第一讲 不等式和绝对值不等式 知识归纳 课件(人教A选修4-5)
- 格式:ppt
- 大小:735.00 KB
- 文档页数:23
1.不等式的基本性质1.实数大小的比较(1)数轴上的点与实数一一对应,可以利用数轴上点的左右位置关系来规定实数的大小.在数轴上,右边的数总比左边的数大.(2)如果a-b>0,则a>b;如果a-b=0,则a=b;如果a-b<0,则a<b.(3)比较两个实数a与b的大小,归结为判断它们的差a-b的符号;比较两个代数式的大小,实际上是比较它们的值的大小,而这又归结为判断它们的差的符号.2.不等式的基本性质由两数大小关系的基本事实,可以得到不等式的一些基本性质:(1)如果a>b,那么b<a;如果b<a,那么a>b.即a>b⇔b<a.(2)如果a>b,b>c,那么a>c.即a>b,b>c⇒a>c.(3)如果a>b,那么a+c>b+c.(4)如果a>b,c>0,那么ac>bc;如果a>b,c<0,那么ac<bc.(5)如果a>b>0,那么a n>b n(n∈N,n≥2).(6)如果a>b>0,那么na>nb(n∈N,n≥2).3.对上述不等式的理解使用不等式的性质时,一定要清楚它们成立的前提条件,不可强化或弱化它们成立的条件,盲目套用,例如:(1)等式两边同乘以一个数仍为等式,但不等式两边同乘以同一个数c(或代数式)结果有三种:①c>0时得同向不等式;②c=0时得等式;③c<0时得异向不等式.(2)a>b,c>d⇒a+c>b+d,即两个同向不等式可以相加,但不可以相减;而a>b>0,c>d>0⇒ac>bd,即已知的两个不等式同向且两边为正值时,可以相乘,但不可以相除.(3)性质(5)、(6)成立的条件是已知不等式两边均为正值,并且n∈N,n≥2,否则结论不成立.而当n取正奇数时可放宽条件,a>b⇒a n>b n(n=2k+1,k∈N),a>b⇒na>nb(n=2k+1,k∈N+).(4)在不等式的基本性质中,条件和结论的逻辑关系有两种:“⇒”与“⇔”,即推出关系和等价关系,或者说“不可逆关系”与“可逆关系”.这要求必须熟记与区别不同性质的条件.如a>b,ab>0⇒1a<1b,而反之不成立.数、式大小的比较[例1] 已知p q p q px qy 2px 2qy 2[思路点拨] 利用作差法比较两数的大小,并注意等号成立的条件. [解] (px +qy )2-(px 2+qy 2) =p 2x 2+2pqxy +q 2y 2-px 2-qy 2=p (p -1)x 2+q (q -1)y 2+2pqxy .因为p +q =1,所以p -1=-q ,q -1=-p . 所以(px +qy )2-(px 2+qy 2) =-pq (x 2+y 2-2xy )=-pq (x -y )2. 因为p ,q 为正数,所以-pq (x -y )2≤0. 所以(px +qy )2≤px 2+qy 2.当且仅当x =y 时,不等式中等号成立.比较两个数(式子)的大不,一般用作差法,其步骤是:作差—变形—判断差的符号—结论,其中“变形”是关键,常用的方法是分解因式、配方等.1.已知a ,b ∈R ,比较a 4+b 4与a 3b +ab 3的大小. 解:因为(a 4+b 4)-(a 3b +ab 3) =a 3(a -b )+b 3(b -a ) =(a -b )(a 3-b 3) =(a -b )2(a 2+ab +b 2)=(a -b )2⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫a +b 22+34b 2≥0, (当且仅当a =b 时,取“=”号) 所以a 4+b 4≥a 3b +ab 3.2.已知x ,y 均为正数,设m =1x +1y ,n =4x +y ,试比较m 与n 的大小.解:m -n =1x +1y -4x +y =x +y xy -4x +y=(x +y )2-4xy xy (x +y )=(x -y )2xy (x +y ),∵x ,y 均为正数,∴x >0,y >0,xy >0,x +y >0,(x -y )2≥0, ∴m -n ≥0,即m ≥n ,当且仅当x =y 时取等号.不等式的证明[例2] 已知a >b c d e 求证:ea -c >eb -d.[思路点拨] 可以作差比较,也可用不等式的性质直接证明. [证明] 法一:e a -c -eb -d =e (b -d -a +c )(a -c )(b -d )=e (b -a +c -d )(a -c )(b -d ),∵a >b >0,c <d <0, ∴b -a <0,c -d <0. ∴b -a +c -d <0. 又∵a >0,c <0,∴a -c >0. 同理b -d >0, ∴(a -c )(b -d )>0. ∵e <0,∴e (b -a +c -d )(a -c )(b -d )>0.即ea -c >eb -d.法二:⎭⎪⎬⎪⎫c <d <0⇒-c >-d >0a >b >0⇒⎭⎪⎬⎪⎫a -c >b -d >0⇒1a -c <1b -d e <0⇒e a -c >e b -d.进行简单的不等式的证明,一定要建立在记准、记熟不等式性质的基础之上,如果不能直接由不等式的性质得到,可以先分析需要证明的不等式的结构,利用不等式的性质进行逆推,寻找使其成立的充分条件.3.设a >b >0,求证:a 2-b 2a 2+b 2>a -ba +b .证明:法一:∵a 2-b 2a 2+b 2-a -ba +b=(a -b )[(a +b )2-(a 2+b 2)](a 2+b 2)(a +b )=2ab (a -b )(a 2+b 2)(a +b )>0, ∴原不等式成立.法二:∵a >b >0,故a 2>b 2>0. 故左边>0,右边>0.∴左边右边=(a +b )2a 2+b 2=1+2ab a 2+b 2>1. ∴原不等式成立.4.已知a >b >0,d >c >0,求证:a c >b d. 证明:因为d >c >0,所以1c >1d>0.又因为a >b >0, 所以a ·1c >b ·1d ,即a c >bd.利用不等式的性质求范围[例3] 已知30<x <42,16<y <24,求x +y ,x -2y ,xy的取值范围. [思路点拨] 根据题目提供的条件,结合不等式的性质进行求解. [解] ∵30<x <42,16<y <24, ∴46<x +y <66. ∵16<y <24, ∴-48<-2y <-32, ∴-18<x -2y <10. ∵16<y <24, ∴124<1y <116. ∴54<x y <218.求代数式的取值范围是不等式性质应用的一个重要方面,严格依据不等式的性质和运算法则进行运算,是解答此类问题的基础,在使用不等式的性质中,如果是由两个变量的范围求其差的范围,一定不能直接作差,而要转化为同向不等式后作和.5.已知-π2≤α<β≤π2,求α-β的取值范围.解:∵-π2≤α<β≤π2,∴-π2≤α<π2,-π2≤-β<π2,且α<β.∴-π≤α-β<π,且α-β<0.∴-π≤α-β<0.即α-β的取值范围为[-π,0).6.已知1≤α+β≤4,-2≤α-β≤-1,求2α-β的取值范围. 解:设2α-β=m (α+β)+n (α-β),∴⎩⎪⎨⎪⎧m +n =2,m -n =-1,解得⎩⎪⎨⎪⎧m =12,n =32.又1≤α+β≤4,-2≤α-β≤-1, ∴⎩⎪⎨⎪⎧12≤12(α+β)≤2,-3≤32(α-β)≤-32,∴-52≤2α-β≤12.∴2α-β的取值范围为⎣⎢⎡⎦⎥⎤-52,12.1.已知数轴上两点A ,B 对应的实数分别为x ,y ,若x <y <0,则|x |与|y |对应的点P ,Q 的位置关系是( )A .P 在Q 的左边B .P 在Q 的右边C .P ,Q 两点重合D .不能确定解析:选B ∵x <y <0,∴|x |>|y |>0. 故P 在Q 的右边.2.已知a ,b ,c ∈R ,且ab >0,则下面推理中正确的是( ) A .a >b ⇒am 2>bm 2B.a c >b c⇒a >bC .a 3>b 3⇒1a <1bD .a 2>b 2⇒a >b解析:选C 对于A ,若m =0,则不成立;对于B ,若c <0,则不成立;对于C ,a 3-b 3>0⇒(a -b )(a 2+ab +b 2)>0,∵a 2+ab +b 2=⎝ ⎛⎭⎪⎫a +b 22+34b 2>0恒成立,∴a -b >0,∴a >b .又∵ab >0,∴1a <1b.∴C 成立;对于D ,a 2>b 2⇒(a -b )(a +b )>0,不能说a >b .3.已知a ,b ,c ∈(0,+∞),若ca +b <ab +c <bc +a,则( )A .c <a <bB .b <c <aC .a <b <cD .c <b <a解析:选 A 由ca +b <ab +c <bc +a,可得c a +b+1<a b +c+1<b c +a+1,即a +b +ca +b<a +b +c b +c <a +b +cc +a ,又a ,b ,c ∈(0,+∞),所以a +b >b +c >c +a .由a +b >b +c 可得a >c ;由b +c >c +a 可得b >a ,于是有c <a <b .4.若a ,b 为实数,则“0<ab <1”是“a <1b 或b >1a”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A 对于0<ab <1,如果a >0,则b >0,a <1b 成立,如果a <0,则b <0,b >1a成立,因此“0<ab <1”是“a <1b 或b >1a ”的充分条件;反之,若a =-1,b =2,结论“a <1b 或b >1a”成立,但条件0<ab <1不成立,因此“0<ab <1”不是“a <1b 或b >1a”的必要条件,即“0<ab <1”是“a <1b 或b >1a”的充分不必要条件.5.若f (x )=3x 2-x +1,g (x )=2x 2+x -1,则f (x )与g (x )的大小关系是f (x )________g (x ).解析:∵f (x )-g (x )=(3x 2-x +1)-(2x 2+x -1)=x 2-2x +2=(x -1)2+1≥1>0,∴f (x )>g (x ).答案:> 6.下列命题: ①c -a <c -b ⇔a >b ;②a <0<b ⇒1a <1b;③c a <c b ,且c >0⇒a >b ;④ na <nb (n ∈N ,n >1)⇒a <b . 其中真命题是________.(填序号) 解析:①c -a <c -b ⇒-a <-b ⇒a >b . ②a <0<b ⇒1a <0,1b >0⇒1a <1b.③c a -c b =c (b -a )ab<0,∵c >0,∴有⎩⎪⎨⎪⎧ b -a >0,ab <0或⎩⎪⎨⎪⎧b -a <0,ab >0即⎩⎪⎨⎪⎧a <b ,ab <0或⎩⎪⎨⎪⎧a >b ,ab >0.∴③不正确,④中无论n 为奇数或偶数, 均可由n a <nb (n ∈N ,n >1)⇒a <b . ∴①②④正确. 答案:①②④7.设x =a 2b 2+5,y =2ab -a 2-4a ,若x >y ,则实数a ,b 应满足的条件为________. 解析:∵x >y ,∴x -y =a 2b 2+5-2ab +a 2+4a =(ab -1)2+(a +2)2>0. ∴ab -1≠0或a +2≠0. 即ab ≠1或a ≠-2. 答案:ab ≠1或a ≠-28.若a >0,b >0,求证:b 2a +a 2b ≥a +b .证明:∵b 2a +a 2b -a -b =(a -b )⎝ ⎛⎭⎪⎫a b -b a =(a -b )2(a +b )ab,(a -b )2≥0恒成立,且已知a >0,b >0, ∴a +b >0,ab >0.∴(a -b )2(a +b )ab ≥0.∴b 2a +a 2b≥a +b .9.若f (x )=ax 2+bx ,且1≤f (-1)≤2,2≤f (1)≤4,求f (-2)的取值范围. 解:∵f (-1)=a -b ,f (1)=a +b , 令f (-2)=4a -2b =Af (-1)+Bf (1),则⎩⎪⎨⎪⎧A +B =4,B -A =-2⇒⎩⎪⎨⎪⎧A =3,B =1.∴f (-2)=3f (-1)+f (1). ∵1≤f (-1)≤2,2≤f (1)≤4, ∴3≤3f (-1)≤6, ∴5≤f (1)+3f (-1)≤10, ∴5≤f (-2)≤10.故f (-2)的取值范围为[5,10]. 10.已知a >0,a ≠1. (1)比较下列各组大小.①a 2+1与a +a ;②a 3+1与a 2+a ; ③a 5+1与a 3+a 2.(2)探讨在m ,n ∈N +条件下,a m +n+1与a m +a n的大小关系,并加以证明.解:(1)∵a >0,a ≠1, ∴①a 2+1-(a +a )=a 2+1-2a =(a -1)2>0. ∴a 2+1>a +a . ②a 3+1-(a 2+a ) =a 2(a -1)-(a -1) =(a +1)(a -1)2>0, ∴a 3+1>a 2+a , ③a 5+1-(a 3+a 2) =a 3(a 2-1)-(a 2-1) =(a 2-1)(a 3-1). 当a >1时,a 3>1,a 2>1, ∴(a 2-1)(a 3-1)>0. 当0<a <1时,0<a 3<1,0<a 2<1, ∴(a 2-1)(a 3-1)>0. 即a 5+1>a 3+a 2.(2)根据(1)可探讨,得a m+n+1>a m+a n.证明如下:a m+n+1-(a m+a n)=a m(a n-1)+(1-a n)=(a m-1)(a n-1).当a>1时,a m>1,a n>1,∴(a m-1)(a n-1)>0.当0<a<1时,0<a m<1,0<a n<1,∴(a m-1)(a n-1)>0.综上(a m-1)(a n-1)>0,即a m+n+1>a m+a n.。