2015年中考数学复习培优第5讲
- 格式:docx
- 大小:492.53 KB
- 文档页数:6
(完整)2015年中考数学专题讲座一:选择题解题方法编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)2015年中考数学专题讲座一:选择题解题方法)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)2015年中考数学专题讲座一:选择题解题方法的全部内容。
2015年中考数学专题讲座一:选择题解题方法一、中考专题诠释选择题是各地中考必考题型之一,2014年各地命题设置上,选择题的数目稳定在8~14题,这说明选择题有它不可替代的重要性.选择题具有题目小巧,答案简明;适应性强,解法灵活;概念性强、知识覆盖面宽等特征,它有利于考核学生的基础知识,有利于强化分析判断能力和解决实际问题的能力的培养。
二、解题策略与解法精讲选择题解题的基本原则是:充分利用选择题的特点,小题小做,小题巧做,切忌小题大做。
解选择题的基本思想是既要看到各类常规题的解题思想,但更应看到选择题的特殊性,数学选择题的四个选择支中有且仅有一个是正确的,又不要求写出解题过程. 因而,在解答时应该突出一个“选”字,尽量减少书写解题过程,要充分利用题干和选择支两方面提供的信息,依据题目的具体特点,灵活、巧妙、快速地选择解法,以便快速智取,这是解选择题的基本策略。
具体求解时,一是从题干出发考虑,探求结果;二是题干和选择支联合考虑或从选择支出发探求是否满足题干条件. 事实上,后者在解答选择题时更常用、更有效.三、中考典例剖析考点一:直接法从题设条件出发,通过正确的运算、推理或判断,直接得出结论再与选择支对照,从而作出选择的一种方法。
运用此种方法解题需要扎实的数学基础。
例1 方程的解是( )A .x=±1 B .x=1 C . x=-1 D . x=0思路分析:观察可得最简公分母是(x+1),方程两边乘最简公分母,可以把分式方程转化为整式方程求解.解:方程的两边同乘(x+1),得x 2﹣1=0,即(x+1)(x ﹣1)=0,解得:x 1=﹣1,x 2=1.检验:把x=﹣1代入(x+1)=0,即x=-1不是原分式方程的解;把x=1代入(x+1)=2≠0,即x=1是原分式方程的解.则原方程的解为:x=1.故选B .点评: 此题考查了分式方程的求解方法.此题难度不大,注意掌握转化思想的应用,注意解分式方程一定要验根.对应训练1.某单位要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排10场比赛,则参加比赛的球队应有( )A .7队B .6队C .5队D .4队考点二:特例法运用满足题设条件的某些特殊数值、特殊位置、特殊关系、特殊图形、特殊数列、特殊函数等对各选择支进行检验或推理,利用问题在某一特殊情况下不真,则它在一般情况下也不真的原理,由此判明选项真伪的方法。
2015年中考数学复习培优第一讲:一元二次方程及应用【知识回顾】1.灵活运用四种解法解一元二次方程:一元二次方程的一般形式:20(0)ax bx c a ++=≠四种解法:直接开平方法,配方法,公式法, 因式分解法,公式法:12,x x = (24b ac -≥0)注意:(1)一定要注意0a ≠,填空题和选择题中很多情况下是在此处设陷进;(2)掌握一元二次方程求根公式的推导;(3)主要数学方法有:配方法,换元法,“消元”与“降次”.2.根的判别式及应用(24b ac ∆=-):(1)一元二次方程20(0)ax bx c a ++=≠根的情况:①当0∆>时,方程有两个不相等的实数根;②当0∆=时,方程有两个相等的实数根;③当0∆<时,方程无实数根.(2)判定一元二次方程根的情况;(3)确定字母的值或取值范围。
3.根与系数的关系(韦达定理)的应用:韦达定理:如一元二次方程20(0)ax bx c a ++=≠的两根为12,x x ,则12bx x a +=-,12cx x a ⋅=适用题型:(1)已知一根求另一根及未知系数; (2)求与方程的根有关的代数式的值;(3)已知两根求作方程; (4)已知两数的和与积,求这两个数;(5)确定根的符号:(12,x x 是方程两根);(6)题目给出两根之间的关系,如两根互为相反数、互为倒数、两根的平方和或平方差是多少、两根是Rt ∆的两直角边求斜边等情况.注意:(1)222121212()2x x x x x x +=+-⋅(2)22121212()()4x x x x x x -=+-⋅;12x x -= (3)①方程有两正根,则1212000x x x x ∆≥⎧⎪+>⎨⎪⋅>⎩; ②方程有两负根,则1212000x x x x ∆≥⎧⎪+<⎨⎪⋅>⎩ ;③方程有一正一负两根,则1200x x ∆>⎧⎨⋅<⎩;④方程一根大于1,另一根小于 ,则120(1)(1)0x x ∆>⎧⎨--<⎩(4)应用韦达定理时,要确保一元二次方程有根,即一定要判断根的判别式是否非负;求作一元二次方程时,一般把所求作得方程的二次项系数设为1,即以12,x x 为根的一元二次方程为21212()0x x x x x x -++⋅=;求字母系数的值时,需使二次项系数0a ≠,同时满足∆≥0;求代数式的值,常用整体思想,把所求代数式变形成为含有两根之和12x x +,•两根之积12x x ⋅的代数式的形式,整体代入。
1.在ABC △中,90BAC AB AC M ∠=<°,,是BC 边的中点,MN BC ⊥交AC 于点N .动点P 从点B 出发沿射线BA 以每秒3厘米的速度运动.同时,动点Q 从点N 出发沿射线NC 运动,且始终保持MQ MP ⊥.设运动时间为t 秒(0t >).(1)PBM △与QNM △相似吗?以图1为例说明理由;(2)若6043ABC AB ∠==°,厘米.①求动点Q 的运动速度; ②设APQ △的面积为S (平方厘米),求S 与t 的函数关系式;2.已知:如图,△ABC 中,AB =4,D 是AB 边上的一个动点,DE ∥BC ,连结DC ,设△ABC 的面积为S ,△DCE 的面积为S ′. (1)当D 为AB 边的中点时,求S ′∶S 的值; (2)若设,,y SS x AD ='=试求y 与x 之间的函数关系式及x 的取值范围.3.如图,点P 是正方形ABCD 边AB 上一点(不与点A .B 重合),连接PD 并将线段PD 绕点P 顺时针方向旋转90°得到线段PE , PE 交边BC 于点F .连接BE 、DF 。
(1)求证:∠ADP=∠EPB ; (2)求∠CBE 的度数; (3)当APAB的值等于多少时.△PFD ∽△BFP ?并说明理由. 4.如图,△ABC 和△DEF 是两个全等的等腰直角三角形,∠BAC =∠EDF =90°,△DEF 的顶点E 与△AB 的斜边BC 的中点重合.将△DEF 绕点E 旋转,旋转过程中,线段DE 与线段AB 相交于点P ,线段EF 与射线CA 相交于点Q .(1)如图①,当点Q 在线段AC 上,且AP =AQ 时,求证:△BPE ≌△CQE ; (2)如图②,当点Q 在线段CA 的延长线上时,求证:△BPE ∽△CEQ ;并求当BP =a ,CQ =92a 时, P 、Q 两点间的距离 (用含a 的代数式表示). 5.在△ABC 中,AB 、BC 、AC 三边的长分别为5、10、13, 求这个三角形的面积.小华同学在解答这道题时,先画一个正方形网格(每个小正方形的边长为1),再在网格中画出格点△ABC (即△ABC 三个顶点都在小正方形的顶点处),如图①所示.这样不需要求△ABC 的高,而借用网格就能计算出它的面积,这种方法叫做构图法.(1)△ABC 的面积为 : (2)若△DEF 三边的长分别为13、25、29,请在图①的正方形网格中画出相应的△DEF ,并利用构图法求出它的面积.(3)利用第(2)小题解题方法完成下题:如图②,一个六边形绿化区ABCDEF 被分割成7个部分,其中正方形ABQP ,CDRQ ,EFPR 的面积分别为13,20,29,且△PQR 、△BCQ 、△DER 、△APF 的面积相等,求六边形绿化区ABCDEF 的面积.6. 两个全等的直角三角形ABC 和DEF 重叠在一起,其中∠A =60°,AC =1. 固定△ABC 不动,将△DEF 进行如下操作:(1) 如图△DEF 沿线段AB 向右平移(即D 点在线段AB 内移动),连结DC 、CF 、FB ,四边形CDBF 的形状在不断的变化,但它的面积不变化,请求出其面积.(2)如图,当D 点移到AB 的中点时,请你猜想四边形CDBF 的形状,并说明理由.AB P NQC M A B C N M 图1 图2(备用图) 第3题 FC 温馨提示:由平移性A N QANPS ∕海里 13t(海里) 5t(海里) 8t(海里)150 t ∕小时t(海里)(3)如图,△DEF 的D 点固定在AB 的中点,然后绕D 点按顺时针方向旋转△DEF ,使DF 落在AB 边上,此时F 点恰好与B 点重合,连结AE ,请你求出sinα的值. 7.已知点A (a ,1y )、B (2a ,y 2)、C (3a ,y 3)都在抛物线x x y 1252+=上. (1)求抛物线与x 轴的交点坐标; (2)当a =1时,求△ABC 的面积;(3)是否存在含有1y 、y 2、y 3,且与a 无关的等式?如果存在,试给出一个,并加以证明;如果不存在,说明理由.8.黄岩岛是我国南沙群岛的一个小岛,渔产丰富.一天某渔船离开港口前往该海域捕鱼.捕捞一段时间后,发现一外国舰艇进入我国水域向黄岩岛驶来,渔船向渔政部门报告,并立即返航.渔政船接到报告后,立即从该港口出发赶往黄岩岛.下图是渔政船及渔船与港口的距离s 和渔船离开港口的时间t 之间的函数图象.(假设渔船与渔政船沿同一航线航行) (1)直接写出渔船离港口的距离s 和它离开港口的时间t 的函数关系式. (2)求渔船和渔政船相遇时,两船与黄岩岛的距离.(3)在渔政船驶往黄岩岛的过程中,求渔船从港口出发经过多长时间与渔政船相距30海里?9.如图1,△ABC 是等腰直角三角形,四边形ADEF 是正方形,D 、F 分别在AB 、AC 边上,此时BD =CF ,BD ⊥CF 成立. (1)当正方形ADEF 绕点A 逆时针旋转θ(090θ<<)时,如图2,BD =CF 成立吗?若成立,请证明;若不成立,请说明理由. (2)当正方形ADEF 绕点A 逆时针旋转45°时,如图3,延长BD 交CF 于点G .① 求证:BD ⊥CF ;② 当AB =4,AD =2时,求线段BG 的长.图 1 图 2图3 10.如图,已知:直线y=-x+3交x 轴于点A ,交y 轴于点B ,抛物线y=ax 2+bx+c 经过A 、B 、C (1,0)三点.(1)求抛物线的解析式; (2)若点D 的坐标为(-1,0),在直线y=-x+3上有一点P ,使ΔABO 与ΔADP 相似,求出点P 的坐标; (3)在(2)的条件下,在x 轴下方的抛物线上,是否存在点E ,使ΔADE 的面积等于四边形APCE 的面积?如果存在,请求出点E 的坐标;如果不存在,请说明理由. 11. 对于正数x ,规定 1f (x)1x =+,例如:11f (4)145==+,114f ()14514==+,求++)2012()2013(f f …++++)21()1()2(f f f …=+)20131()20121(f f1.解:(1)PBM QNM △∽△. 理由如下: 如图1,∴PMB QMN ∠=. ∴PBM QNM △∽△.(2)9060283BAC ABC BC AB∠=∠=∴==°,°,cm . 又MN 垂直平分BC ,43BM CM ∴==cm .AB EF CD AB(E )(F )CDE (F )α 图13.3图13.2图13.1A 45°θG A B C D E F F ED C B FE D C B A3303C MN CM∠=∴=°,=4cm.①设Q点的运动速度为v cm/s.如图1,当04t<<时,由(1)知PBM QNM△∽△.NQ MNBP MB∴=,即4133vtvt=∴=,.如图2,易知当4t≥时,1v=.综上所述,Q点运动速度为1 cm/s.②1284cmAN AC NC=-=-=,∴如图1,当04t<<时,4334AP t AQ t=-=+,.∴12S AP=()()21343348322AQ t t t=-+=-+·.如图2,当t≥4时,343AP t=-,4AQ t=+,∴12S AP=()()21334348322AQ t t t=-+=-·.综上所述,()()2238304238342t tSt t⎧-+<<⎪⎪=⎨⎪-⎪⎩≥5、解:(1)S△ABC=3×3-12×3×1-12×2×1-1 2 ×3×2=3.5;………………2分(2)答案不唯一,如图所示………………4分S△DEF=4×5-12×2×3-12×2×4-12×2×5=8;………………6分(3)由(2)可知S△PQR=8,………………8分∴六边形花坛ABCDEF的面积为:S正方形ABQP+S正方形RQDC+S正方形EFPR+4S△PQR………………10分=13+20+29+8×4………………11分=94.………………12分6.解:(1)过C点作CG⊥AB于G,在Rt△AGC中,∵sin60°=ACCG,∴23=CG········· 1分∵AB=2,∴S梯形CDBF=S△ABC=2323221=⨯⨯ ·········· 3分(2)菱形···························································································· 5分∵CD∥BF,FC∥BD,∴四边形CDBF是平行四边形·························· 6分∵DF∥AC,∠ACD=90°,∴CB⊥DF ··············································· 7分AB EFCD G∴四边形CDBF 是菱形 ··································································· 8分 (判断四边形CDBF 是平行四边形,并证明正确,记2分)解法二:∵△ADH ∽△ABE ······························································ 8分∴AEADBE DH = 即:713=DH∴73=DH ····································································· 10分∴sinα=)1421(723或=DE DH ················································· 12分 7. 解:(1)由5x x 122+=0, ···································································· (1分)得01=x ,5122-=x . ············································································ (3分) ∴抛物线与x 轴的交点坐标为(0,0)、(512-,0). ······································ (5分)(2)当a =1时,得A (1,17)、B (2,44)、C (3,81), ······························· (6分) 分别过点A 、B 、C 作x 轴的垂线,垂足分别为D 、E 、F ,则有ABC S ∆=S ADFC 梯形 -ADEB S 梯形 -BEFC S 梯形 ·················································· (7分)=22)8117(⨯+-21)4417(⨯+-21)8144(⨯+ ···································· (8分)=5(个单位面积) ···································································· (9分)(3)如:)(3123y y y -=. ··································································· (12分)事实上,)3(12)3(523a a y ⨯+⨯= =45a 2+36a .3(12y y -)=3[5×(2a )2+12×2a -(5a 2+12a )] =45a 2+36a .∴)(3123y y y -=. ···························································· (14分)8.解:(1) 当0≤t ≤5时 s =30t …………………………………………… (1分)当5<t ≤8时 s=150 …………………………………………… (2分) 当8<t ≤13时 s=-30t+390 ………………………………………(3分)(2) 渔政船离港口的距离与渔船离开港口的时间的函数关系式设为s=kt+b⎪⎩⎪⎨⎧+=+=b k b k 33415080 ………………………………………………(4分) 解得: k=45 b=-360∴s=45t -360 ………………………………………………(5分)B(E )(F )CDE (F )αH⎩⎨⎧+-=-=3903036045t s t s解得 t=10 s=90 渔船离黄岩岛距离为 150-90=60 (海里) ……………………………(6分) (3) S 渔=-30t+390S 渔政=45t -360 分两种情况:① S 渔-S 渔政=30-30t+390-(45t -360)=30解得t=485(或9.6) -……………………………………………… (8分)② S 渔政-S 渔=3045t -360-(-30t+390)=30解得 t=525(或10.4)∴当渔船离开港口9.6小时或10.4小时时,两船相距30海里. ………(10分) 9.(本小题满分12分)解(1)BD =CF 成立.理由:∵△ABC 是等腰直角三角形,四边形ADEF 是正方形,∴AB=AC ,AD=AF ,∠BAC=∠DAF=90°,∵∠BAD=DAC BAC ∠-∠,∠CAF=DAC DAF ∠-∠,∴∠BAD=∠CAF ,∴△BAD ≌△CAF .∴BD =CF .……………………………………………………………………(4分)(2)①证明:设BG 交AC 于点M .∵△BAD ≌△CAF (已证),∴∠ABM =∠GCM . ∵∠BMA =∠CMG ,∴△BMA ∽△CMG .∴∠BGC =∠BAC =90°.∴BD ⊥CF .……………………………………(7分)②过点F 作FN ⊥AC 于点N . ∵在正方形ADEF 中,AD =2, ∴AN =FN =121=AE . ∵在等腰直角△ABC 中,AB =4, ∴CN =AC -AN =3,BC =2422=+AC AB .Rt △FCN ∽Rt △ABM ,∴ABCNAM FN =∴AM ==⨯AB 3134.∴CM =AC -AM =4-34=38,310422=+=AM AB BM .…… (9分)∵△BMA ∽△CMG ,∴CGCMBA BM =. ∴CG3843104=. ∴CG =5104.…………………………………… (11分)∴在Rt △BGC 中,=-=22CG BC BG 5108. ……………… (12分)10.解:(1):由题意得,A (3,0),B (0,3)BMNFE DCBA G 45°图13.3∵抛物线经过A 、B 、C 三点,∴把A (3,0),B (0,3),C (1,0)三点分别代入2y ax bx c =++得方程组⎪⎩⎪⎨⎧=++==++03039c b a c c b a 解得:⎪⎩⎪⎨⎧=-==341c b a ∴抛物线的解析式为243y x x =-+ …………………………… (4分) (2)由题意可得:△ABO 为等腰三角形,如图所示,若△ABO ∽△AP1D ,则1DP OBAD AO = ∴DP1=AD=4 , ∴P1(1,4)-若△ABO ∽△ADP2 ,过点P2作P2 M ⊥x 轴于M ,AD=4,∵△ABO 为等腰三角形, ∴△ADP2是等腰三角形,由三线合一可得:DM=AM=2= P2M ,即点M 与点C 重合∴P2(1,2) ……………………(8分) (3)如图设点E (,)x y ,则 ①当P1(-1,4)时,S 四边形AP1CE=S 三角形ACP1+S 三角形ACE ||2214221y ⋅⨯+⨯⨯== 4y + ∴24y y =+ ∴4y = ∵点E 在x 轴下方 ∴4y =-代入得: 2434x x -+=-,即 0742=+-x x∵△=(-4)2-4×7=-12<0 ∴此方程无解 ②当P2(1,2)时,S 四边形AP2CE=S 三角形ACP2+S三角形ACE =2y +∴22y y =+ ∴2y =∵点E 在x 轴下方 ∴2y =- 代入得:2432x x -+=-即 0542=+-x x ,∵△=(-4)2-4×5=-4<0∴此方程无解综上所述,在x 轴下方的抛物线上不存在这样的点E 。
中考数学几何模型5:角含半角模型TH 名师点睛拨开云雾开门见山角含半角模型,顾名思义即一个角包含着它的一半大小的角。
它主要包含:等腰直角三角形角含半角模型;正方形中角含半角模型两种类型。
解决类似问题的常见办法主要有两种:旋转目标三角形法和翻折目标三角形法。
类型一:等腰直角三角形角含半角模型(1)如图,在△ABC中,AB=AC,∠BAC=90°,点D,E在BC上,且∠DAE=45°,则:BD2+CE2=DE2.图示(1)作法1:将△ABD旋转90°作法2:分别翻折△ABD,△ACE(2)如图,在△ABC中,AB=AC,∠BAC=90°,点D在BC上,点E在BC延长线上,且∠DAE=45°,则:BD2+CE2=DE2.图示(2)(3)如图,将等腰直角三角形变成任意等腰三角形时,亦可以进行两种方法的操作处理..任意等腰三角形类型二:正方形中角含半角模型(1)如图,在正方形ABCD中,点E,F分别在边BC,CD上,∠EAF=45°,连接EF,过点A作AG⊥于EF于点G,则:EF=BE+DF,AG=AD.图示(1)作法:将△ABE绕点A逆时针旋转90°(2)如图,在正方形ABCD中,点E,F分别在边CB,DC的延长线上,∠EAF=45°,连接EF,则:EF=DF-BE.图示(2)作法:将△ABE绕点A逆时针旋转90°(3)如图,将正方形变成一组邻边相等,对角互补的四边形,在四方形ABCD中,AB=AD,∠BAD+∠C=180°,点E,F分别在边BC,CD上,∠EAF=12∠BAD,连接EF,则:EF=BE+DF.图示(3)作法:将△ABE绕点A逆时针旋转∠BAD的大小典题探究启迪思维探究重点例题1. 如图,正方形ABCD的边长为4,点E,F分别在AB,AD上,若CE=5,且∠ECF=45°,则CF 的长为4.【解答】解:如图,延长FD到G,使DG=BE;连接CG、EF;∵四边形ABCD为正方形,在△BCE与△DCG中,,∴△BCE≌△DCG(SAS),∴CG=CE,∠DCG=∠BCE,∴∠GCF=45°,在△GCF与△ECF中,,∴△GCF≌△ECF(SAS),∴GF=EF,∵CE=5,CB=4,∴BE=3,∴AE=1,设AF=x,则DF=4﹣x,GF=1+(4﹣x)=5﹣x,∴EF==,∴(5﹣x)2=1+x2,∴x=,即AF=,∴DF=4﹣=,∴CF===4,故答案为:4.变式练习>>>1.如图四边形ABCD中,AD∥BC,∠BCD=90°,AB=BC+AD,∠DAC=45°,E为CD上一点,且∠BAE=45°.若CD=4,则△ABE的面积为()A.B.C.D.【解答】解法一:作AF⊥CB交CB的延长线于F,在CF的延长线上取一点G,使得FG=DE.∵AD∥BC,∴∠BCD+∠ADC=180°,∴∠ADC=∠BCD=∠AFC=90°,∴四边形ADCF是矩形,∵∠CAD=45°,∴AD=CD,∴四边形ADCF是正方形,∴AF=AD,∠AFG=∠ADF=90°,∴△AFG≌△ADE,∴AG=AE,∠F AG=∠DAE,∴∠F AG+∠F AB=∠EAD+∠F AB=45°=∠BAE,∴△BAE≌△BAG,∴BE=BG=BF+GF=BF+DE,设BC=a,则AB=4+a,BF=4﹣a,在Rt△ABF中,42+(4﹣a)2=(4+a)2,解得a=1,∴BC=1,BF=3,设BE=b,则DE=b﹣3,CE=4﹣(b﹣3)=7﹣b.在Rt△BCE中,12+(7﹣b)2=b2,解得b=,∴BG=BE=,∴S△ABE=S△ABG=××4=.例题2. 在正方形ABCD中,连接BD.(1)如图1,AE⊥BD于E.直接写出∠BAE的度数.(2)如图1,在(1)的条件下,将△AEB以A旋转中心,沿逆时针方向旋转30°后得到△AB′E′,AB′与BD交于M,AE′的延长线与BD交于N.①依题意补全图1;②用等式表示线段BM、DN和MN之间的数量关系,并证明.(3)如图2,E、F是边BC、CD上的点,△CEF周长是正方形ABCD周长的一半,AE、AF分别与BD 交于M、N,写出判断线段BM、DN、MN之间数量关系的思路.(不必写出完整推理过程)【解答】解:(1)∵BD是正方形ABCD的对角线,∴∠ABD=∠ADB=45°,∵AE⊥BD,∴∠ABE=∠BAE=45°,(2)①依题意补全图形,如图1所示,②BM、DN和MN之间的数量关系是BM2+MD2=MN2,将△AND绕点D顺时针旋转90°,得到△AFB,∴∠ADB=∠FBA,∠BAF=∠DAN,DN=BF,AF=AN,∵在正方形ABCD中,AE⊥BD,∴∠ADB=∠ABD=45°,∴∠FBM=∠FBA+∠ABD=∠ADB+∠ABD=90°,在Rt△BFM中,根据勾股定理得,FB2+BM2=FM2,∵旋转△ANE得到AB1E1,∴∠E1AB1=45°,∴∠BAB1+∠DAN=90°﹣45°=45°,∵∠BAF=DAN,∴∠BAB1+∠BAF=45°,∴∠F AM=45°,∴∠F AM=∠E1AB1,∵AM=AM,AF=AN,∴△AFM≌△ANM,∴FM=MN,∵FB2+BM2=FM2,∴DN2+BM2=MN2,变式练习>>>2. (1)【探索发现】如图1,正方形ABCD中,点M、N分别是边BC、CD上的点,∠MAN=45°,若将△DAN绕点A顺时针旋转90°到△BAG位置,可得△MAN≌△MAG,若△MCN的周长为6,则正方形ABCD的边长为3.(2)【类比延伸】如图(2),四边形ABCD中,AB=AD,∠BAD=120°,∠B+∠D=180°,点M、N分别在边BC、CD 上的点,∠MAN=60°,请判断线段BM,DN,MN之间的数量关系,并说明理由.(3)【拓展应用】如图3,四边形ABCD中,AB=AD=10,∠ADC=120°,点M,N分别在边BC,CD上,连接AM,MN,△ABM是等边三角形,AM⊥AD,DN=5(﹣1),请直接写出MN的长.【解答】解:(1)如图1中,∵△MAN≌△MAG,∴MN=GM,∵DN=BG,GM=BG+BM,∴MN=BM+DN,∵△CMN的周长为:MN+CM+CN=6,∴BM+CM+CN+DN=6,∴BC+CD=6,∴BC=CD=3,故答案为3.(2)如图2中,结论:MN=NM+DN.延长CB至E,使BE=DN,连接AE,∵∠ABC+∠D=180°,∠ABC+∠ABE=180°,∴∠D=∠ABE,在△ABE和△ADN中,,∴△ABE≌△ADN,∴AN=AE,∠DAN=∠BAE,∵∠BAD=2∠MAN,∴∠DAN+∠BAM=∠MAN,∴∠MAN=∠EAM,在△MAN和△MAE中,,∴△MAN≌△MAE,∴MN=EM=BE+BM=BM+DN,即MN=BM+DN;(3)解:如图3,把△ABM绕点A逆时针旋转150°至△ADG,连接AN.作NH⊥AD于H,在AH上取一点K,使得∠NKH=30°在Rt△DHN中,∵∠NDH=60°DN=5(﹣1),∴DH=DN=,HN=DH=,在Rt△KNH中,KN=2HN=15﹣5,HK=HN=,∴AK=AH﹣HK=15﹣5,∴AK=KN,∴∠KAN=∠KNA,∵∠NKH=∠KAN+∠KNA,∴∠NAK=15°,∴∠MAN=75°=∠BAD,由(2)得,MN=BM+DN=10+5(﹣1)=5+5.例题3. 如图,在四边形ABCD中,AB=BC,∠A=∠C=90°,∠B=135°,K,N分别是AB,BC上的点,若△BKN的周长为AB的2倍,求∠KDN的度数.变式练习>>>3. 如图,正方形被两条与边平行的线段EF,GH分割成四个小矩形,P是EF与GH的交点,若矩形PFCH 的面积恰是矩形AGPE面积的2倍,试确定∠HAF的大小并证明你的结论.例题4. 如图,在四边形ABCD中,AB=AD,BC=CD,∠ABC=∠ADC=90°,∠MAN=∠BAD.(1)如图1,将∠MAN绕着A点旋转,它的两边分别交边BC、CD于M、N,试判断这一过程中线段BM、DN和MN之间有怎样的数量关系?直接写出结论,不用证明;(2)如图2,将∠MAN绕着A点旋转,它的两边分别交边BC、CD的延长线于M、N,试判断这一过程中线段BM、DN和MN之间有怎样的数量关系?并证明你的结论;(3)如图3,将∠MAN绕着A点旋转,它的两边分别交边BC、CD的反向延长线于M、N,试判断这一过程中线段BM、DN和MN之间有怎样的数量关系?直接写出结论,不用证明.【解答】解:(1)证明:延长MB到G,使BG=DN,连接AG.∵∠ABG=∠ABC=∠ADC=90°,AB=AD,∴△ABG≌△ADN.∴AG=AN,BG=DN,∠1=∠4.∴∠1+∠2=∠4+∠2=∠MAN=∠BAD.∴∠GAM=∠MAN.又AM=AM,∴△AMG≌△AMN.∴MG=MN.∵MG=BM+BG.∴MN=BM+DN.(2)MN=BM﹣DN.证明:在BM上截取BG,使BG=DN,连接AG.∵∠ABC=∠ADC=90°,AD=AB,∴△ADN≌△ABG,∴AN=AG,∠NAD=∠GAB,∴∠MAN=∠NAD+∠BAM=∠DAB,∴∠MAG=∠BAD,∴∠MAN=∠MAG,∴△MAN≌△MAG,∴MN=MG,∴MN=BM﹣DN.(3)MN=DN﹣BM.达标检测领悟提升强化落实1. 请阅读下列材料:问题:正方形ABCD中,M,N分别是直线CB、DC上的动点,∠MAN=45°,当∠MAN交边CB、DC 于点M、N(如图①)时,线段BM、DN和MN之间有怎样的数量关系?小聪同学的思路是:延长CB至E使BE=DN,并连接AE,构造全等三角形经过推理使问题得到解决.请你参考小聪同学的思路,探究并解决下列问题:(1)直接写出上面问题中,线段BM,DN和MN之间的数量关系;(2)当∠MAN分别交边CB,DC的延长线于点M/N时(如图②),线段BM,DN和MN之间的又有怎样的数量关系?请写出你的猜想,并加以证明;(3)在图①中,若正方形的边长为16cm,DN=4cm,请利用(1)中的结论,试求MN的长.【解答】解:(1)BM+DN=MN;(2)DN﹣BM=MN.理由如下:如图,在DC上截取DF=BM,连接AF.∵AB=AD,∠ABM=∠ADF=90°,∴△ABM≌△ADF(SAS)∴AM=AF,∠MAB=∠F AD.∴∠MAB+∠BAF=∠F AD+∠BAF=90°,即∠MAF=∠BAD=90°.又∠MAN=45°,∴∠NAF=∠MAN=45°.∵AN=AN,∴△MAN≌△F AN.∴MN=FN,即MN=DN﹣DF=DN﹣BM;(3)∵正方形的边长为16,DN=4,∴CN=12.根据(1)可知,BM+DN=MN,设MN=x,则BM=x﹣4,∴CM=16﹣(x﹣4)=20﹣x.在Rt△CMN中,∵MN2=CM2+CN2,∴x2=(20﹣x)2+122.解得x=13.6.∴MN=13.6cm.2. (1)如图1,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是边BC、CD上的点,且∠EAF=∠BAD.试探究图中线段BE、EF、FD之间的数量关系.(1)小王同学探究此问题的方法是:延长EB到点G,使BG=DF,连结AG,先证明△ABG≌△ADF,再证明△AEG≌△AEF,可得出结论,他的结论应是EF=BE+FD.(2)如图2,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是边BC、CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由.(3)如图3,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分别是边BC、CD延长线上的点,且∠EAF=∠BAD,(1)中的结论是否仍然成立?若成立,请证明;若不成立,请写出它们之间的数量关系,并证明.【解答】解:(1)由△ABG≌△ADF,△AEG≌△AEF可知,BG=DF,EF=EG=BG+EF=DF+EF,故答案为EF=BE+FD.(2)(1)中的结论EF=BE+FD仍然成立.理由:延长EB到点G,使BG=DF,连结AG.∵∠ABD+∠D=180°,∠ABD+∠ABG=180°,∴∠ABG=∠D,∴AB=AD,BG=DF,∴△ABG≌△ADF,∴∠BAG=∠DAF,AG=AF,∵∠EAF=∠BAD,∴∠BAE+∠DAF=∠BAD=∠BAE+∠BAG,∴∠EAG=∠EAF,∵AE=AE,AG=AF,∴△EAG≌△EAF,∴EG=EF,∵EG=BG+BE=DF+BE,∴EF=BE+DF.3. 小曼和他的同学组成了“爱琢磨”学习小组,有一次,他们碰到这样一道题:“已知正方形ABCD,点E、F、G、H分别在边AB、BC、CD、DA上,若EG⊥FH,则EG=FH.”为了解决这个问题,经过思考,大家给出了以下两个方案:方案一:过点A作AM∥HF交BC于点M,过点B作BN∥EG交CD于点N;方案二:过点A作AM∥HF交BC于点M,过点A作AN∥EG交CD于点N.…(1)对小曼遇到的问题,请在甲、乙两个方案中任选一个加以证明(如图(1)).(2)如果把条件中的“正方形”改为“长方形”,并设AB=2,BC=3(如图(2)),是探究EG、FH之间有怎样的数量关系,并证明你的结论.(3)如果把条件中的“EG⊥FH”改为“EG与FH的夹角为45°”,并假设正方形ABCD的边长为1,FH的长为(如图(3)),试求EG的长度.【解答】解:(1)证明:过点A作AM∥HF交BC于点M,作AN∥EG交CD的延长线于点N,∴AM=HF,AN=BC,在正方形ABCD中,AB=AD,∠ABM=∠BAD=∠ADN=90°∵EG⊥FH,∴∠NAM=90°,∴∠BAM=∠DAN,在△ABM和△ADN中,∠BAM=∠DAN,AB=AD,∠ABM=∠ADN∴△ABM≌△ADN∴AM=AN,即EG=FH(2)结论:EG:FH=3:2证明:过点A作AM∥HF交BC于点M,作AN∥EC交CD的延长线于点N,∴AM=HF,AN=EC,在长方形ABCD中,BC=AD,∠ABM=∠BAD=∠ADN=90°,∵EG⊥FH,∴∠NAM=90°,∴∠BAM=∠DAN.∴△ABM∽△ADN.,∵AB=2,BC=AD=3,∴.(3)解:过点A作AM∥HF交BC于点M,过点A作AN∥EG交CD于点N,∵.∴在Rt△ABM中,BM=.将△AND绕点A顺时针旋转90°到△APB.∵EG与FH的夹角为45°,∴∠MAN=45°,∴∠DAN+∠MAB=45°,即∠P AM=∠MAN=45°,从而△APM≌△ANM,∴PM=NM.设DN=x,则NC=1﹣x,MN=PM=.在Rt△CMN中,解得.∴.4. 已知:如图,正方形ABCD的边长为a,BM,DN分别平分正方形的两个外角,且满足∠MAN=45°,连接MC,NC,MN.(1)填空:与△ABM相似的三角形是_________,BM•DN=_________;(用含a的代数式表示)(2)求∠MCN的度数;(3)猜想线段BM,DN和MN之间的等量关系并证明你的结论.。
2015年中考数学复习培优第五讲:解直角三角形一、解直角三角形中几何模型:二、解直角三角形应用题:1.如图1,先锋村准备在坡角为的山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树在坡面上的距离AB 为( A. B. C. D.2.如图5,在平地上种植树木时,要求株距(相邻两树间的水平距离) 为4m .如果在坡度为i =0.75的山坡上种树,也要求株距为4m , 那么相邻两树间的坡面距离为( )A .5mB .6mC .7mD .8mααcos 5αcos 5αsin 5αsin 5BA3.如图,把两块相同的含30°角的三角尺按如图所示放置, 若AD=,则三角尺的斜边的长为( )A 、6B 、C 、10D 、124.在一次夏令营活动中,小亮从位于A 点的营地出发,沿北偏东60°方向走了5km 到达B 地,然后再沿北偏西30°方向走了若干千米到达C 地,测得A 地在C 地南偏西30°方向,则A 、C 两地的距离为( ) A.B. C. D. 5.如图,在▱ABCD 中,对角线AC 、BD 相交成的锐角为α,若AC =a ,BD =b ,则▱ABCD 的面积是( ) . absin αB . abcos α6.在数学活动课上,小敏,小颖分别画了△ABC 和△DEF ,AB=DE , 数据如图,如果把小敏画的三角形面积记作S △ABC ′小颖画的 三角形面积记作S △DEF ,那么你认为小敏和小颖画的两个三 角形面积的大小关系是S △ABC S △DEF .(填“>,<,或=”)7.在如图一段长56米的路段开辟停车位,每个车位是长5米 宽2.2米的矩形,矩形的边与路的边缘成45°角,那么这个路 段最多可以划出_____个这样的停车位.(≈1.4)8.如图,∠AOB=30°,OP 平分∠AOB ,PC ⊥OB 于点C .若OC=2, 则PC 的长是 . 9. 当锐角α _________ 时,有意义.计算:=10.如图,将的∠AOB 按图摆放在一把刻度尺上,顶点O 与 尺下沿的端点重合,OA 与尺下沿重合,OB 与尺上沿的交点B 在 尺上的读数为2cm ,若按相同的方式将的∠AOC 放置在该尺上, 则OC 与尺上沿的交点C 在尺上的读数约为 cm(结果精确到0.1 cm ,参考数据:,,)km 3310km 335km 25km 3545︒37︒sin 370.60︒≈cos370.80︒≈tan 370.75︒≈第4题图11. 如图,某公园入口处原有三级台阶,每级台阶高为18cm , 深为30cm ,为方便残疾人士,拟将台阶改为斜坡,设台阶的 起点为A ,斜坡的起始点为C ,现设计斜坡BC 的坡度, 则AC 的长度是 cm .12.小明是一位善于思考的学生,在一次数学活动课上,他将一 副直角三角板如图位置摆放,A 、B 、C 在同一直线上,EF∥AD, ∠A=∠EDF=90°,∠C=45°,∠E=60°,量得DE=8,则BD= 13.如图,矩形ABCD 是供一辆机动车停放的车位示意图,已知BC=2m , CD=5.4m ,∠DCF=30°,计算车位所占的宽度EF 约为 米 (,结果保留两位有效数字.)14.丁丁想在一个矩形材料中剪出如图阴影所示的梯形,作为要制作 的风筝的一个翅膀.则CD 的长度为 .≈1.7).15.如图,根据图中数据完成填空,再按要求答题:sin 2A 1+sin 2B 1= ;sin 2A 2+sin 2B 2= ;sin 2A 3+sin 2B 3= .(1)观察上述等式,猜想:在Rt △ABC 中,∠C =90°,都有sin 2A +sin 2B = . (2)如图④,在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别是a 、b 、c ,利用三角函数的定义和勾股定理,证明你的猜想.(3)已知:∠A+∠B=90°,且sinA + sinB = 1713,求sinA ·sinB 得值.1:5i =1.73≈16.观察与思考:阅读下列材料,并解决后面的问题.在锐角△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c .过A 作AD ⊥BC 于D(如图),则sinB=,sinC=,即AD=csinB ,AD=bsinC ,于是csinB=bsinC ,即.同理有,.所以,即:在一个三角形中,各边和它所对角的正弦的比相等.在锐角三角形中,若已知三个元素(至少有一条边),运用上述结论和有关定理就可以求出其余三个未知元素.根据上述材料,完成下列各题.(1)如图,△ABC 中,∠B=450,∠C=750,BC=60, 则∠A= ;AC= ;(2)如图,一货轮在C 处测得灯塔A 在货轮的北偏西30°的方向上,随后货轮以60海里/时的速度按北偏东30°的方向航行,半小时后到达B 处,此时又测得灯塔A 在货轮的北偏西75°的方向上(如图),求此时货轮距灯塔A 的距离AB.17.(2014•三明)如图,在山坡上植树,已知山坡的倾斜角α是20°,小明种植的两棵树间的坡面距离AB 是6米,要求相邻两棵树间的水平距离AC 在5.3~5.7米范围内,小明种植的这两棵树是否符合这个要求?(参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)c AD b AD CcB b sin sin =A aC c sin sin =Bb A a sin sin =C cB b A a sin sin sin ==CB18.(2014•巴中)如图,一水库大坝的横断面为梯形ABCD ,坝顶BC 宽6米,坝高20米,斜坡AB 的坡度i=1:2.5,斜坡CD 的坡角为30°,求坝底AD 的长度.(精确到0.1米,参考数据:≈1.414,≈1.732.提示:坡度等于坡面的铅垂高度与水平长度之比).19.(2014•漳州)将一盒足量的牛奶按如图1所示倒入一个水平放置的长方体容器中,当容器中的牛奶刚好接触到点P 时停止倒入.图2是它的平面示意图,请根据图中的信息,求出容器中牛奶的高度(结果精确到0.1cm ).(参考数据:≈1.73,≈1.41)20. 小鹏学完解直角三角形知识后,给同桌小艳出了一道题:“如图所示,把一张长方形卡片ABCD 放在每格宽度为12mm 的横格纸中,恰好四个顶点都在横格线上,已知∠α=36°,求长方形卡片的周长.”请你帮小艳解答这道题.(结果精确到1mm )FE21. 如图,已知斜坡AB长60米,坡角(即∠BAC)为30°,BC⊥AC,现计划在斜坡中点D 处挖去部分坡体(用阴影表示)修建一个平行于水平线CA的平台DE和一条新的斜坡BE.(请将下面2小题的结果都精确到0.1米,参考数据).⑴若修建的斜坡BE的坡角(即∠BAC)不大于45°,则平台DE的长最多为米;⑵一座建筑物GH距离坡脚A点27米远(即AG=27米),小明在D点测得建筑物顶部H的仰角(即∠HDM)为30°.点B、C、A、G、H在同一个平面上,点C、A、G在同一条直线上,且HG⊥CG,问建筑物GH高为多少米?22.一天晚上,李明和张龙利用灯光下影子的长来测量一路灯D高度,如图,当李明走到点A处时,张龙测得李明直立时身高AM与其影子长AE正好相等;接着李明沿AC方向继续向前走,走到点B处时,李明直立时身高BN的影子是线段AB,并测得AB=1.25m,已知李明直立时的身高为1.75m.求路灯的高CD的长.(结果精确到0.1m)E。
第二章不等式(组)与方程(组)第五讲不等式与不等式组,考标完全解读)考点考试内容考试要求一元一次不等式不等式、不等式解、解集概念了解在数轴上表示不等式的解集掌握不等式性质掌握一元一次不等式概念了解解一元一次不等式掌握一元一次不等式组列一元一次不等式组解决实际问题理解一元一次不等式组解集了解解一元一次不等式组理解,感受宜宾中考)1.(2016宜宾中考)宜宾市某化工厂,现有A 种原料52 kg ,B 种原料64 kg ,现用这些原料生产甲、乙两种产品共20件.已知生产1件甲种产品需要A 种原料3 kg ,B 种原料2 kg ;生产1件乙种产品需要A 种原料2 kg ,B种原料4 kg ,则生产方案的种数为( B )A .4种B .5种C .6种D .7种2.(2013宜宾中考改编)对于实数a ,b ,定义一种运算“*”为:a*b =a 2+ab -2,则不等式组⎩⎪⎨⎪⎧(-2)*x -4<0,1*x -3<0的解集为__-1<x <4__. 3.(2015宜宾中考)一元一次不等式组⎩⎪⎨⎪⎧x +2≥0,5x -1>0的解集是__x >15__.4.(2014宜宾中考)在我市举行的中学生安全知识竞赛中共有20道题,每一题答对得5分,答错或不答都扣3分.(1)小李考了60分,那么小李答对了多少道题?(2)小王获得二等奖(75~85分),请你算算小王答对了几道题. 解:(1)设小李答对了x 道题. 依题意,得 5x -3(20-x)=60. 解得x =15.答:小李答对了15道题; (2)设小王答对了y 道题.依题意,得⎩⎪⎨⎪⎧5y -3(20-y )≥75,5y -3(20-y )≤85,解得1358≤y ≤1458.∵y 是正整数,∴y =17或18. 答:小王答对了17道题或18道题.,核心知识梳理)不等式的概念及性质1.不等式:一般地,用不等号连接的式子叫做__不等式__.2.不等式的解:能使不等式成立的未知数的__值__叫做不等式的解;一个含有未知数的不等式的解的全体,叫做不等式的__解集__.3.不等式的基本性质性质1:不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向__不变__;性质2:不等式两边同乘(或除)以一个正数,不等号的方向__不变__;性质3:不等式两边同乘(或除)以一个负数,不等号的方向__改变__.【针对练习】已知a,b,c均为实数,若a>b,c≠0,下列结论不一定正确的是( D) A.a+c>b+c B.c-a<c-bC.ac2>bc2D.a2>ab>b2一元一次不等式的解法及数轴表示4.一元一次不等式:只含有__一个__未知数,且未知数的次数是__1次__的不等式,叫做一元一次不等式,其一般形式是__ax+b>0__或ax+b<0(a≠0).5.解一元一次不等式的一般步骤:(1)去分母;(2)去括号;(3)移项;(4)__合并同类项__;(5)系数化为1.6.一元一次不等式的解集在数轴上的表示解集解集在数轴上的表示x<a一元一次不等式组的解法及数轴表示7.一元一次不等式组:含有相同未知数的若干个__一元一次__不等式所组成的不等式组叫做一元一次不等式组.8.一元一次不等式组的解集:一元一次不等式组中各个不等式的__解集__的公共部分.9.解一元一次不等式组的步骤:(1)先求出各个不等式的__解集__;(2)再利用数轴找它们的__公共部分__;(3)写出不等式组的解集.10.几种常见的不等式组的解集如表(a<b,且a,b为常数)续表11.求不等式(组)的特殊解,一方面要先求不等式(组)的__解集__,然后在解集中找__特殊__解.12.列不等式(组)解应用题的步骤:(1)找出实际问题中的__不等__关系,设定未知数,列出不等式(组);(2)解不等式(组);(3)从不等式(组)的解集中求出符合题意的答案.【针对练习】(眉山中考)已知点M(1-2m,m-1)在第四象限,则m的取值范围在数轴上表示正确的是( B)一元一次不等式的实际应用13.审题→设一个未知数→找出题中所有的数量关系→列出不等式→解不等式→检验不等式的解集是否合理、是否符合实际情况.正确理解“至少”“最多”“不低于”“不大于”和“不等于”等词的含义.【针对练习】一个工程队原定在10天内至少要挖土600 m3,在前两天一共完成了120 m3,由于整个工程调整工期,要求提前两天完成挖土任务,则后6天平均每天要挖土__80____m3__.,重点难点解析)不等式的性质及应用【例1】如果a>b,那么下列不等式一定成立的是( )A.a2>b2B.1-a>1-bC.1+a>1-bD.1+a>b-1【解析】根据不等式的性质即可得出答案.A.不等式两边都平方,不等号可能改变,如-2>-3,则(-2)2<(-3)2,错误;B.a>b两边同乘以-1不等号改变,得-a<-b,两边再加1,得1-a<1-b,错误;C.不等式右边的b变为-b,不等式符号可能改变,错误;D.不等式左边加1,右边减1,正确.【答案】D【针对训练】1.下列四个命题中,正确的有( C)①若a>b,则a+1>b+1;②若a>b ,则a -1>b -1; ③若a>b ,则-2a>-2b ; ④若a>b ,则2a>2b.A .1个B .2个C .3个D .4个求解不等式(组)中的字母【例2】若不等式12x<2的解集都能使关于x 的一次不等式(a -3)x<a +5成立,则a 的取值范围是________.【解析】先求出12x<2的解集,再根据不等式(a -3)x<a +5用a 表示出x 的解集,再由题意可知不等式(a -3)x<a +5的解集包含12x<2的解集,列关于a 的不等式求解即可得到a 的取值范围.【答案】3<a≤173【针对训练】2.关于x 的不等式组⎩⎪⎨⎪⎧3x -1>4(x -1),x<m 的解集为x<3,那么m 的取值范围为(D )A .m =3B .m>3C .m<3D .m ≥3一元一次不等式(组)的解法【命题规律】考查一元一次不等式(组)的解法,根据不等式的解集找出不等式组的公共解集,以解答题为主.【例3】 解不等式组⎩⎪⎨⎪⎧3(x -1)<5x +1,x -22≥2x-4,并指出它的所有非负整数解.【解析】求出每一个不等式的解集,根据找不等式组解集的规律找出即可. 【答案】解:⎩⎪⎨⎪⎧3(x -1)<5x +1,①x -22≥2x-4,②由①,得x>-2,由②,得x≤2.∴原不等式解集为-2<x≤2,非负整数解为0,1,2.【点评】本题主要考查对不等式的性质、解一元一次不等式组、在数轴上表示不等式组的解集等知识点的理解和掌握,按照“同大取大,同小取小,大于小的小于大的取中间,小于小的大于大的无解”确定不等式组的解集.能根据不等式的解找出不等式组的解集是解本题的关键.注意在数轴上表示不等式的解集时,点是用实心圆圈还是空心圆圈.【针对训练】3.(巴中中考)不等式组⎩⎪⎨⎪⎧3x -1<x +1,2(2x -1)≤5x+1的最大整数解为(C )A .1B .-3C .0D .-14.(广安中考)函数y =3x +6中自变量x 的取值范围在数轴上表示正确的是( A )一元一次不等式(组)应用【例4】我国从2017年5月1日起在公众场所实行“禁烟”,为配合“禁烟”行动,某校组织开展了“吸烟有害健康”的知识竞赛,共有20道题,答对一题记10分,答错(或不答)一题记-5分,小明参加本次竞赛得分要超过100分.他至少要答对________道题.【解析】根据题意列不等式,设答对x题,则答错(或不答)(20-x)题,所以10x-5(20-x)>100即可.【答案】14【针对训练】5.2016年5月6日,中国第一条具有自主知识产权的长沙磁悬浮线正式开通运营,该线路连接了长沙火车南站和黄花国际机场两大交通枢纽,沿线生态绿化带走廊的建设尚在进行中,届时将给乘客带来美的享受.星城渣土运输公司承包了某标段的土方运输任务,拟派出大、小两种型号的渣土运输车运输土方,已知2辆大型渣土运输车与3辆小型渣土运输车一次共运输土方31 t,5辆大型渣土运输车与6辆小型渣土运输车一次共运输土方70 t.(1)一辆大型渣土运输车和一辆小型渣土运输车一次各运输土方多少吨?(2)该渣土运输公司决定派出大、小两种型号渣土运输车共20辆参与运输土方,若每次运输土方总量不少于148 t,且小型渣土运输车至少派出2辆,则有哪几种派车方案?解:(1)设一辆大型渣土运输车一次运输土方x t,一辆小型渣土运输车一次运输土方y t.由题意,得⎩⎪⎨⎪⎧2x +3y =31,5x +6y =70,解得⎩⎪⎨⎪⎧x =8,y =5.答:一辆大型渣土运输车一次运输土方8 t ,一辆小型渣土运输车一次运输土方5 t ;(2)设渣土运输公司决定派出大型渣土运输车m 辆,则派出小型渣土运输车(20-m)辆.由题意,得⎩⎪⎨⎪⎧8m +5(20-m )≥148,20-m≥2,解得:16≤m≤18.又∵m 为整数.∴m 可取16或17或18.因此有如下三种派车方案:方案一:派出大型渣土运输车16辆,小型渣土运输车4辆;方案二:派出大型渣土运输车17辆,小型渣土运输车3辆;方案三:派出大型渣土运输车18辆,小型渣土运输车2辆.,当堂过关检测)1.若m>n ,下列不等式不一定成立的是( D )A .m +2>n +2B .2m>2nC .m 2>n 2D .m 2>n 22.(达州中考)不等式组⎩⎪⎨⎪⎧x -3≤0,13(x -2)<x +1的解集在数轴上表示正确的是( D )3.(2017毕节中考)关于x 的一元一次不等式m -2x 3≤-2的解集为x≥4,则m 的值为( D ) A .14 B .7 C .-2 D .24.(2017内江中考)不等式组⎩⎪⎨⎪⎧3x +7≥2,2x -9<1的非负整数解的个数是( B )A .4B .5C .6D .75.(2017泰安中考)不等式组⎩⎪⎨⎪⎧2x +9>6x +1,x -k <1的解集为x <2.则k 的取值范围为( C )A .k >1B .k <1C .k ≥1D .k ≤16.(2017武汉中考)某公司为奖励在趣味运动会上取得好成绩的员工,计划购买甲、乙两种奖品共20件.其中甲种奖品每件40元,乙种奖品每件30元.(1)如果购买甲、乙两种奖品共花费了650元,求甲、乙两种奖品各购买了多少件;(2)如果购买乙种奖品的件数不超过甲种奖品件数的2倍,总花费不超过680元,则该公司有哪几种不同的购买方案?解:(1)设购买甲种奖品x 件,则购买乙种奖品(20-x)件.40x +30(20-x)=650,解得x =5,20-x =15.答:购买甲种奖品5件,乙种奖品15件;(2)设购买甲种奖品m 件,则购买乙种奖品(20-m)件.由题意,得⎩⎪⎨⎪⎧20-m≤2m,40m +30(20-m )≤680,解得203≤m ≤8. ∵m 为整数,∴m =7或m =8,当m =7时,20-m =13;当m =8时,20-m =12.即该公司有两种不同的进货方案:方案一:购买甲种奖品7件,乙种奖品13件;方案二:购买甲种奖品8件,乙种奖品12件.7.为了举行班级晚会,孔明准备去商店购买20个乒乓球做道具,并买一些乒乓球拍做奖品,已知乒乓球每个1.5元,球拍每个22元,如果购买金额不超过200元,且买的球拍尽可能多,那么孔明应该买多少个球拍?解:设购买球拍x个.依题意,得1.5×20+22x≤200,解得x≤7811.又x为整数,∴x最大=7.答:孔明应该买7个球拍.教后反思:______________________________________________________________________________________________________________________________________________________________________________________________________________ ________________________________________________________________________ ______________________________________________________________________ ________________________________________________________________________。
2015年中考数学复习培优第五讲:相似三角形一、相似三角形知识点总结1. 比例线段的有关概念: 在比例式::中,、叫外项,、叫内项,、叫前项,a b cda b c d a d b c a c ==() b 、d 叫后项,d 叫第四比例项,如果b=c ,那么b 叫做a 、d 的比例中项。
把线段AB 分成两条线段AC 和BC ,使AC 2=AB ·BC ,叫做把线段AB 黄金分割,C 叫做线段AB 的黄金分割点。
2. 比例性质:①基本性质:a b c d ad bc =⇔= ②合比性质:±±a b c d a b b c d d =⇒=③等比性质:……≠……a b c d m n b d n a c m b d n ab ===+++⇒++++++=()03. 平行线分线段成比例定理:①定理:三条平行线截两条直线,所得的对应线段成比例,如图:l 1∥l 2∥l 3。
则,,,…AB BC DE EF AB AC DE DF BC AC EF DF=== ②推论:平行于三角形一边的直线截其他两边(或两边的延长线)所得的对应线段成比例。
4. 相似三角形的判定:①两角对应相等,两个三角形相似;②两边对应成比例且夹角相等,两三角形相似③三边对应成比例,两三角形相似;④如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角形相似⑤平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似⑥直角三角形被斜边上的高分成的两个直角三角形和原三角形相似 5. 相似三角形的性质①相似三角形的对应角相等;②相似三角形的对应边成比例③相似三角形对应高的比、对应中线的比和对应角平分线的比都等于相似比④相似三角形周长的比等于相似比; ⑤相似三角形面积的比等于相似比的平方6.相似基本图形:平行,不平行;变换对应关系作出正确的分类:(1)如图:称为“平行线型”的相似三角形(有“A型”与“X型”图)(2) 如图:其中∠1=∠2,则△ADE∽△ABC称为“斜交型”的相似三角形。
(有“A型反转型”、“ A型反转重合型”、“蝶型”)(3)如图:称为“垂直型”(有“双垂直共角型”、“双垂直共角共边型(也称“射影定理型”)”“三垂直型”)(4)如图:∠1=∠2,∠B=∠D,则△ADE∽△ABC,称为“旋转型”的相似三角形。
几种基本图形的具体应用:(1)若DE∥BC(A型和X型)则△ADE∽△ABC(2)射影定理若CD为Rt△ABC斜边上的高(双直角图形)则Rt△ABC∽Rt△ACD∽Rt△CBD且AC2=AD²AB,CD2=AD²BD,BC2=BD²AB;(3)满足1、AC2=AD²AB,2、∠ACD=∠B,3、∠ACB=∠ADC,都可判定△ADC∽△ACB.(4)当AD AEAC AB或AD²AB=AC²AE时,△ADE∽△ACB.BEACD12ABCDE12AABB C CDDEE12412BC(D)B(3)DB(2)D1.如果两个图形不仅是相似图形,而且每组对应顶点的连线都交于一点,那么这两个图形叫做位似图形.2. 这个点叫做位似中心,这时的相似比又称为位似比.注:(1)位似图形是相似图形的特例,位似图形不仅相似,而且对应顶点的连线相交于一点.(2)位似图形一定是相似图形,但相似图形不一定是位似图形.(3)位似图形的对应边互相平行或共线.3.位似图形的性质:位似图形上任意一对对应点到位似中心的距离之比等于相似比.注:位似图形具有相似图形的所有性质.4. 画位似图形的一般步骤:(1)确定位似中心(位似中心可以是平面中任意一点)(2)分别连接原图形中的关键点和位似中心,并延长(或截取).(3)根据已知的位似比,确定所画位似图形中关键点的位置.(4)顺次连结上述得到的关键点,即可得到一个放大或缩小的图形. ①②③④⑤注:①位似中心可以是平面内任意一点,该点可在图形内,或在图形外,或在图形上(图形边上或顶点上)。
②外位似:位似中心在连接两个对应点的线段之外,称为“外位似”(即同向位似图形)③内位似:位似中心在连接两个对应点的线段上,称为“内位似”(即反向位似图形)(5)在平面直角坐标系中,如果位似变换是以原点O为位似中心,相似比为k(k>0),原图形上点的坐标为(x,y),那么同向位似图形对应点的坐标为(kx,ky), 反向位似图形对应点的坐标为(-kx,-ky),二、精选习题1、如图是小明设计用手电来测量某古城墙高度的示意图,点P 处放一水平的平面镜,光线从点A 出发经平面镜反射后刚好射到古城墙CD 的顶端C 处,已知AB ⊥BD ,CD ⊥BD ,且测得AB=1.2米,BP=1.8米,PD=12米, 那么该古城墙的高度是( ) A 、6米 B 、8米 C 、18米 D 、24米2、如图,已知D 、E 分别是的AB 、 AC 边上的点,且 那么等于( ) A .1 : 9 B .1 : 3 C .1 : 8D .1 : 23、如图,是由经过位似变换得到的,点是位似中心,分别是的中点,则与的面积比是( ) A .B .C .D .4、如上图,直角梯形ABCD 中,∠BCD =90°,AD ∥BC ,BC =CD ,E 为梯形内一点,且∠BEC =90°,将△BEC 绕C 点旋转90°使BC 与DC 重合,得到△DCF ,连EF 交CD 于M .已知BC =5,CF =3,则DM:MC 的值为 ( ) A.5:3 B.3:5 C.4:3 D.3:45、如图,Rt △ABAC 中,AB ⊥AC ,AB =3,AC =4,P 是BC 边上一点,作PE ⊥AB 于E,PD ⊥AC 于D ,设BP =x ,则PD+PE =( ) A.B. C.D.6、如图,在Rt △ABC 内有边长分别为的三个正方形,则满足的关系式是( ) A 、 B 、 C 、 D 、7、如图,△ABC 是等边三角形,被一平行于BC 的矩形所截,AB 被 截成三等分,则图中阴影部分的面积是△ABC 的面积的 ( )A.B.C. D. 8、下列四个三角形,与左图中的三角形相似的是( )ABC ∆,DE BC //1ADEDBCE S S :=:8,四边形:AE AC DEF △ABC △O D E F ,,OA OB OC ,,DEF △ABC △1:61:51:41:235x +45x -7221212525x x -,,a b c ,,a b c b a c =+b ac =222b ac =+22b a c ==91923194A .B .C .D .B ADEE9、如图,两点分别在的边上,与不平行,当满足 条件(写出一个即可)时,.10、如图平行四边形中,是边上的点,交于点,如果,则 . 11、在Rt △ABC 中,∠C 为直角,CD ⊥AB 于点D,BC=3,AB=5,写出其中的一对相似三角形是 和 ; 并写出它的面积比 .12、如图,已知AB ⊥BD ,ED ⊥BD ,C 是线段BD 的中点,且AC ⊥CE ,ED=1,BD=4,那么AB= 13、如图,点在射线上,点在射线上, 且,.若, 的面积分别为1,4,则图中三个阴影三角形面积之和为14、如图10,四边形ABCD 、DEFG 都是正方形,连接AE 、CG,AE 与CG 相交于点M ,CG 与AD 相交于点N . 求证:(1)(2)15、如图,在中,,,,分别是边的中点,点从点出发沿方向运动,过点作于,过点作交于,当点与点重合时,点停止运动.设,. (1)求点到的距离的长;(2)求关于的函数关系式(不要求写出自变量的取值范围); D E ,ABC △AB AC ,DE BC ADE ACB △∽△ABCD E BC AE BD F 23BE BC =BFFD=1234A A A A ,,,OA 123B B B ,,OB 112233A B A B A B ∥∥213243A B A B A B ∥∥212A B B △323A B B △CG AE =.MN CN DN AN ∙=∙Rt ABC △90A ∠=6AB =8AC =D E ,AB AC ,P D DE P PQ BC ⊥Q Q QR BA ∥AC R Q C P BQ x =QR y =D BC DH y x ABCDERP H QDB 1 2 3416、如图,四边形和四边形都是平行四边形,点为的中点,分别交于点.(1)请写出图中各对相似三角形(相似比为1除外); (2)求.17、如图,在平面直角坐标系中,点,点分别在轴,轴的正半轴上,且满足.(1)求点,点的坐标.(2)若点从点出发,以每秒1个单位的速度沿射线运动,连结.设的面积为,点的运动时间为秒,求与的函数关系式,并写出自变量的取值范围.(3)在(2)的条件下,是否存在点,使以点为顶点的三角形与相似?若存在,请直接写出点的坐标;若不存在,请说明理由.ABCD ACED R DE BR AC CD ,P Q ,::BP PQ QR (30)C -,A B ,xy 10OA -=A B P C CB AP ABP △S P t S t P A B P ,,AOB △P ABC D EPORx。