r ,则P 点为ABC ∆的( )A 、外心B 、内心C 、重心D 、垂心5、已知P 是ABC ∆所在平面内任意一点,且3PA PB PC PG ++=u u u v u u u v u u u v u u u v ,则G 是ABC ∆的( )A 、外心B 、内心C 、重心D 、垂心6、已知ABC ∆的顶点C B A ,,及平面内一点P 满足:0PA PB PC ++=u u u r u u u r u u u r r ,则P 为ABC ∆的( )A 、外心B 、 内心C 、重心D 、垂心7、已知O 是平面上一定点,C B A ,,是平面上不共线的三个点,动点P 满足:()OP OA AB AC λ=++u u u r u u u r u u u r u u u r ,则P 的轨迹一定通过ABC ∆的( )A 、外心B 、 内心C 、重心D 、垂心8、已知ABC ∆,P 为三角形所在平面上的一点,且点P 满足:0a PA b PB c PC ⋅+⋅+•=u u u r u u u r u u u r,则P 点为ABC ∆的( )A 、外心B 、 内心C 、重心D 、垂心9、在ABC ∆中,动点P 满足:222CA CB AB CP =-•u u u r u u u r u u u r u u u r,则P 点一定通过ABC ∆的( )A 、外心B 、 内心C 、重心D 、垂心10、已知O 是平面内的一个点,C B A ,,是平面上不共线的三点,动点P 满足 (),[0,)AB AC OP OA AB AC λλ=++∈+∞u u u v u u u v u u u v u u u v u u u v u u u v ,则点P 的轨迹一定过ABC ∆的( ) A 、外心 B 、内心 C 、重心 D 、垂心11、已知C B A ,,是平面上不共线的三点,O 是ABC ∆的重心,动点P 满足)22121(31OC OB OA OP ++=,则点P 一定为ABC ∆的( ) A 、AB 边中线的中点 B 、AB 边中线的三等分点(非重心) C 、重心 D 、AB 边的中点12、非零向量AB u u u r 与AC u u u r 满足且,则ABC ∆为( )A 、三边均不相等的三角形B 、直角三角形C 、等腰非等边三角形D 、等边三角形13、ABC ∆的外接圆的圆心为O ,两边上的高的交点为H ,OH =uuu v ()m OA OB OC ++u u u v u u u v u u u v,则实数m = 。
2023届高考专题——平面向量与三角形的“四心”一、三角形的“四心”(1)重心:三角形的三条中线的交点;O 是△ABC 的重心⇔OA →+OB →+OC →=0;(2)垂心:三角形的三条高线的交点;O 是△ABC 的垂心⇔OA →·OB →=OB →·OC →=OC →·OA →;(3)外心:三角形的三条边的垂直平分线的交点(三角形外接圆的圆心).O 是△ABC 的外心⇔|OA →|=|OB →|=|OC →|(或OA →2=OB →2=OC →2);(4)内心:三角形的三个内角角平分线的交点(三角形内切圆的圆心);O 是△ABC 的内心⇔OA →·⎝ ⎛⎭⎪⎪⎫AB →|AB →|-AC →|AC →|=OB →·⎝ ⎛⎭⎪⎪⎫BA →|BA →|-BC →|BC →|=OC →·⎝ ⎛⎭⎪⎪⎫CA →|CA →|-CB →|CB →|=0. 注意:向量λ⎝ ⎛⎭⎪⎪⎫AB →|AB →|+AC →|AC →|(λ≠0)所在直线过△ABC 的内心(是∠BAC 的角平分线所在直线).类型一 平面向量与三角形的“重心”问题例1 已知A ,B ,C 是平面上不共线的三点,O 为坐标原点,动点P 满足OP →=13[(1-λ)OA →+(1-λ)OB →+(1+2λ)·OC →],λ∈R ,则点P 的轨迹一定经过( C )A .△ABC 的内心B .△ABC 的垂心 C .△ABC 的重心D .AB 边的中点 [解析] 取AB 的中点D ,则2OD →=OA →+OB →,∵OP →=13[(1-λ)OA →+(1-λ)OB →+(1+2λ)OC →], ∴OP →=13[2(1-λ)OD →+(1+2λ)OC →] =21-λ3OD →+1+2λ3OC →, 而21-λ3+1+2λ3=1,∴P ,C ,D 三点共线, ∴点P 的轨迹一定经过△ABC 的重心.类型二 平面向量与三角形的“外心”问题例2 设P 是△ABC 所在平面内一点,若AB →·(CB →+CA →)=2AB →·CP →,且AB →2=AC →2-2BC →·AP →,则点P 是△ABC 的( A )A .外心B .内心C .重心D .垂心[解析] 由AB →·(CB →+CA →)=2AB →·CP →,得AB →·(CB →+CA →-2CP →)=0,即AB →·[(CB →-CP →)+(CA →-CP →)]=0,所以AB →·(PB →+PA →)=0.设D 为AB 的中点,则AB →·2PD →=0,故AB →·PD →=0.由AB →2=AC →2-2BC →·AP →,得(AB →+AC →)·(AB →-AC →)=-2BC →·AP →,即(AB →+AC →-2AP →)·BC →=0.设E 为BC 的中点,则(2AE →-2AP →)·BC →=0,则2PE →·BC →=0,故BC →·PE →=0.所以P 为AB 与BC 的垂直平分线的交点,所以P 是△ABC 的外心.故选A .跟踪练习在△ABC 中,O 为其外心,OA ―→·OC ―→=3,且 3 OA ―→+7OB ―→+OC ―→=0,则边AC 的长是________.[解析] 设△ABC 外接圆的半径为R ,∵O 为△ABC 的外心,∴|OA ―→|=|OB ―→|=|OC ―→|=R ,又 3 OA ―→ +7 OB ―→+OC ―→=0,则 3 OA ―→+OC ―→=-7OB ―→,∴3OA ―→2+OC ―→2+2 3OA ―→·OC ―→=7OB ―→2,从而OA ―→·OC ―→=32R 2,又OA ―→·OC ―→=3,所以R 2=2,又OA ―→·OC ―→=|OA ―→||OC ―→|cos ∠AOC =R 2cos ∠AOC =3,∴cos ∠AOC =32,∴∠AOC =π6,在△AOC 中,由余弦定理得AC 2=OA 2+OC 2-2OA ·OC ·cos∠AOC =R 2+R 2-2R 2×32=(2-3)R 2=4-23.所以AC =3-1. 类型三 平面向量与三角形的“垂心”问题例3 (2022·济南质检)已知O 是平面上的一定点,A ,B ,C 是平面上不共线的三个动点,点P 满足OP ―→=OA ―→+λ⎝⎛⎭⎪⎪⎫AB―→|AB ―→|cos B +|AC ―→||AC ―→|cos C ,则动点P 的轨迹一定通过△ABC 的( )A .重心B .外心C .垂心D .内心 [解析] OP ―→-OA ―→=λ⎝ ⎛⎭⎪⎪⎫AB ―→|AB ―→|cos B +AC ―→|AC ―→|cos C ,AP ―→=λ⎝ ⎛⎭⎪⎪⎫AB ―→|AB ―→|cos B +AC ―→|AC ―→|cos C ,BC ―→·AP ―→=λ⎝ ⎛⎭⎪⎪⎫BC ―→·AB ―→|AB ―→|cos B +BC ―→·AC ―→|AC ―→|cos C =λ⎝⎛⎭⎪⎪⎫|BC ―→||AB ―→|cos π-B |AB ―→|cos B +|BC ―→||AC ―→|cos C |AC ―→|cos C =λ(-|BC ―→|+|BC ―→|)=0,所以BC ―→⊥AP ―→,动点P 在BC 的高线上,动点P 的轨迹一定通过△ABC 的垂心,故选C .类型四 平面向量与三角形的“内心”问题例4 在△ABC 中,|AB →|=3,|AC →|=2,AD →=12AB →+34AC →,则直线AD 通过△ABC 的( D ) A .重心B .外心C .垂心D .内心[解析] ∵|AB →|=3,|AC →|=2,∴12|AB →|=34|AC →|=32.设AE →=12AB →,AF →=34AC →,则|AE →|=|AF →|.∵AD →=12AB →+34AC →=AE →+AF →,∴AD 平分∠EAF , ∴AD 平分∠BAC ,∴直线AD 通过△ABC 的内心.跟踪练习(2022·海南模拟)在△ABC 中,AB =5,AC =6,cos A =15,O 是△ABC 的内心,若OP ―→=x OB ―→+y OC ―→,其中x ,y ∈[0,1],则动点P 的轨迹所覆盖图形的面积为( )A .1063B .1463C .4 3D .6 2 [解析] 根据向量加法的平行四边形法则可知,动点P 的轨迹是以OB ,OC 为邻边的平行四边形及其内部,其面积为△BOC 的面积的2倍.在△ABC 中,设内角A ,B ,C 所对的边分别为a ,b ,c ,由余弦定理a 2=b 2+c 2-2bc cos A ,得a =7.设△ABC 的内切圆的半径为r ,则12bc sin A =12(a +b +c )r ,解得r =263,所以S △BOC =12×a ×r =12×7×263=763.故动点P 的轨迹所覆盖图形的面积为2S △BOC =1463. 二、三角形形状的判断在△ABC 中,①若|AB →|=|AC →|,则△ABC 为等腰三角形;②若AB →·AC →=0,则△ABC 为直角三角形;③若AB →·AC →<0,则△ABC 为钝角三角形;④若AB →·AC →>0,BA →·BC →>0,且CA →·CB →>0,则△ABC 为锐角三角形;⑤若|AB →+AC →|=|AB →-AC →|,则△ABC 为直角三角形;⑥若(AB →+AC →)·BC →=0,则△ABC 为等腰三角形.例5 (2022·驻马店质检)若O 为△ABC 所在平面内任一点,且满足(OB →-OC →)·(OB →+OC →-2OA →)=0,则△ABC 的形状为( C )A .正三角形B .直角三角形C .等腰三角形D .等腰直角三角形 [解析] 由题意知CB →·(AB →+AC →)=0.所以(AB →-AC →)·(AB →+AC →)=0,即|AB →|=|AC →|,所以△ABC 是等腰三角形,故选C .〔变式训练4〕(1)若P 为△ABC 所在平面内一点.①若(OP →-OA →)·(AB →-AC →)=0,则动点P 的轨迹必过△ABC 的垂心.②若OP →=OA →+λ(AB →+AC →)(λ≥0),则动点P 的轨迹必过△ABC 的重心.③若CA →2=CB →2-2AB →·CP →,则动点P 的轨迹必过△ABC 的外心.(2)已知非零向量AB →与AC →满足⎝ ⎛⎭⎪⎪⎫AB →|AB →|+AC →|AC →|·BC →=0且AB →|AB →|·AC →|AC →|=12,则△ABC 为( D )A .三边均不相等的三角形B .直角三角形C .等腰非等边三角形D .等边三角形[解析] (1)①由题意知AP →·CB →=0,∴AP ⊥BC ,∴动点P 必过△ABC 的垂心;②由题意知AP →=λ(AB →+AC →)=2λAM →(M 为BC 中点)∴P 、A 、M 共线,∴P 必过△ABC 的重心;③2AB →·CP →=CB →2-CA →2=(CB →-CA →)·(CB →+CA →)=AB →·(CB →+CA →),即2AB →·CP →=AB →·(CB →+CA →),∴AB →·(2CP →-CB →-CA →)=AB →·(BP →+AP →)=0.∴以BP →,AP →为邻边的平行四边形的对角线互相垂直.∴点P 在线段AB 的中垂线上,∴P 必过△ABC 的外心.(2)因为非零向量AB →与AC →满足⎝ ⎛⎭⎪⎪⎫AB →|AB →|+AC →|AC →|·BC →=0,所以∠BAC 的平分线垂直于BC ,所以AB =AC .又cos ∠BAC =AB →|AB →|·AC →|AC →|=12,所以∠BAC =π3.所以△ABC 为等边三角形.故选D .。
专题:平面向量中三角形“四心”问题题型总结在三角形中,“四心”是一组特殊的点,它们的向量表达形式具有许多重要的性质,在近年高考试题中,总会出现一些新颖别致的问题,不仅考查了向量等知识点,而且培养了考生分析问题、解决问题的能力.现就“四心”作如下介绍:1.“四心”的概念与性质(1)重心:三角形三条中线的交点叫重心.它到三角形顶点距离与该点到对边中点距离之比为2∶1.在向量表达形式中,设点G 是△ABC 所在平面内的一点,则当点G 是△ABC 的重心时,有GA uu u r +GB uuu r +GC u u u r =0或PG u u u r =13(PA uu u r +PB uu u r +PC uuu r )(其中P 为平面内任意一点).反之,若GA uu u r +GB uuu r +GC u u u r =0,则点G 是△ABC 的重心.在向量的坐标表示中,若G ,A ,B ,C 分别是三角形的重心和三个顶点,且分别为G (x ,y ),A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),则有x =x 1+x 2+x 33,y =y 1+y 2+y 33. (2)垂心:三角形三条高线的交点叫垂心.它与顶点的连线垂直于对边.在向量表达形式中,若H 是△ABC 的垂心,则HA u u u r ·HB u u u r =HB u u u r ·HC u u u r =HC u u u r ·HA u u u r 或HA u u u r 2+BC uuu r 2=HBu u u r 2+CA uu u r 2=HC u u u r 2+AB u u u r 2.反之,若HA u u u r ·HB u u u r =HB u u u r ·HC u u u r =HC u u u r ·HA u u u r ,则H 是△ABC 的垂心.(3)内心:三角形三条内角平分线的交点叫内心.内心就是三角形内切圆的圆心,它到三角形三边的距离相等.在向量表达形式中,若点I 是△ABC 的内心,则有|BC uuu r |·IA u u r +|CA uu u r |·IB u u r +|AB u u u r |·IC u u r =0.反之,若|BC uuu r |·IA u u r +|CA uu u r |·IB u u r +|AB u u u r |·IC u u r =0,则点I 是△ABC 的内心.(4)外心:三角形三条边的中垂线的交点叫外心.外心就是三角形外接圆的圆心,它到三角形的三个顶点的距离相等.在向量表达形式中,若点O 是△ABC 的外心,则(OA uu u r +OB uuu r )·BA uu u r =(OB uuu r +OC u u u r )·CB uu u r =(OC u u u r +OA uu u r )·AC u u u r =0或|OA uu u r |=|OB uuu r |=|OC u u u r |.反之,若|OA uu u r |=|OB uuu r |=|OC u u u r |,则点O 是△ABC 的外心.2.关于“四心”的典型例题[例1] 已知O 是平面上的一定点,A ,B ,C 是平面上不共线的三个动点,若动点P 满足OP uuu r =OA uu u r +λ(AB u u u r +AC u u u r ),λ∈(0,+∞),则点P 的轨迹一定通过△ABC 的________心.[解析] 由原等式,得OP uuu r -OA uu u r =λ(AB u u u r +AC u u u r ),即AP u u u r =λ(AB u u u r +AC u u u r ),根据平行四边形法则,知AB u u u r +AC u u u r 是△ABC 的中线所对应向量的2倍,所以点P 的轨迹必过△ABC 的重心.[答案] 重[点评] 探求动点轨迹经过某点,只要确定其轨迹与三角形中的哪些特殊线段所在直线重合,这可从已知等式出发,利用向量的线性运算法则进行运算得之.[例2] 已知△ABC 内一点O 满足关系OA uu u r +2OB uuu r +3OC u u u r =0,试求S △BOC ∶S △COA ∶S △AOB之值.[解] 延长OB 至B 1,使BB 1=OB ,延长OC 至C 1,使CC 1=2OC ,连接AB 1,AC 1,B 1C 1,如图所示,则1OB u u u r =2OB uuu r ,1OC u u u u r =3OC u u u r ,由条件,得OA uu u r +1OB u u u r +1OC u u u u r =0,所以点O 是△AB 1C 1的重心.从而S △B 1OC 1=S △C 1OA =S △AOB 1=13S ,其中S 表示△AB 1C 1的面积,所以S △COA =19S ,S △AOB =16S ,S △BOC =12S △B 1OC =12×13S △B 1OC 1=118S . 于是S △BOC ∶S △COA ∶S △AOB =118∶19∶16=1∶2∶3. [点评] 本题条件OA uu u r +2OB uuu r +3OC u u u r =0与三角形的重心性质GA uu u r +GB uuu r +GC u u u r =0十分类似,因此我们通过添加辅助线,构造一个三角形,使点O 成为辅助三角形的重心,而三角形的重心与顶点的连线将三角形的面积三等分,从而可求三部分的面积比.[引申推广] 已知△ABC 内一点O 满足关系λ1OA uu u r +λ2OB uuu r +λ3OC u u u r =0,则S △BOC ∶S△COA ∶S △AOB =λ1∶λ2∶λ3.[例3] 求证:△ABC 的垂心H 、重心G 、外心O 三点共线,且|HG |=2|GO |.[证明] 对于△ABC 的重心G ,易知OG u u u r =OA uu u r +OB uuu r +OC u u u r 2, 对于△ABC 的垂心H ,设OH u u u r =m (OA uu u r +OB uuu r +OC u u u r ),则AH u u u r =AO u u u r +m (OA uu u r +OB uuu r +OC u u u r )=(m -1) OA uu u r +m OB uuu r +m OC u u u r .由AH u u u r ·BC uuu r =0,得[(m -1) OA uu u r +m OB uuu r +m OC u u u r ](OC u u u r -OB uuu r )=0,(m -1) OA uu u r ·(OC u u u r -OB uuu r )+m (OC u u u r 2-OB uuu r 2)=0,因为|OC u u u r |=|OB uuu r |,所以(m -1) OA uu u r ·(OC u u u r -OB uuu r )=0.但OA uu u r 与BC uuu r 不一定垂直,所以只有当m =1时,上式恒成立.所以OH u u u r =OA uu u r +OB uuu r +OC u u u r ,从而OG u u u r =13OH u u u r ,得垂心H 、重心G 、外心O 三点共线,且|HG u u u r |=2|GO u u u r |.[引申推广]重心G 与垂心H 的关系:HG u u u r =13(HA u u u r +HB u u u r +HC u u u r ). [点评] 这是著名的欧拉线,提示了三角形的“四心”之间的关系.我们选择恰当的基底向量来表示它们,当然最佳的向量是含顶点A 、B 、C 的向量.[例4] 设A 1,A 2,A 3,A 4,A 5 是平面内给定的5个不同点,则使1MA u u u u r +2MA u u u u r +3MA u u u u r +4MA u u u u r +5MA u u u u r =0成立的点M 的个数为( )A .0B .1C .5D .10[解析] 根据三角形中的“四心”知识,可知在△ABC 中满足MA u u u r +MB u u u r +MC u u u u r =0的点只有重心一点,利用类比的数学思想,可知满足本题条件的点也只有1个.[答案] B[点评] 本题以向量为载体,考查了类比与化归,归纳与猜想等数学思想.本题的详细解答过程如下:对于空间两点A ,B 来说,满足MA u u u r +MB u u u r =0的点M 是线段AB 的中点;对于空间三点A ,B ,C 来说,满足MA u u u r +MB u u u r +MC u u u u r =0,可认为是先取AB 的中点G ,再连接CG ,在CG 上取点M ,使MC =2MG ,则M 满足条件,且唯一;对于空间四点A ,B ,C ,D 来说,满足MA u u u r +MB u u u r +MC u u u u r +MD u u u u r =0,可先取△ABC 的重心G ,再连接GD ,在GD 上取点M ,使DM =3MG ,则M 满足条件,且唯一,不妨也称为重心G ;与此类似,对于空间五点A ,B ,C ,D ,E 来说,满足MA u u u r +MB u u u r +MC u u u u r +MD u u u u r +ME u u u r =0,可先取空间四边形ABCD 的重心G ,再连接GE ,在GE 上取点M ,使EM =4MG ,则M 满足条件,且唯一.。
平面向量与三角函数的综合应用【提纲挈领】主干知识归纳1.向量夹角与三角函数向量a 与b的夹角公式:=θcos θ向量a 与b 的夹角,],0[πθ∈.2.向量三角形法则与三角函数(1)向量加法和减法运算满足三角形法则,为向量与三角的沟通提供载体,例如余弦定理. (2)平面向量基本定理中的分解与合成相关问题. 3.向量作为语言表征三角函数问题 (1)利用数量积运算;(2)利用向量平行或垂直的充要条件翻译. 方法规律总结1.向量夹角与三角函数:利用夹角公式求夹角,要注意夹角的范围;求夹角范围还需利用鱼线函数的图像和单调性.2.向量三角形法则与三角函数:注意回路法表示向量间的关系;强调作图并注意结合正余弦定理进行相关量的计算.3.向量作为语言表征三角函数问题:此类问题一般只把向量作为包装的外衣,主要是利用向量运算和结论脱去外衣,问题的主体还是三角函数.【指点迷津】【类型一】向量夹角与三角函数【例1】[2014·江西卷] 已知单位向量e 1与e 2的夹角为α,且cos α=13,向量a =3e 1-2e 2与b =3e 1-e 2的夹角为β,则cos β=________.【解析】:cos β=a ·b |a||b|=(3e 1-2e 2)·(3e 1-e 2)|3e 1-2e 2||3e 1-e 2|=9e 21-9e 1e 2+2e 229e 21-12e 1·e 2+4e 229e 21-6e 1·e 2+e 22=9-9×13+29-12×13+4·9-6×13+1=83×22=2 23.答案:2 23【例2】(2011浙江理14)若平面向量α,β满足|α|=1,|β|≤1,且以向量α,β为邻边的平行四边形的面积为12,则α与β的夹角θ的取值范围是 .解析】:依题意有21sin =θβα,即,21sin βθ=由|β|≤1,得21sin ≥θ,又πθ≤≤0,故有656πθπ≤≤.答案:5[,]66ππ【例3】设(2011全国新课标理10)已知a ,b 均为单位向量,其夹角为θ,有下列四个命题12:||1[0,)3p a b πθ+>⇔∈ 22:||1(,]3p a b πθπ+>⇔∈ 13:||1[0,)3p a b πθ->⇔∈ 4:||1(,]3p a b πθπ->⇔∈ 其中真命题是 (A )14,p p (B ) 13,p p (C ) 23,p p (D ) 24,p p【解析】:因为],0[,1πθ∈==b a ,若1>+b a ,则121)(222>++⇔>+b ab a b a ,即21->⋅ba ,所以21cos ->⋅=⋅=b a b a b a θ,所以)32,0[πθ∈; 若1>-b a ,同理求得21<⋅b a ,所以21cos <⋅==b a θ,所以],3(ππθ∈,故14,p p 正确. 答案:A.【类型二】向量三角形法则与三角函数【例1】(2009湖南卷文)如图1,两块斜边长相等的直角三角板拼在一起,若AD x AB y AC =+,则x = , =y .图1【解析】:作DF AB ⊥,设1AB AC BC DE ==⇒==60DEB ∠=,,2BD ∴=由45DBF ∠=解得,222DF BF ==⨯=故12x =+2y =答案:1x =+y = 【例2】在ABC ∆中,若PA PB PB PC PC PA ⋅=⋅=⋅,则点P 是ABC ∆的 ( ).A .外心 B.内心 C.垂心 D .重心 【解析】:由PA PB PB PC PC PA ⋅=⋅=⋅可得0=⋅=⋅=⋅,所以点P 是三边高的交点,即P 是三角形ABC 的垂心. 答案:C【例3】[2014·山东卷] 在△ABC 中,已知AB →·AC →=tan A ,当A =π6时,△ABC 的面积为______.【解析】:因为AB ·AC =|AB →|·|AC →|cos A =tan A ,且A =π6,所以|AB →|·|AC →|=23,所以△ABC 的面积S=12|AB →|·|AC →|sin A =12×23×sin π6=16. 答案:16【类型三】向量语言包装的三角函数问题 【例1】[2014·惠州调研] 已知△ABC 中,角A 为锐角,内角A ,B ,C 所对的边分别为a ,b ,c .设向量m=(cos A ,sin A ),n =(cos A ,-sin A ),且m 与n 的夹角为π3.(1)计算m ·n 的值并求角A 的大小;(2)若a =7,c =3,求△ABC 的面积S .【解析】:(1)∵|m |=cos 2A +sin 2A =1,|n |=cos 2A +(-sin A )2=1,∴=||·cos π3=12.∵m ·n =cos 2A -sin 2A =cos 2A ,∴cos 2A =12.∵0<A <π2,∴0<2A <π,∴2A =π3,∴A =π6.(2)方法一:∵a =7,c =3,A =π6,且a 2=b 2+c 2-2bc cos A ,∴7=b 2+3-3b ,解得b =-1(舍去)或b =4,故S =12bc sin A = 3.方法二:∵a =7,c =3,A =π6,且a sin A =csin C,∴sin C =c sin A a =32 7.∵a >c ,∴0<C <π6,∴cos C =1-sin 2C =52 7.∵sin B =sin(π-A -C )=sin π6+C =12cos C +32sin C =27,∴b =a sin B sin A =4,故S =12bc sin A = 3.【例2】【2015高考陕西,理17】C ∆AB 的内角A ,B ,C 所对的边分别为a ,b ,c .向量(),3m a b=与()cos ,sin n =A B 平行.(I )求A ;(II )若a=2b =求C ∆AB 的面积.2sin sin3=B,所以C ∆AB 的面积为1bcsinA 2=.【答案】(I )3π;(II【例3】(2013江苏15)已知向量παβββαα<<<==0),sin ,(cos ),sin ,(cos b a .(1,2=-求证:⊥;(2)设)1,0(=c ,若c b a =+,求βα,的值.【解析】:(1)2=,即22)(222=+⋅-=-b b a a b a ,又因为122====,所以222=⋅-,即0=⋅,故⊥.(2)因为)1,0()sin sin ,cos (cos =++=+βαβαba ,所以⎩⎨⎧=+=+1sin sin 0cos cos βαβα,由此得, )cos(cos βπα-=,由πβ<<0,得πβπ<-<0,又πα<<0,故βπα-=,代入1sin sin =+βα得21sin sin ==βα,而βα>,所以6,65πβπα==. 答案:(2)6,65πβπα==. 【同步训练】【一级目标】基础巩固组 一、选择题1【2012陕西文7】设向量a =(1.cos θ)与b =(-1, 2cos θ)垂直,则cos2θ等于 ( )B12C .0 D.-1 【解析】:02cos 0cos 212=⇔=+-⇔⊥θθb a ,故选C.答案:C.2.若0≤⋅b a ,则a 与b 的夹角的取值范围为( ) A.)2,0[πB . ),0[π C. ],2[ππ D.],2(ππ【解析】:由0cos ≤θ及πθ≤≤0得πθπ≤≤2.答案:C3. [2014·四川] 平面向量a =(1,2),b =(4,2),c =ma +b (m ∈R),且c 与a 的夹角等于c 与b 的夹角,则m =( )A .-2B .-1C .1D .2 【解析】:c =ma +b =(m +4,2m +2),由题意知a ·c|a |·|c |=b ·c |b |·|c |,即(1,2)·(m +4,2m +2)12+22=(4,2)·(m +4,2m +2)42+22,即5m +8=8m +202,解得m =2. 答案:D4.(2011卓越联盟自主招生1)向量a,b 均为非零向量,b a b a b a ⊥-⊥-)2(,)2( ,则a 与b 的夹角为A .6π B. 3π C. 32πD.65π【解析】:由条件可得ba =,又0cos 22222=-=⋅-θa a b a a,可得21cos =θ,又因为]0[πθ∈,所以3πθ=.答案:B5.在OAB ∆中,)sin 5,cos 5(),sin 2,cos 2(ββαα==OB OA ,若5-=⋅OB OA ,则O A B∆的面积为( )A .3 B .23 C .35 D.235【解析】,21cos ,52-=∠==AOB 所以235235221=⨯⨯⨯=∆OAB S .答案:D 二、填空题6.已知a =(1,2),b =(1,-1),则2a +b 与a -b 的夹角θ等于_______ 【解析】:由题意可知2a +b =(3,3), a -b =(0,3),,所以3,232=-=+b a b a ,(2a +b ).(a -b )=9,所以223239cos =⨯=θ,即=θ4π.答案:4π7.已知ABC ∆中,,60,8,50===C b a则=⋅________.【解析】:依题意有20120cos 850-=⨯⨯=⋅CA BC .答案:-20.8.[2014·新课标全国卷Ⅰ理13] 已知A ,B ,C 为圆O 上的三点,若AO →=12(AB →+AC →),则AB →与AC →的夹角为________.【解析】:由题易知点O 为BC 的中点,即BC 为圆O 的直径,故在△ABC 中,BC 对应的角A 为直角,即AC 与AB 的夹角为90°. 答案:90°. 三、解答题9.[2014·山东卷] 已知向量a =(m ,cos 2x ),b =(sin 2x ,n ),函数f (x )=a ·b ,且y =f (x )的图像过点⎝⎛⎭⎫π12,3和点⎝⎛⎭⎫2π3,-2. (1)求m ,n 的值;(2)将y =f (x )的图像向左平移φ(0<φ<π)个单位后得到函数y =g (x )的图像,若y =g (x )图像上各最高点到点(0,3)的距离的最小值为1,求y =g (x )的单调递增区间.【解析】:(1)由题意知,f (x )==m sin 2x +n cos 2x .因为y =f (x )的图像过点⎝⎛⎭⎫π12,3和点⎝⎛⎭⎫2π3,-2,所以⎩⎪⎨⎪⎧3=m sin π6+n cos π6,-2=m sin 4π3+n cos 4π3,即⎩⎨⎧3=12m +32n ,-2=-32m -12n ,解得m =3,n =1.(2)由(1)知f (x )=3sin 2x +cos 2x =2sin ⎝⎛⎭⎫2x +π6. 由题意知,g (x )=f (x +φ)=2sin ⎝⎛⎭⎫2x +2φ+π6. 设y =g (x )的图像上符合题意的最高点为(x 0,2). 由题意知,x 20+1=1,所以x 0=0, 即到点(0,3)的距离为1的最高点为(0,2). 将其代入y =g (x )得,sin ⎝⎛⎭⎫2φ+π6=1. 因为0<φ<π,所以φ=π6. 因此,g (x )=2sin ⎝⎛⎭⎫2x +π2=2cos 2x . 由2k π-π≤2x ≤2k π,k ∈Z 得k π-π2≤x ≤k π,k ∈Z , 所以函数y =g (x )的单调递增区间为⎣⎡⎦⎤k π-π2,k π,k ∈Z. 答案:(1) m =3,n =1.(2) 函数y =g (x )的单调递增区间为⎣⎡⎦⎤k π-π2,k π,k ∈Z. 10.设向量量)sin 4,(cos ),cos 4,(sin ),sin ,cos 4(ββββαα-===.(1)求向量b+c 的模的最大值;(2)若16tan tan =βα,求证:a ‖b.【解析】(1)因为)cos 4,(sin ),sin ,cos 4(ββαα==b a ,所以b+c=)sin 4cos 4,cos (sin ββββ-+,所以βββββ2sin 1517)sin 4cos 4()cos (sin 22-=-++=+c b ,因为12sin ≤β,所以当且仅当12sin -=β时,向量b+c 的模有最大值24.(2)证明:由16tan tan =βα得16cos sin cos sin =⋅ββαα,即βαβαcos cos 16sin sin =,又 0sin sin cos cos 16sin sin cos 4cos 4=-=⋅-⋅βαβαβαβα,所以a ‖b.【二级目标】能力提升题组一、选择题1.【2012安徽理8】在平面直角坐标系中,(0,0),(6,8)O P ,将向量OP 按逆时针旋转34π后,得向量OQ ,则点Q 的坐标是( )()A (- ()B (- ()C (2)-- ()D (2)-【解析】:【方法一】设34(10cos ,10sin )cos ,sin 55OP θθθθ=⇒==,则33(10cos(),10sin())(44OQ ππθθ=++=-.【方法二】将向量(6,8)OP =按逆时针旋转32π后得(8,6OM =-,则)2)O Q O P O M =+=-. 答案:A2.[2014·天津卷] 已知菱形ABCD 的边长为2,∠BAD =120°,点E ,F 分别在边BC ,DC 上,BE =λBC ,DF =μDC .若AE →·AF →=1,CE →·CF →=-23,则λ+μ=( )A. 12B. 23C. 56D. 712[解析]: 建立如图所示的坐标系,则A (-1,0),B (0,-3),C (1,0),D (0,3).设E (x 1,y 1),F (x 2,y 2).由BE =λBC 得(x 1,y 1+3)=λ(1,3),解得⎩⎨⎧x 1=λ,y 1=3(λ-1),即点E (λ,3(λ-1)).由DF →=μDC →得(x 2,y 2-3)=μ(1,-3),解得⎩⎨⎧x 2=μ,y 2=3(1-μ),即点F (μ,3(1-μ)).又∵AE ·AF =(λ+1,3(λ-1))·(μ+1,3(1-μ))=1,①CE →·CF →=(λ-1, 3(λ-1))·(μ-1, 3(1-μ))=-23.②①-②得λ+μ=56.答案:C 二、填空题3.【2012江苏9】如图,在矩形ABCD 中,2AB BC ==,点E 为BC 的中点,点F 在边CD 上,若2AB AF =,则AE BF 的值是 .【解析】由2AB AF =,得c o s A B A F F A B ∠=由矩形的性质,得cos =AF FAB DF ∠.∵AB 2DF =,∴1DF =.∴1CF =.记AE BF 和之间的夹角为,AEB FBC θαβ∠=∠=,,则θαβ=+. 又∵2BC =,点E 为BC 的中点,∴1BE =. ∴()()=cos =cos =cos cos sin sin AE BF AE BF AEBF AE BF θαβαβαβ+-()=cos cos sin sin =1221AE BF AE BF BE BC AB CF αβαβ--=⨯-三、解答题4. [2014·湖南卷改编] 在平面直角坐标系中,O 为原点,A (-1,0),B (0,3),C (3,0),动点D 满足|CD→|=1,求|OA →+OB →+OD →|的最大值.【解析】:由|CD →|=1,得动点D 在以C 为圆心,半径为1的圆上,故可设D (3+cos α,sin α),所以OA +OB +OD =(2+cos α,3+sin α),所以|OA +OB +OD |2=(2+cos α)2+(3+sin α)2=8+4cos α+23sin α=8+27sin (α+φ),所以(|OA →+OB →+OD →|2)max =8+27,即|OA →+OB →+OD →|max =7 +1. 【答案】1+7【高考链接】1.(2014年陕西理13)设20πθ<<,向量()()sin 2cos cos 1a b θθθ==,,,,若b a //,则=θtan _______.【解析】:θ,cos θcos θsin 2θcos θ2sin ∴//).1,θ(cos ),θcos ,θ2(sin 22====即,b a b a解得.21tan θ= 【答案】21.2. 【2015广东,理16】在平面直角坐标系xoy 中,已知向量2m ⎛= ⎝⎭,()sin ,cos n x x =,0,2x π⎛⎫∈ ⎪⎝⎭.(1)若mn ⊥,求tan x 的值;(2)若m 与n 的夹角为3π,求x 的值.【答案】(1)1;(2)512xπ=.3.(2015年重庆理6)若非零向量a ,b 满足|a |=3|b |,且(a -b )⊥(3a +2b ),则a 与b 的夹角为( ) A 、4π B 、2πC 、34π D 、π【答案】A。
专题三三角函数、解三角形与平面向量第1讲三角函数的图象与性质题型一三角函数的图象1.(1)要得到函数f (x )=cos ⎝⎛⎭⎫2x +π3的图象,只需将函数g (x )=sin ⎝⎛⎭⎫2x +π3的图象( C ) A .向左平移π2个单位长度B .向右平移π2个单位长度C .向左平移π4个单位长度D .向右平移π4个单位长度(2) (2017·山西朔州模拟)函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫A >0,ω>0,|φ|<π2的部分图象如图所示,则函数f (x )在区间⎣⎡⎦⎤0,π2上的最小值为__-1__.突破点拨(1)先利用诱导公式将两函数化为同名三角函数,再利用平移法则求解. (2)先求函数f (x )的解析式,再利用解析式求最值. 解析 (1)因为f (x )=cos ⎝⎛⎭⎫2x +π2-π6 =sin ⎝⎛⎭⎫π6-2x =sin ⎝⎛⎭⎫2x +5π6=sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π4+π3, 所以要得到函数f (x )=cos ⎝⎛⎭⎫2x +π3的图象,只需将函数g (x )=sin ⎝⎛⎭⎫2x +π3的图象向左平移π4个单位长度.故选C. (2)由函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫A >0,ω>0,|φ|<π2的部分图象,可得A =2,14·2πω=5π6-7π12,解得ω=2.再根据图象经过点⎝⎛⎭⎫7π12,0, 可得2·7π12+φ=π+2k π,k ∈Z .因为|φ|<π2,所以φ=-π6,故函数f (x )=2sin ⎝⎛⎭⎫2x -π6. 因为x ∈⎣⎡⎦⎤0,π2,所以2x -π6∈⎣⎡⎦⎤-π6,5π6, 故函数f (x )的最小值为2×⎝⎛⎭⎫-12=-1. 2. 某同学用“五点法”画函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫ω>0,|φ|<π2在某一个周期内的图象时,列表并填入了部分数据,如下表:(1)(2)将y =f (x )图象上所有点向左平行移动θ(θ>0)个单位长度,得到y =g (x )的图象.若y=g (x )图象的一个对称中心为⎝⎛⎭⎫5π12,0,求θ的最小值.突破点拨(1)由表中数据先写出A ,ω,φ的值,再由ωx +φ=0,π,2π,求出其余值. (2)写出函数y =g (x )的解析式,由y =sin x 图象的对称中心为(k π,0),k ∈Z ,利用整体思想建立关于θ的方程,根据k ∈Z 及θ>0,求出θ的最小值.解析 (1)根据表中已知数据,解得A =5,ω=2,φ=-π6.数据补全如下表.且函数表达式为f (x )=5sin ⎝⎛⎭⎫2x -π6. (2)由(1)知f (x )=5sin ⎝⎛⎭⎫2x -π6, 得g (x )=5sin ⎝⎛⎭⎫2x +2θ-π6. 因为y =sin x 的对称中心为(k π,0),k ∈Z . 令2x +2θ-π6=k π,解得x =k π2+π12-θ,k ∈Z .由于函数y =g (x )的图象关于点⎝⎛⎭⎫5π12,0中心对称, 令k π2+π12-θ=5π12,解得θ=k π2-π3,k ∈Z . 由θ>0可知,当k =1时,θ取得最小值π6.(1)三角函数图象平移问题需注意三点:一是函数名称是否一致;二是弄清由谁平移得到谁;三是左右的平移是自变量本身的变化.(2)对于由三角函数的图象确定函数解析式的问题,一般由函数的最值可确定A ,由函数的周期可确定ω,由对称轴或对称中心和φ的范围确定φ.题型二 三角函数的性质1. 已知函数f (x )=sin ⎝⎛⎭⎫π2-x sin x -3cos 2x . (1)求f (x )的最小正周期和最大值; (2)讨论f (x )在⎣⎡⎦⎤π6,2π3上的单调性. 突破点拨(1)先将已知解析式化简,然后求解.(2)根据y =A sin(ωx +φ)+k (A >0,ω>0)与y =sin x 的关系求解. 解析 (1)f (x )=sin ⎝⎛⎭⎫π2-x sin x -3cos 2x =cos x sin x -32(1+cos 2x ) =12sin 2x -32cos 2x -32=sin ⎝⎛⎭⎫2x -π3-32. 因此f (x )的最小正周期为π,最大值为2-32.(2)当x ∈⎣⎡⎦⎤π6,2π3时,0≤2x -π3≤π,从而当0≤2x -π3≤π2,即π6≤x ≤5π12时,f (x )单调递增; 当π2<2x -π3≤π,即5π12<x ≤2π3时,f (x )单调递减.综上可知,f (x )在⎣⎡⎦⎤π6,5π12上单调递增;在⎝⎛⎦⎤5π12,2π3上单调递减. 2. 设函数f (x )=sin ωx +sin ⎝⎛⎭⎫ωx -π2,x ∈R . (1)若ω=12,求f (x )的最大值及相应x 的集合;(2)若x =π8是f (x )的一个零点,且0<ω<10,求ω的值和f (x )的最小正周期.突破点拨(1)先用公式化简,再利用三角函数的性质求解. (2)将x =π8代入,求ω,则周期可求.解析 由已知得f (x )=sin ωx -cos ωx =2sin ⎝⎛⎭⎫ωx -π4. (1)若ω=12,则f (x )=2sin ⎝⎛⎭⎫12x -π4. 又x ∈R ,则2sin ⎝⎛⎭⎫12x -π4≤2,所以f (x )max =2,此时12x -π4=2k π+π2,k ∈Z ,即f (x )取最大值时,x 的取值集合为⎩⎨⎧⎭⎬⎫x ⎪⎪x =4k π+3π2,k ∈Z .(2)∵x =π8是函数f (x )的一个零点,∴2sin ⎝⎛⎭⎫π8ω-π4=0,∴π8ω-π4=k π,k ∈Z . 又0<ω<10,∴ω=2,∴f (x )=2sin ⎝⎛⎭⎫2x -π4,其最小正周期为π.求解函数y =A sin(ωx +φ)的性质的三种意识(1)转化意识:利用三角恒等变换将所求函数转化为f (x )=A sin(ωx +φ)的形式. (2)整体意识:类比y =sin x 的性质,只需将y =A sin(ωx +φ)中的“ωx +φ”看成y =sin x 中的“x ”,采用整体代入的方法求解.(3)讨论意识:当A 为参数时,求最值应分情况讨论.三角函数的综合应用【预测】 已知函数f (x )=sin ⎝⎛⎭⎫2ωx -π6-4sin 2ωx +2(ω>0),其图象与x 轴相邻两个交点的距离为π2.(1)求函数f (x )的解析式;(2)若将f (x )的图象向左平移m (m >0)个单位长度,得到的函数g (x )的图象恰好经过点⎝⎛⎭⎫-π3,0,求当m 取得最小值时,g (x )在⎣⎡⎦⎤-π6,7π12上的单调递增区间. 思维导航(1)解题导引:①先化简函数f (x )的解析式,再利用图象与x 轴相邻两个交点的距离是半个周期求解析式;②先求函数g (x )的解析式,再求在⎣⎡⎦⎤-π6,7π12上的单调递增区间. (2)方法指导:三角函数的综合应用主要是将三角函数的图象和性质与三角变换相结合,通过变换将函数化为y =A sin(ωx +φ)的形式再研究其性质,解题时注意观察角、名、结构等特征,注意整体思想的应用.规范解答(1)函数f (x )=sin ⎝⎛⎭⎫2ωx -π6-4sin 2ωx +2 =32sin 2ωx -12cos 2ωx -4×1-cos 2ωx 2+2 =32sin 2ωx +32cos 2ωx =3sin ⎝⎛⎭⎫2ωx +π3(ω>0). 根据函数f (x )的图象与x 轴相邻两个交点的距离为π2,可得函数f (x )的最小正周期为2×π2=2π2ω,得ω=1. 故函数f (x )=3sin ⎝⎛⎭⎫2x +π3. (2)将f (x )的图象向左平移m (m >0)个单位长度得到函数 g (x )=3sin ⎣⎡⎦⎤2(x +m )+π3=3sin ⎝⎛⎭⎫2x +2m +π3的图象.根据g (x )的图象恰好经过点⎝⎛⎭⎫-π3,0, 可得3sin ⎝⎛⎭⎫-2π3+2m +π3=0, 即sin ⎝⎛⎭⎫2m -π3=0, 所以2m -π3=k π(k ∈Z ),m =k π2+π6(k ∈Z ).因为m >0,所以当k =0时,m 取得最小值,且最小值为π6.此时,g (x )=3sin ⎝⎛⎭⎫2x +2π3. 令2k π-π2≤2x +2π3≤2k π+π2,k ∈Z ,得k π-7π12≤x ≤k π-π12,k ∈Z ,故函数g (x )的单调递增区间为⎣⎡⎦⎤k π-7π12,k π-π12,k ∈Z . 结合x ∈⎣⎡⎦⎤-π6,7π12,可得g (x )在⎣⎡⎦⎤-π6,7π12上的单调递增区间为⎣⎡⎦⎤-π6,-π12和⎣⎡⎦⎤5π12,7π12. 【变式考法】 已知向量a =(m ,cos 2x ),b =(sin 2x ,n ),函数f (x )=a·b ,且y =f (x )的图象过点⎝⎛⎭⎫π12,3和点⎝⎛⎭⎫2π3,-2. (1)求m ,n 的值;(2)将y =f (x )的图象向左平移φ (0<φ<π)个单位后得到函数y =g (x )的图象,若y =g (x )图象上各最高点到点(0,3)的距离的最小值为1,求y =g (x )的单调递增区间.解析 (1)由题意,知 f (x )=a·b =m sin 2x +n cos 2x .因为y =f (x )的图象经过点⎝⎛⎭⎫π12,3和⎝⎛⎭⎫2π3,-2, 所以⎩⎨⎧3=m sin π6+n cos π6,-2=m sin 4π3+n cos 4π3,即⎩⎨⎧3=12m +32n ,-2=-32m -12n ,解得m =3,n =1.(2)由(1)知f (x )=3sin 2x +cos 2x =2sin ⎝⎛⎭⎫2x +π6. 由题意知g (x )=f (x +φ)=2sin ⎝⎛⎭⎫2x +2φ+π6. 设y =g (x )的图象上符合题意的最高点为(x 0,2),由题意知x 20+1=1,所以x 0=0,即y =g (x )的图象上到点(0,3)的距离为1的最高点为(0,2). 将其代入y =g (x )并整理得sin ⎝⎛⎭⎫2φ+π6=1, 因为0<φ<π,所以φ=π6.因此g (x )=2sin ⎝⎛⎭⎫2x +π2=2cos 2x . 由2k π-π≤2x ≤2k π,k ∈Z ,得k π-π2≤x ≤k π,k ∈Z ,所以函数y =g (x )的单调递增区间为⎣⎡⎦⎤k π-π2,k π,k ∈Z .1.(教材回归)下列函数中,最小正周期为π且图象关于原点对称的函数是( A ) A .y =cos ⎝⎛⎭⎫2x +π2 B .y =sin ⎝⎛⎭⎫2x +π2 C .y =sin 2x +cos 2xD .y =sin x +cos x解析 y =cos ⎝⎛⎭⎫2x +π2=-sin 2x ,符合题意,故选A. 2.(2017·广西南宁质检)将函数y =cos ⎝⎛⎭⎫2x +π3的图象向左平移π6个单位长度后,得到f (x )的图象,则( B )A .f (x )=-sin 2xB .f (x )的图象关于直线x =-π3对称C .f ⎝⎛⎭⎫7π3=12D .f (x )的图象关于点⎝⎛⎭⎫π12,0对称 解析 将函数y =cos ⎝⎛⎭⎫2x +π3的图象向左平移π6个单位长度,得到的图象对应的解析式为f (x )=cos ⎣⎡⎦⎤2⎝⎛⎭⎫x +π6+π3=cos ⎝⎛⎭⎫2x +2π3.函数f (x )的图象的对称轴满足2x +2π3=k π(k ∈Z ),即对称轴方程为x =k π2-π3(k ∈Z ),所以f (x )的图象关于直线x =-π3对称;令2x +2π3=k π+π2,得x =k π2-π12(k ∈Z ),即f (x )的图象关于点⎝⎛⎭⎫-π12,0对称;f ⎝⎛⎭⎫7π3=-12.故选B. 3.(2017·湖北襄阳模拟)同时具有性质“①最小正周期是4π;②直线x =π3是图象的一条对称轴;③在区间⎝⎛⎭⎫2π3,5π6上是减函数”的一个函数是( D )A .y =sin ⎝⎛⎭⎫2x -π6B .y =cos ⎝⎛⎭⎫2x -π6 C .y =cos ⎝⎛⎭⎫x 2+π3D .y =sin ⎝⎛⎭⎫x 2+π3解析 对于A 项,B 项,∵T =2π2=π,故A 项,B 项不正确.对于C 项,若直线x =π3为其图象的一条对称轴,则π3×12+π3=k π,k ∈Z ,得π2=k π,k ∈Z ,k 不存在,不满足题意,故C 项不正确.对于D 项,因为T =2π12=4π,且由x 2+π3=k π+π2,k ∈Z ,解得图象的对称轴方程为x =2k π+π3,k ∈Z ;当k =0时,x =π3为图象的一条对称轴.由2k π+π2≤x 2+π3≤2k π+3π2,k ∈Z ,解得单调递减区间为⎣⎡⎦⎤4k π+π3,4k π+7π3,k ∈Z ,所以函数在区间⎝⎛⎭⎫2π3,5π6上是减函数,故D 项正确.故选D.4.(2017·山西晋中考前测试)已知函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫A >0,ω>0,|φ|<π2的部分图象如图所示,将函数y =f (x )的图象向左平移4π3个单位长度,得到函数y =g (x )的图象,则函数y =g (x )在区间⎣⎡⎦⎤π2,5π2上的最大值为( C )A .3B .332C.322D .22解析 由图象可知函数y =f (x )的周期为2⎝⎛⎭⎫7π3-π3=4π, ∴ω=12.又点⎝⎛⎭⎫π3,0,⎝⎛⎭⎫0,-32在函数y =f (x )的图象上, ∴⎩⎨⎧A sin ⎝⎛⎭⎫π6+φ=0,A sin φ=-32,且|φ|<π2.∴φ=-π6,A =3,则f (x )=3sin ⎝⎛⎭⎫12x -π6, ∴g (x )=3sin ⎣⎡⎦⎤12⎝⎛⎭⎫x +4π3-π6=3cos 12x . 由x ∈⎣⎡⎦⎤π2,5π2,可得12x ∈⎣⎡⎦⎤π4,5π4,则3cos 12x ∈⎣⎡⎦⎤-3,322,即g (x )的最大值为322.5.(书中淘金)某城市一年中12个月的平均气温与月份的关系可近似地用三角函数y =a +A cos ⎣⎡⎦⎤π6(x -6)(x =1,2,3,…,12)来表示,已知6月份的月平均气温最高,为28 ℃,12月份的平均气温最低,为18 ℃,则10月份的平均气温为__20.5__℃.解析 依题意知,a =28+182=23,A =28-182=5,所以y =23+5cos ⎣⎡⎦⎤π6(x -6),当x =10时,y =23+5cos ⎝⎛⎭⎫π6×4=20.5. 答案 20.56.(高考改编)把函数y =sin 2x 的图象沿x 轴向左平移π6个单位,纵坐标伸长到原来的2倍(横坐标不变)后得到函数y =f (x )的图象,对于函数y =f (x )有以下四个判断:①该函数的解析式为y =2sin ⎝⎛⎭⎫2x +π6;②该函数图象关于点⎝⎛⎭⎫π3,0对称;③该函数在⎣⎡⎦⎤0,π6上是增函数;④若函数y =f (x )+a 在⎣⎡⎦⎤0,π2上的最小值为3,则a =2 3. 其中,正确判断的序号是__②④__.解析 将函数y =sin 2x 的图象向左平移π6个单位得到y =sin 2⎝⎛⎭⎫x +π6=sin ⎝⎛⎭⎫2x +π3的图象,然后纵坐标伸长到原来的2倍得到y =2sin ⎝⎛⎭⎫2x +π3的图象,所以①不正确.f ⎝⎛⎭⎫π3=2sin ⎝⎛⎭⎫2×π3+π3=2sin π=0,所以函数图象关于点⎝⎛⎭⎫π3,0对称,所以②正确.由-π2+2k π≤2x +π3≤π2+2k π,k ∈Z ,得-5π12+k π≤x ≤π12+k π,k ∈Z ,∴函数的单调增区间为⎣⎡⎦⎤-5π12+k π,π12+k π,k ∈Z ,而⎣⎡⎦⎤0,π6⃘⎣⎡⎦⎤-512π+k π,π12+k π(k ∈Z ),所以③不正确.y =f (x )+a =2sin ⎝⎛⎭⎫2x +π3+a ,当0≤x ≤π2时,π3≤2x +π3≤4π3,所以当2x +π3=4π3,即x =π2时,函数取得最小值,y min =2sin 4π3+a =-3+a ,令-3+a =3,得a =23,所以④正确.所以正确的判断为②④.7.(考点聚焦)设函数f (x )=32-3sin 2ωx -sin ωx ·cos ωx (ω>0),且y =f (x )的图象的一个对称中心到最近的对称轴的距离为π4.(1)求ω的值;(2)求f (x )在区间⎣⎡⎦⎤π,3π2上的最大值和最小值. 解析 (1)f (x )=32-3sin 2ωx -sin ωx cos ωx =32-3·1-cos 2ωx 2-12sin 2ωx =32cos 2ωx -12sin 2ωx =-sin ⎝⎛⎭⎫2ωx -π3=sin ⎝⎛⎭⎫2ωx +2π3. 因为图象的一个对称中心到最近的对称轴的距离为π4,又ω>0,所以2π2ω=4×π4.因此ω=1.(2)由(1)知f (x )=-sin ⎝⎛⎭⎫2x -π3. 当π≤x ≤3π2时,5π3≤2x -π3≤8π3,所以-32≤sin ⎝⎛⎭⎫2x -π3≤1. 因此-1≤f (x )≤32.故f (x )在区间⎣⎡⎦⎤π,3π2上的最大值和最小值分别为32,-1. 8.(2018·山东青岛调考)已知函数f (x )=2sin x sin ⎝⎛⎭⎫x +π6. (1)求函数f (x )的最小正周期和单调递增区间; (2)当x ∈⎣⎡⎦⎤0,π2时,求函数f (x )的值域. 解析 (1)f (x )=2sin x ⎝⎛⎭⎫32sin x +12cos x=3×1-cos 2x 2+12sin 2x=sin ⎝⎛⎭⎫2x -π3+32. 函数f (x )的最小正周期为T =π. 由-π2+2k π≤2x -π3≤π2+2k π,k ∈Z ,解得-π12+k π≤x ≤5π12+k π,k ∈Z ,所以函数f (x )的单调递增区间是⎣⎡⎦⎤-π12+k π,5π12+k π,k ∈Z . (2)当x ∈⎣⎡⎦⎤0,π2时,2x -π3∈⎣⎡⎦⎤-π3,2π3, sin ⎝⎛⎭⎫2x -π3∈⎣⎡⎦⎤-32,1, 可得函数f (x )的值域为⎣⎡⎦⎤0,1+32. 9.(母题营养)已知函数f (x )=sin x cos x +12cos 2x .(1)若tan θ=2,求f (θ)的值;(2)若函数y =g (x )的图象是由函数y =f (x )的图象上所有的点向右平移π4个单位长度而得到,且g (x )在区间(0,m )内是单调函数,求实数m 的最大值.解析 (1)因为tan θ=2,所以sin θ=2cos θ. 代入sin 2θ+cos 2θ=1,得cos 2θ=15.所以f (θ)=sin θcos θ+12cos 2θ=2cos 2θ+12(2cos 2θ-1)=3cos 2θ-12=110.(2)由已知得f (x )=12sin 2x +12cos 2x =22sin ⎝⎛⎭⎫2x +π4. 依题意,得g (x )=22sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π4+π4, 即g (x )=22sin ⎝⎛⎭⎫2x -π4. 因为x ∈(0,m ),所以2x -π4∈⎝⎛⎭⎫-π4,2m -π4. 又因为g (x )在区间(0,m )内是单调函数,所以-π4<2m -π4≤π2,即0<m ≤3π8,故实数m的最大值为3π8.10.(母题营养)设函数f (x )=sin 2ωx +23sin ωx ·cos ωx -cos 2ωx +λ(x ∈R )的图象关于直线x =π对称,其中ω,λ为常数,且ω∈⎝⎛⎭⎫12,1.(1)求函数f (x )的最小正周期;(2)若y =f (x )的图象经过点⎝⎛⎭⎫π4,0,求函数f (x )在x ∈⎣⎡⎦⎤0,π2上的值域. 解析 (1)因为f (x )=sin 2ωx +23sin ωx ·cos ωx -cos 2ωx +λ=-cos 2ωx +3sin 2ωx +λ=2sin ⎝⎛⎭⎫2ωx -π6+λ,由直线x =π是y =f (x )图象的一条对称轴,可得sin ⎝⎛⎭⎫2ωπ-π6=±1,所以2ωπ-π6=k π+π2(k ∈Z ),即ω=k 2+13(k ∈Z ).又ω∈⎝⎛⎭⎫12,1,k ∈Z ,所以k =1,从而ω=56. 所以f (x )的最小正周期是6π5.(2)由y =f (x )的图象过点⎝⎛⎭⎫π4,0,得f ⎝⎛⎭⎫π4=0, 即λ=-2sin ⎝⎛⎭⎫56×π2-π6=-2sin π4=-2, 即λ=- 2.故f (x )=2sin ⎝⎛⎭⎫53x -π6-2, ∵x ∈⎣⎡⎦⎤0,π2,∴53x -π6∈⎣⎡⎦⎤-π6,2π3, ∴函数f (x )的值域为[-1-2,2-2].1.函数f (x )=cos(w x +φ)的部分图象如图所示,则f (x )的单调递减区间为( D )A.⎝⎛⎭⎫k π-14,k π+34,k ∈Z B.⎝⎛⎭⎫2k π-14,2k π+34,k ∈Z C.⎝⎛⎭⎫k -14,k +34,k ∈Z D.⎝⎛⎭⎫2k -14,2k +34,k ∈Z 解析 由题图可知T 2=54-14=1,所以T =2.结合题图可知,在⎣⎡⎦⎤-34,54(f (x )的一个周期)内,函数f (x )的单调递减区间为⎝⎛⎭⎫-14,34.由f (x )是以2为周期的周期函数可知,f (x )的单调递减区间为⎝⎛⎭⎫2k -14,2k +34,k ∈Z ,故选D. 2.下列函数中,最小正周期为π且图象关于原点对称的函数是( A ) A .y =cos ⎝⎛⎭⎫2x +π2 B .y =sin ⎝⎛⎭⎫2x +π2 C .y =sin 2x +cos 2xD .y =sin x +cos x解析 y =cos ⎝⎛⎭⎫2x +π2=-sin 2x 是奇函数,图象关于原点对称,且最小正周期为π,A 项正确.y =sin ⎝⎛⎭⎫2x +π2=cos 2x ,是偶函数,B 项错误.y =sin 2x +cos 2x =2sin ⎝⎛⎭⎫2x +π4,非奇非偶,C 项错误.y =sin x +cos x =2sin ⎝⎛⎭⎫x +π4,非奇非偶,D 项错误.故选A. 3.为了得到函数y =sin(2x +1)的图象,只需把函数y =sin 2x 的图象上所有的点( A ) A .向左平行移动12个单位长度B .向右平行移动12个单位长度C .向左平行移动1个单位长度D .向右平行移动1个单位长度 解析 ∵y =sin(2x +1)=sin 2⎝⎛⎭⎫x +12, ∴只需把y =sin 2x 图象上所有的点向左平移12个单位长度即得到y =sin(2x +1)的图象.故选A.4.将函数y =sin(2x +φ)的图象沿x 轴向左平移π8个单位后,得到一个偶函数的图象,则φ的一个可能取值为( C )A.3π4 B .π2C.π4D .-π4解析 y =sin(2x +φ)――→左移π8sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π8+φ=sin ⎝⎛⎭⎫2x +π4+φ是偶函数,即π4+φ=k π+π2(k ∈Z )⇒φ=k π+π4(k ∈Z ),当k =0时,φ=π4,故选C.5.如图,某港口一天6时到18时的水深变化曲线近似满足函数y =3sin ⎝⎛⎭⎫π6x +φ+k ,据此函数可知,这段时间水深的最大值为( C )A .5 mB .6 mC .8 mD .10 m解析 由题意可知,当sin ⎝⎛⎭⎫π6x +φ=-1时,函数取得最小值2,即3×(-1)+k =2,∴k =5.因此,函数的最大值是8,故水深的最大值为8 m.6.将函数y =3cos x +sin x (x ∈R )的图象向左平移m (m >0)个单位长度后,所得到的图象关于y 轴对称,则m 的最小值是( B )A.π12 B .π6C.π3D .5π6解析 y =3cos x +sin x =2sin ⎝⎛⎭⎫x +π3,向左平移m 个单位长度后得到y =2sin ⎝⎛⎭⎫x +π3+m ,由它关于y 轴对称可得sin ⎝⎛⎭⎫π3+m =±1,∴π3+m =k π+π2,k ∈Z ,∴m =k π+π6,k ∈Z ,又m >0,∴m 的最小值为π6.7.已知函数f (x )=A sin(w x +φ)(A ,w ,φ均为正的常数)的最小正周期为π,当x =2π3时,函数f (x )取得最小值,则下列结论正确的是( A )A .f (2)<f (-2)<f (0)B .f (0)<f (2)<f (-2)C .f (-2)<f (0)<f (2)D .f (2)<f (0)<f (-2)解析 ∵ω>0,∴T =2πω=π,∴ω=2.又A >0,∴f ⎝⎛⎭⎫2π3=-A , 即sin ⎝⎛⎭⎫4π3+φ=-1,得φ+4π3=2k π+32π(k ∈Z ), 即φ=2k π+π6(k ∈Z ).又∵φ>0,∴可取f (x )=A sin ⎝⎛⎭⎫2x +π6, ∴f (2)=A sin ⎝⎛⎭⎫4+π6, f (-2)=A sin ⎝⎛⎭⎫-4+π6,f (0)=A sin π6. ∵π<4+π6<3π2,∴f (2)<0.∵-7π6<-4+π6<-π,且y =sin x 在⎝⎛⎭⎫-7π6,-π上为减函数, ∴sin ⎝⎛⎭⎫-4+π6<sin ⎝⎛⎭⎫-7π6=sin π6,且sin ⎝⎛⎭⎫-4+π6>sin(-π)=0,从而有0<f (-2)<f (0).故有f (2)<f (-2)<f (0).故选A.8.将函数f (x )=sin 2x 的图象向右平移φ⎝⎛⎭⎫0<φ<π2个单位后得到函数g (x )的图象.若对满足|f (x 1)-g (x 2)|=2的x 1,x 2,有|x 1-x 2|min =π3,则φ=( D )A.5π12B .π3C.π4D .π6解析 g (x )=sin[2(x -φ)] =sin(2x -2φ). ∵|f (x )|≤1,|g (x )|≤1, ∴|f (x )-g (x )|≤2,当且仅当f (x 1)=1,g (x 2)=-1或f (x 1)=-1,g (x 2)=1时,满足|f (x 1)-g (x 2)|=2. 不妨设A (x 1,-1)是函数f (x )图象的一个最低点,B (x 2,1)是函数g (x )图象的一个最高点, 于是x 1=k 1π+3π4(k 1∈Z ),x 2=k 2π+π4+φ(k 2 ∈Z ).∴|x 1-x 2|≥⎪⎪⎪⎪3π4-⎝⎛⎭⎫π4+φ=⎪⎪⎪⎪π2-φ. ∵φ ∈⎝⎛⎭⎫0,π2,|x 1-x 2|min =π3, ∴π2-φ=π3,即φ=π6,故选D. 9.已知函数f (x )=2sin x +φ2cos x +φ2⎝⎛⎭⎫|φ|<π2,且对于任意的x ∈R ,f (x )≤f ⎝⎛⎭⎫π6,则( C ) A .f (x )=f (x +π) B .f (x )=f ⎝⎛⎭⎫x +π2 C .f (x )=f ⎝⎛⎭⎫π3-xD .f (x )=f ⎝⎛⎭⎫π6-x解析 f (x )=sin(x +φ).由题意,可知f (x )≤f ⎝⎛⎭⎫π6对于任意的x ∈R 恒成立,即sin(x +φ)≤sin ⎝⎛⎭⎫π6+φ.又因为|φ|<π2,所以π6+φ=π2,所以φ=π3,所以f (x )=sin ⎝⎛⎭⎫x +π3.f ⎝⎛⎭⎫π3-x =sin ⎝⎛⎭⎫π3-x +π3=sin ⎣⎡⎦⎤-⎝⎛⎭⎫π3+x +π=sin ⎝⎛⎭⎫x +π3=f (x ).故选C. 10.已知函数f (x )=3sin w x +cos w x (w >0)的图象与x 轴的交点的横坐标可构成一个公差为π2的等差数列,把函数f (x )的图象沿x 轴向左平移π6个单位,得到函数g (x )的图象.下列说法正确的是( D )A .g (x )在⎣⎡⎦⎤π4,π2上是增函数B .g (x )的图象关于直线x =-π4对称C .函数g (x )是奇函数D .当x ∈⎣⎡⎦⎤π6,2π3时,函数g (x )的值域是[-2,1]解析 f (x )=3sin ωx +cos ωx =2sin ⎝⎛⎭⎫ωx +π6,由题意知T 2=π2,∴T =π,∴ω=2πT=2,∴f (x )=2sin ⎝⎛⎭⎫2x +π6.把函数f (x )的图象沿x 轴向左平移π6个单位,得到g (x )=2sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π6+π6=2sin ⎝⎛⎭⎫2x +π2=2cos 2x 的图象,易知g (x )是偶函数且在⎣⎡⎦⎤π4,π2上是减函数,其图象不关于直线x =-π4对称,所以A 项,B 项,C 项错误.当x ∈⎣⎡⎦⎤π6,2π3时,2x ∈⎣⎡⎦⎤π3,4π3,则g (x )min =2cos π=-2,g (x )max =2cos π3=1,即函数g (x )的值域为[-2,1],故选D.11.函数f (x )=2x -4sin x ,x ∈⎣⎡⎦⎤-π2,π2的图象大致是( D )解析 因为函数f (x )是奇函数,所以排除A ,B 项,f ′(x )=2-4cos x ,令f ′(x )=2-4cos x =0,得x =±π3,故选D.12.函数f (x )=A sin w x (A >0,w >0)的部分图象如图所示,则f (1)+f (2)+f (3)+…+f (2 018)的值为( A )A .2+2B .32C .62D .-2解析 由题图可知,A =2,T =8,2πω=8,ω=π4,∴f (x )=2sin π4x ,∴f (1)=2,f (2)=2,f (3)=2,f (4)=0,f (5)=-2,f (6)=-2,f (7)=-2,f (8)=0,而2 018=8×252+2,∴f (1)+f (2)+…+f (2 018)=f (1)+f (2)=2+ 2.故选A.第2讲 三角变换与解三角形题型一三角恒等变换1.(1)(2018·河南郑州模拟)若tan α=13,tan(α+β)=12,则tan β=( A )A.17 B .16C .57D .56(2) (2017·河北唐山中学模拟)已知α是三角形的内角,sin ⎝⎛⎭⎫α+π3=45,则cos ⎝⎛⎭⎫5π12-α=( D )A.210B .-210C .-7210D .7210突破点拨(1)注意到β=(α+β)-α,再结合已知条件求tan β的值. (2)注意到cos ⎝⎛⎭⎫5π12-α=-cos ⎣⎡⎦⎤⎝⎛⎭⎫α+π3+π4,再实施运算. 解析 (1)tan β=tan[(α+β)-α] =tan (α+β)-tan α1+tan (α+β)·tan α=12-131+12×13=17.故选A.(2)∵α是三角形的内角,sin ⎝⎛⎭⎫α+π3=45<32, ∴α+π3是钝角,∴cos ⎝⎛⎭⎫α+π3=-35,cos ⎝⎛⎭⎫5π12-α=-cos ⎣⎡⎦⎤π-⎝⎛⎭⎫5π12-α=-cos ⎝⎛⎭⎫712π+α=-cos ⎣⎡⎦⎤⎝⎛⎭⎫α+π3+π4=-cos ⎝⎛⎭⎫α+π3·cos π4+sin ⎝⎛⎭⎫α+π3sin π4=7210.故选D. 2. 已知cos ⎝⎛⎭⎫π6+α·cos ⎝⎛⎭⎫π3-α=-14,α∈⎝⎛⎭⎫π3,π2. (1)求sin 2α的值; (2)求tan α-1tan α的值. 突破点拨(1)利用诱导公式转化为二倍角公式,再利用同角三角函数基本关系式求解. (2)切化弦,转化为二倍角公式,再利用(1)的结论求解. 解析 (1)cos ⎝⎛⎭⎫π6+α·cos ⎝⎛⎭⎫π3-α =cos ⎝⎛⎭⎫π6+α·sin ⎝⎛⎭⎫π6+α=12sin ⎝⎛⎭⎫2α+π3=-14, 即sin ⎝⎛⎭⎫2α+π3=-12. ∵α∈⎝⎛⎭⎫π3,π2,∴2α+π3∈⎝⎛⎭⎫π,4π3, ∴cos ⎝⎛⎭⎫2α+π3=-32, ∴sin 2α=sin ⎣⎡⎦⎤⎝⎛⎭⎫2α+π3-π3=sin ⎝⎛⎭⎫2α+π3cos π3-cos ⎝⎛⎭⎫2α+π3sin π3=12. (2)∵α∈⎝⎛⎭⎫π3,π2,∴2α∈⎝⎛⎭⎫2π3,π, 又由(1)知sin 2α=12,∴cos 2α=-32.∴tan α-1tan α=sin αcos α-cos αsin α=sin 2α-cos 2αsin α cos α=-2cos 2αsin 2α=-2×-3212=2 3.利用三角恒等变换公式解题的常用技巧(1)项的分拆与角的配凑:如sin 2α+2cos 2α=(sin 2α+cos 2α)+cos 2α,α=(α-β)+β等. (2)降幂与升幂:通过二倍角公式得到. (3)弦、切互化:一般是切化弦. 题型二 解三角形1. 已知a ,b ,c 分别为△ABC 内角A ,B ,C 的对边,sin 2B =2sin A sin C . (1)若a =b ,求cos B ;(2)设B =90°,且a =2,求△ABC 的面积. 突破点拨(1)根据正弦定理把已知条件转化为边的关系,然后利用余弦定理求解.(2)利用勾股定理得到边的一个方程,结合已知条件解方程组求得边长,然后求面积.解析 (1)由题设及正弦定理可得b 2=2ac . 又a =b ,可得b =2c ,a =2c . 由余弦定理可得cos B =a 2+c 2-b 22ac =14.(2)由(1)知b 2=2ac . 因为B =90°,由勾股定理得a 2+c 2=b 2,故a 2+c 2=2ac ,进而可得c =a = 2. 所以△ABC 的面积为12×2×2=1.【变式考法】 (1)在本例条件下,求角B 的范围. (2)在本例条件下,若B =60°,b =2,求a 的值. 解析 (1)因为b 2=2ac ,所以cos B =a 2+c 2-b 22ac ≥2ac -2ac2ac =0,又因为0<B <π,所以0<B ≤π2.(2)因为b 2=2ac ,b =2,所以ac =1, 又因为b 2=a 2+c 2-2ac cos B ,所以a 2+c 2=3, 所以a +c =5, 所以a =5+12或5-12. 2. △ABC 中,D 是BC 上的点,AD 平分∠BAC ,△ABD 面积是△ADC 面积的2倍. (1)求sin ∠B sin ∠C; (2)若AD =1,DC =22,求BD 和AC 的长. 突破点拨(1)利用面积关系得边的关系,再利用正弦定理求解. (2)先利用面积比求BD ,再利用余弦定理求解. 解析 (1)S △ABD =12AB ·AD sin ∠BAD ,S △ADC =12AC ·AD sin ∠CAD .因为S △ABD =2S △ADC ,∠BAD =∠CAD ,所以AB =2AC . 由正弦定理可得sin ∠B sin ∠C =AC AB =12.(2)因为S △ABD ∶S △ADC =BD ∶DC ,所以BD = 2. 在△ABD 和△ADC 中,由余弦定理知 AB 2=AD 2+BD 2-2AD ·BD cos ∠ADB , AC 2=AD 2+DC 2-2AD ·DC cos ∠ADC . 故AB 2+2AC 2=3AD 2+BD 2+2DC 2=6. 由(1)知AB =2AC ,所以AC =1.利用正、余弦定理解三角形的技巧解三角形问题一般要利用正、余弦定理和三角形内角和定理,正弦定理可以将角转化为边,也可以将边转化成角,当涉及边的平方关系时,一般利用余弦定理,要根据题目特点和正、余弦定理的结构形式,灵活选用.有关解三角形的综合问题(1)求∠ACP ;(2)若△APB 的面积是332,求sin ∠BAP .思维导航(1)由已知条件选择余弦定理求得AP .(2)由三角形的面积和(1)结论解得PB ,再由余弦定理及正弦定理求得AB 和sin ∠BAP . 规范解答(1)在△APC 中,因为∠P AC =60°,PC =2,AP +AC =4, 由余弦定理得PC 2=AP 2+AC 2-2AP ·AC ·cos ∠P AC ,所以22=AP 2+(4-AP )2-2AP ·(4-AP )·cos 60°,整理得AP 2-4AP +4=0,解得AP =2,所以AC =2.所以△APC 是等边三角形,所以∠ACP =60°.(2)因为∠APB 是△APC 的外角,所以∠APB =120°.因为△APB 的面积是332,所以12AP ·PB ·sin ∠APB =332,所以PB =3.在△APB 中,AB 2=AP 2+PB 2-2AP ·PB ·cos ∠APB =22+32-2×2×3×cos 120°=19,所以AB =19.在△APB 中,由正弦定理得AB sin ∠APB =PBsin ∠BAP,所以sin ∠BAP =3sin 120°19=35738.【变式考法】 (2017·广州模拟)如图,在△ABC 中,∠ABC =30°,AB =3,AC =1,AC <BC ,P 为BC 右上方一点,满足∠BPC =90°.(1)若BP =2,求AP 的长; (2)求△BPC 周长的最大值.解析 由题意知1=AC 2=AB 2+BC 2-2AB ·BC ·cos ∠ABC =3+BC 2-3BC ,解得BC =2(BC =1舍去,则∠CAB =90°.又∠BPC =90°,且BP =2,所以∠PBC =45°,从而∠ABP =75°.连接AP ,由余弦定理得AP =3+2-2×3×2×6-24=6+22. (2)由(1)可知BC =2或BC =1,又因为求△BPC 周长的最大值,所以BC =2,设BP =m ,PC =n ,则m 2+n 2=4.由于BC 长为定值,因此求△BPC 周长的最大值只需求BP +PC =m +n 的最大值即可. 又4=m 2+n 2≥(m +n )22,则m +n ≤22, 当且仅当m =n =2时取等号,此时△BPC 的周长取得最大值,为2+2 2.1.(教材回归)sin 20°cos 10°-cos 160°sin 10°=( D ) A .-32B .32C .-12D .12解析 原式=sin 20°cos 10°+cos 20°sin 10°=sin(20°+10°)=sin 30°=12,故选D.2.(2017·“江南十校”模拟)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .若C=2B ,则sin Bsin A=( D )A.c 2a 2+b 2-c 2 B .b 2a 2+b 2-c 2C.a 2a 2+b 2-c2 D .c 2a 2+c 2-b2解析 由已知,得sin C =sin 2B =2sin B cos B , 所以sin C sin B =2cos B .由正弦定理及余弦定理,得c b =2×a 2+c 2-b 22ac ,则b a =c 2a 2+c 2-b2. 再由正弦定理,得sin B sin A =c 2a 2+c 2-b 2,故选D.3.已知tan α=-2,tan(α+β)=17,则tan β的值为__3__.解析 tan β=tan[(α+β)-α]=tan (α+β)-tan α1+tan (α+β)tan α=17-(-2)1+17×(-2)=3.4.(2017·河南郑州调考)已知△ABC 中,角C 为直角,D 是边BC 上一点,M 是AD 上一点,且CD =1,∠DBM =∠DMB =∠CAB ,则MA =__2__.解析 如图,设∠DMB =θ,则∠ADC =2θ,∠DAC =π2-2θ,∠AMB =π-θ,∠ABM =π2-2θ,在Rt △ABC 中,cos θ=cos ∠CAB =ACAB ;在△CDA 中,由正弦定理得CD sin ⎝⎛⎭⎫π2-2θ=ACsin 2θ; 在△AMB 中,由正弦定理得MA sin ⎝⎛⎭⎫π2-2θ=ABsin (π-θ), ∴CD MA =AC ·sin θAB ·sin 2θ=AC ·sin θ2AB ·sin θcos θ=12,从而MA =2. 5.在△ABC 中,a =4,b =5,c =6,则sin 2Asin C=__1__.解析 在△ABC 中,由余弦定理的推论可得cos A =b 2+c 2-a 22bc =52+62-422×5×6=34,由正弦定理可知sin 2A sin C =2sin A cos A sin C =2a ·cos Ac =2×4×346=1.6.(书中淘金)如图,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30°的方向上,行驶600 m 后到达B 处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD解析 依题意有AB =600,∠CAB =30°,∠CBA =180°-75°=105°,∠DBC =30°,DC ⊥CB . ∴∠ACB =45°,在△ABC 中,由AB sin ∠ACB =CB sin ∠CAB ,得600sin 45°=CBsin 30°, 有CB =3002,在Rt △BCD 中,CD =CB ·tan 30°=1006, 则此山的高度CD =100 6 m.7.(考点聚焦)已知函数f (x )=2sin ωx +m cos ωx (ω>0,m >0)的最小值为-2,且图象上相邻两个最高点的距离为π.(1)求ω和m 的值;(2)若f ⎝⎛⎭⎫θ2=65,θ∈⎝⎛⎭⎫π4,3π4,求f ⎝⎛⎭⎫θ+π8的值. 解析 (1)易知f (x )=2+m 2sin(ωx +φ)(φ为辅助角), ∴f (x )min =-2+m 2=-2,∴m = 2.由题意知函数f (x )的最小正周期为π,∴2πω=π,∴ω=2.(2)由(1)得f (x )=2sin 2x +2cos 2x =2sin ⎝⎛⎭⎫2x +π4, ∴f ⎝⎛⎭⎫θ2=2sin ⎝⎛⎭⎫θ+π4=65, ∴sin ⎝⎛⎭⎫θ+π4=35, ∵θ∈⎝⎛⎭⎫π4,3π4,∴θ+π4∈⎝⎛⎭⎫π2,π,∴cos ⎝⎛⎭⎫θ+π4=-1-sin 2⎝⎛⎭⎫θ+π4=-45, ∴f ⎝⎛⎭⎫θ+π8=2sin ⎣⎡⎦⎤2⎝⎛⎭⎫θ+π8+π4=2sin ⎝⎛⎭⎫2θ+π2 =2sin ⎣⎡⎦⎤2⎝⎛⎭⎫θ+π4=4sin ⎝⎛⎭⎫θ+π4cos ⎝⎛⎭⎫θ+π4 =4×35×⎝⎛⎭⎫-45=-4825. 8.(教材回归)在△ABC 中,已知AB =2,AC =3,A =60°. (1)求BC 的长; (2)求sin 2C 的值.解析 (1)由余弦定理知,BC 2=AB 2+AC 2-2AB ·AC ·cos A =4+9-2×2×3×12=7,所以BC =7.(2)由正弦定理知sin C =AB BC ·sin A =2sin 60°7=217.因为AB <BC ,所以C <A ,所以C 为锐角, 则cos C =1-sin 2C =1-37=277. 因此sin 2C =2sin C ·cos C =2×217×277=437. 9.(2017·河北唐山二模)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a 2+b 2=λab . (1)若λ=6,B =5π6,求sin A ;(2)若λ=4,AB 边上的高为3c6,求C . 解析 (1)已知B =5π6,a 2+b 2=6ab ,结合正弦定理得4sin 2A -26sin A +1=0,解得sin A =6±24. 因为0<A <π6,所以sin A <12,所以sin A =6-24.(2)由题意可知S △ABC =12ab sin C =312c 2,得12ab sin C =312(a 2+b 2-2ab cos C )=312(4ab -2ab cos C ). 从而有3sin C +cos C =2,即sin ⎝⎛⎭⎫C +π6=1. 又π6<C +π6<7π6,所以C =π3.10.(2017·山东淄博模拟)已知a ,b ,c 分别为△ABC 的内角A ,B ,C 的对边,且a cos C +3a sin C -b -c =0.(1)求A ;(2)若a =2,求△ABC 面积的最大值.解析 (1)由a cos C +3a sin C -b -c =0及正弦定理, 得sin A cos C +3sin A sin C -sin B -sin C =0. 因为B =π-A -C ,所以3sin A sin C -cos A sin C -sin C =0. 易知sin C ≠0,所以3sin A -cos A =1, 所以sin ⎝⎛⎭⎫A -π6=12.又0<A <π,所以A =π3. (2)方法一 由(1)得B +C =2π3⇒C =2π3-B ⎝⎛⎭⎫0<B <2π3,因为a sin A =2sin π3=43, 所以由正弦定理得b =43sin B ,c =43sin C . 所以S △ABC =12bc sin A =12×43sin B ×43sin C ·sin π3=433sin B ·sin C =433·sin B ·sin ⎝⎛⎭⎫2π3-B =433⎝⎛⎭⎫32sin B cos B +12sin 2B =sin 2B -33cos 2B +33=233sin ⎝⎛⎭⎫2B -π6+33.易知-π6<2B -π6<7π6, 故当2B -π6=π2,即B =π3时,S △ABC 取得最大值,最大值为233+33= 3.方法二 由(1)知A =π3,又a =2,由余弦定理得22=b 2+c 2-2bc cos π3,即b 2+c 2-bc =4⇒bc +4=b 2+c 2≥2bc ⇒bc ≤4,当且仅当b =c=2时,等号成立.所以S △ABC =12bc sin A =12×32bc ≤34×4=3,即当b =c =2时,S △ABC 取得最大值,最大值为 3.1.已知函数f (x )=2cos 2x -sin ⎝⎛⎭⎫2x -7π6. (1)求函数f (x )的最大值,并写出f (x )取最大值时x 的取值集合;(2)已知△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若f (A )=32,b +c =2,求实数a的取值范围.解析 (1)f (x )=(1+cos 2x )-⎝⎛⎭⎫sin 2x cos 7π6-cos 2x sin 7π6 =1+32sin 2x +12cos 2x =1+sin ⎝⎛⎭⎫2x +π6, ∴函数f (x )的最大值为2,当且仅当sin ⎝⎛⎭⎫2x +π6=1, 即2x +π6=2k π+π2,k ∈Z ,即x =k π+π6,k ∈Z 时取到.∴函数f (x )取最大值时x 的取值集合为x ⎪⎪⎭⎬⎫x =k π+π6,k ∈Z . (2)由题意,f (A )=sin ⎝⎛⎭⎫2A +π6+1=32, 化简得sin ⎝⎛⎭⎫2A +π6=12. ∵A ∈(0,π),∴2A +π6∈⎝⎛⎭⎫π6,13π6, ∴2A +π6=5π6,∴A =π3.在△ABC 中,a 2=b 2+c 2-2bc cos π3=(b +c )2-3bc .由b +c =2,知bc ≤⎝⎛⎭⎫b +c 22= 1,即a 2≥1,当b =c =1时取等号. 又由b +c >a ,得a <2, ∴a 的取值范围是[1,2).2.已知a ,b ,c 分别是△ABC 的内角A ,B ,C 所对的边,且c =2,C =π3.(1)若△ABC 的面积等于3,求a ,b ; (2)若sin C +sin(B -A )=2sin 2A ,求A 的值. 解析 (1)∵c =2,C =π3,∴由余弦定理得4=a 2+b 2-2ab cos π3=a 2+b 2-ab .∵△ABC 的面积等于3, ∴12ab sin C =3,∴ab =4, 联立⎩⎪⎨⎪⎧ a 2+b 2-ab =4,ab =4,解得⎩⎪⎨⎪⎧a =2,b =2.(2)∵sin C +sin(B -A )=2sin 2A , ∴sin(B +A )+sin(B -A )=4sin A cos A , ∴sin B cos A =2sin A cos A . ①当cos A =0时,A =π2;②当cos A ≠0时,sin B =2sin A ,由正弦定理得b =2a ,联立⎩⎪⎨⎪⎧a 2+b 2-ab =4,b =2a ,解得⎩⎨⎧a =233,b =433,∴b 2=a 2+c 2,∵C =π3,∴A =π6.综上所述,A =π2或A =π6.3.(2017·浙江重点中学联考)已知△ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c . (1)若C =2B ,求证:cos A =3cos B -4cos 3B ;(2)若b sin B -c sin C =a ,且△ABC 的面积S =b 2+c 2-a 24,求角B .解析 (1)证明:∵C =2B ,∴A =π-3B , ∴cos A =cos(π-3B )=-cos(B +2B ) =-cos B cos 2B +sin B sin 2B =-cos B (2cos 2B -1)+2sin 2B cos B=cos B -2cos 3B +2cos B (1-cos 2B )=3cos B -4cos 3B , ∴cos A =3cos B -4cos 3B .(2)在△ABC 中,∵S =b 2+c 2-a 24,∴S =b 2+c 2-a 24=12bc sin A .由余弦定理知b 2+c 2-a 24=12bc cos A ,∴12bc cos A =12bc sin A ,∴tan A =1, 而A ∈(0,π),∴A =π4.∵b sin B -c sin C =a ,由正弦定理,得 sin 2B -sin 2C =sin A =22, ∴cos 2C -cos 2B = 2.∵2C =2π-2A -2B =3π2-2B ,∴-sin 2B -cos 2B =2,∴sin ⎝⎛⎭⎫2B +π4=-1. ∵B ∈(0,π),∴2B +π4=3π2,∴B =5π8.4.(2017·武汉武昌五月调研)已和函数f (x )=sin(ωx +φ)⎝⎛⎭⎫ω>0,0<φ<π2的图象经过点⎝⎛⎭⎫0,12,且相邻两条对称轴的距离为π2.(1)求函数f (x )的解析式及其在[0,π]上的单调递增区间;(2)在△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边,若f ⎝⎛⎭⎫A 2-cos A =12,bc =1,b +c =3,求a 的值.解析 (1)将⎝⎛⎭⎫0,12代入f (x )的解析式,得sin φ=12. 又因为0<φ<π2,所以φ=π6.又因为最小正周期T =π2×2=π,所以ω=2.所以函数f (x )的解析式为f (x )=sin ⎝⎛⎭⎫2x +π6. 因为x ∈[0,π], 所以π6≤2x +π6≤13π6,所以2x +π6∈⎣⎡⎦⎤π6,π2或2x +π6∈⎣⎡⎦⎤3π2,13π6时,f (x )递增,即x ∈⎣⎡⎦⎤0,π6或x ∈⎣⎡⎦⎤2π3,π时,f (x )递增.所以函数f (x )在[0,π]上的单调递增区间是⎣⎡⎦⎤0,π6,⎣⎡⎦⎤2π3,π. (2)由(1)知f ⎝⎛⎭⎫A 2=sin ⎝⎛⎭⎫A +π6,代入已知等式得 sin ⎝⎛⎭⎫A +π6-cos A =32sin A +12cos A -cos A =32sin A -12cos A =sin ⎝⎛⎭⎫A -π6=12, 所以A -π6=π6或5π6,即A =π3或A =π(舍去).又因为bc =1,b +c =3,由余弦定理,得a 2=b 2+c 2-2bc ·cos A =b 2+c 2-bc =(b +c )2-3bc =6,所以a = 6. 5.(2018·山东青岛模拟)在△ABC 中,边a ,b ,c 的对角分别为A ,B ,C ,且b =4,A =π3,面积S =2 3. (1)求a 的值;(2)设f (x )=2(cos C sin x -cos A cos x ),将f (x )图象上所有点的横坐标变为原来的12(纵坐标不变)得到g (x )的图象,求g (x )的单调增区间.解析 (1)在△ABC 中,∵S =12bc sin A ,∴23=12×4×c ×32,∴c =2.∴a =b 2+c 2-2bc cos A =16+4-2×4×2×12=2 3.(2)∵a sin A =b sin B ,即2332=4sin B,∴sin B =1, 又0<B <π,∴B =π2,∴C =π6,∴f (x )=2(cos C sin x -cos A cos x )=2sin ⎝⎛⎭⎫x -π6, 将f (x )图象上所有点的横坐标变为原来的12(纵坐标不变),得到的图象对应的函数解析式为g (x )=2sin ⎝⎛⎭⎫2x -π6, 令2k π-π2≤2x -π6≤2k π+π2(k ∈Z ),解得k π-π6≤x ≤k π+π3(k ∈Z ),故g (x )的单调增区间为⎣⎡⎦⎤k π-π6,k π+π3(k ∈Z ). 6.(2018·辽宁协作体一模)设△ABC 是锐角三角形,三个内角A ,B ,C 所对的边分别为a ,b ,c ,且(sin A -sin B )(sin A +sin B )=sin ⎝⎛⎭⎫π3+B sin ⎝⎛⎭⎫π3-B . (1)求角A 的值;(2)若AB →·AC →=12,a =27,求b ,c (其中b <c ).解析 (1)∵(sin A -sin B )(sin A +sin B )=sin ⎝⎛⎭⎫π3+B ·sin ⎝⎛⎭⎫π3-B ,∴sin 2A -sin 2B =⎝⎛⎭⎫32cos B +12sin B⎝⎛⎭⎫32cos B -12sin B , 即sin 2A =34cos 2B -14sin 2B +sin 2B=34(cos 2B +sin 2B )=34, ∵角A 为锐角△ABC 的内角,∴sin A >0, ∴sin A =32,∴A =π3. (2)AB →·AC →=bc cos A =12,∴bc =24,又a 2=b 2+c 2-2bc cos A =(b +c )2-3bc =(27)2, ∴b +c =10,又∵b <c ,∴b =4,c =6.第3讲 平面向量题型一 向量的概念及线性运算高考中常从以下角度命题:1. (1)平面内给定三个向量a=(3,2),b=(-1,2),c=(4,1).若(a+k c)∥(2b-a),则k=-1613.(2)如图,E为平行四边形ABCD的边DC的中点,F为△ABD的重心,且AB→=a,AD→=b,则FE→=23b+16a.突破点拨(1)利用向量的坐标运算和向量共线定理求解.(2)利用向量加、减法的几何意义和重心公式求解.解析(1)因为(a+k c)∥(2b-a),又a+k c=(3+4k,2+k),2b-a=(-5,2),所以2×(3+4k)-(-5)×(2+k)=0,所以k=-1613.(2)由F为△ABD的重心,得AF→=23×12AC→=13(a+b).又AE→=AD→+DE→=b+12a,所以FE→=AE→-AF→=23b+16a.2.(1)在△ABC中,点M,N满足AM→=2MC→,BN→=NC→.若MN→=xAB→+yAC→,则x=12,y=-16.(2)已知向量a=(2,1),b=(1,-2),若m a+n b=(9,-8)(m,n∈R),则m-n的值为__-3__.突破点拨(1)画出图形,利用向量加减法则求解.(2)利用向量的坐标运算求解.。
平面向量与三角形心的应用举例
1、已知P N O ,,在ABC ∆所在平面内,且,0OA OB OC NA NB NC ==++=,且 PA PB PB PC PC PA ∙=∙=∙,则点P N O ,,依次是ABC ∆的( )
A 、重心 外心 垂心
B 、重心 外心 内心
C 、外心 重心 垂心
D 、外心 重心 内心
2、O 是ABC ∆所在平面内的一点,满足OA OB OB OC OC OA ⋅=⋅=⋅,则点O 是ABC ∆的( )
A 、三个内角的角平分线的交点
B 、三条边的垂直平分线的交点
C 、三条中线的交点
D 、三条高的交点
3、在同一个平面上有ABC ∆及一点O 满足关系式:
222222||||||||||||OA BC OB CA OC AB +=+=+,
则O 为ABC ∆的( )
A 、外心
B 、内心
C 、重心
D 、垂心
4、已知ABC ∆,P 为三角形所在平面上的动点,且满足:0PA PC PA PB PB PC ∙+∙+∙=,则P 点
为ABC ∆的( )
A 、外心
B 、内心
C 、重心
D 、垂心
5、已知P 是ABC ∆所在平面内任意一点,且3PA PB PC PG ++=,则G 是ABC ∆的( )
A 、外心
B 、内心
C 、重心
D 、垂心
6、已知ABC ∆的顶点C B A ,,及平面内一点P 满足:0PA PB PC ++=,则P 为ABC ∆的( )
A 、外心
B 、 内心
C 、重心
D 、垂心
7、已知O 是平面上一定点,C B A ,,是平面上不共线的三个点,动点P 满足:
()OP OA AB AC λ=++,则P 的轨迹一定通过ABC ∆的( )
A 、外心
B 、 内心
C 、重心
D 、垂心
8、已知ABC ∆,P 为三角形所在平面上的一点,且点P 满足:0a PA b PB c PC ⋅+⋅+∙=,则P 点为ABC ∆的( )
A 、外心
B 、 内心
C 、重心
D 、垂心
9、在ABC ∆中,动点P 满足:22
2CA CB AB CP =-∙,则P 点一定通过ABC ∆的( )
A 、外心
B 、 内心
C 、重心
D 、垂心
10、已知O 是平面内的一个点,C B A ,,是平面上不共线的三点,动点P 满足 (),[0,)AB
AC
OP OA AB AC λλ=++∈+∞,则点P 的轨迹一定过ABC ∆的( )
A 、外心
B 、内心
C 、重心
D 、垂心 11、已知C B A ,,是平面上不共线的三点,O 是ABC ∆的重心,动点P 满足
)22
121(31OC OB OA OP ++=,则点P 一定为ABC ∆的( ) A 、AB 边中线的中点 B 、AB 边中线的三等分点(非重心) C 、重心 D 、AB 边的中点
12、非零向量AB 与AC 满足且,则ABC ∆为( )
A 、三边均不相等的三角形
B 、直角三角形
C 、等腰非等边三角形
D 、等边三角形
13、ABC ∆的外接圆的圆心为O ,两边上的高的交点为H ,OH =()m OA OB OC ++,则实数m = 。
14、若O 是ABC ∆的外心,'
O 是ABC ∆三边中点F E D ,,构成的DEF ∆的外心,且 '()OO m OA OB OC =++,则m = 。
15、在四边形ABCD 中,AB =DC )1,1(=,11
3
BA BC BD BA BC BD +=,则四边形
ABCD 的面积是 。
16、如图,已知点G 是ABC ∆的重心,过G 作直线与AC AB ,两边分别交于N M ,两点,且
AM xAB =,AN yAC =,求证:113x y
+=。
17、已知O 为ABC ∆的外心,求证:sin sin sin 0OA BOC OB AOC OC AOB ++=。