Dependent Rounding in Bipartite Graphs Rajiv Gandhi
- 格式:pdf
- 大小:168.33 KB
- 文档页数:10
聚集数据线性模型参数的有偏估计的相对效率
周永正
【期刊名称】《南昌大学学报(工科版)》
【年(卷),期】2007(029)003
【摘要】有偏估计方法是近代回归分析的常用方法.本文研究聚集数据的线性模型参数的有偏估计问题,在欧氏模之比意义下给出了参数的有偏估计的一个相对效率,并在加权欧氏模之比意义下给出了参数的有偏估计的一个相对效率,并得到了这两种相对效率的上界.
【总页数】4页(P279-282)
【作者】周永正
【作者单位】景德镇陶瓷学院,江西,景德镇,333403
【正文语种】中文
【中图分类】O212.1
【相关文献】
1.聚集数据线性模型中广义岭估计相对效率问题 [J], 周永正;孔德娟;周勇
2.聚集数据的线性模型参数的有偏估计 [J], 周永正;张三强;陈全园
3.聚集数据线性模型参数的广义聚集压缩双参数估计 [J], 左卫兵;牛艳飞
4.聚集数据线性模型参数估计的相对效率与广义相关系数 [J], 周永正
5.聚集数据的线性模型参数估计的加权相对效率 [J], 王祖喜;黄养新;李跃波
因版权原因,仅展示原文概要,查看原文内容请购买。
平面上的近似连续积分(英文)
叶国菊
【期刊名称】《数学研究》
【年(卷),期】1999(32)3
【摘要】无
【总页数】1页(P238)
【作者】叶国菊
【作者单位】无
【正文语种】中文
【相关文献】
1.辨识连续模型的高阶近似积分法 [J], 黄新生
2.模糊数值函数的可测性、近似连续性及积分原函数的可导性 [J], 巩增泰
3.关于绝对连续函数的黎曼-斯蒂尔切斯积分的近似计算 [J], 卢国富;廉换霞
4.连续态数值波函数归一化的近似计算及TRK求和中余项的积分处理 [J], 曹伟;朱云霞;陆慧;贺黎明
5.用于发酵过程多目标优化的几何支持向量回归Pareto前沿的连续近似方法(英文) [J], 吴佳欢;王建林;于涛;赵利强
因版权原因,仅展示原文概要,查看原文内容请购买。
双三次b样条曲面与费格森曲面和双三次贝齐尔曲面的等价关系式双三次B样条曲面(Bi-Cubic B-Spline Surface)是一类基于多项式插值的曲面表示方法。
在计算机图形学、计算机辅助设计、机器视觉等领域中广泛应用。
而费格森曲面(Ferguson Surface)和双三次贝齐尔曲面(Bi-Cubic Bezier Surface)也是常见的曲面生成方法。
本文将介绍这三种曲面生成方法的等价关系式。
首先我们来介绍双三次B样条曲面。
B样条曲面是一种通过控制顶点来控制曲面形状的方法。
B样条曲面利用局部控制的特点,可以被看作是一种分段多项式曲面,因此具有一定的灵活性。
双三次B样条曲面是一种常用的B样条曲面表示方法,其控制点的方程用二阶分段多项式表示。
费格森曲面是另一种曲面表示方法,它采用二次多项式的形式表示曲面。
它的控制顶点包括四个点:一个内部点和三个连接该内部点的边界点。
费格森曲面对于局部变形和替换,具有一定的优势。
双三次贝齐尔曲面也是一种常用的曲面表示方法,其控制点方程用三次多项式表示。
通过控制顶点的变换,可以轻松地调整曲面的形状和平滑度。
关于这三种曲面表示方法的等价关系式,在很长一段时间内一直是一个研究热点。
事实上,它们之间有一定程度上的等价性。
具体而言,费格森曲面和双三次贝齐尔曲面都可以看作是双三次B样条曲面的一种特殊情况。
以费格森曲面为例,我们可以将其表示成如下形式:S(u,v) = [(1-u)^3P0 + 3u(1-u)^2P1 + 3u^2(1-u)P2 +u^3P3]× (1-v)^2+ [(1-u)^3Q0 + 3u(1-u)^2Q1 + 3u^2(1-u)Q2 + u^3Q3] × v^2+ 3[(1-u)^2P0 + 2u(1-u)P1 + u^2P2] × (1-v)^2v+ 3[(1-u)^2Q0 + 2u(1-u)Q1 + u^2Q2] × v^2(1-v)其中,P0、P1、P2、P3和Q0、Q1、Q2、Q3为角点坐标。
吉林大学毕业论文(设计)要求及格式论文要求一、评优的毕业论文(设计)必须经过答辩。
二、毕业论文(设计)必须打印。
文中所有的公式、图表及程序代码,在条件许可时,应打印输出。
三、撰写200字左右的中文论文摘要,提倡以中外两种文字书写,外文摘要附在中文摘要之后。
四、毕业论文(设计)一律左侧装订,A4正常打印。
封面采用吉林大学统一模式。
(注:论文采用A4开本;正文字体:“All Times Roman”;正文字号:“小四”;页眉:“吉林大学毕业生论文”居左+“论文题目”居右,字号:六号,字体:“宋体”;格式要求详见附件)五、文中所用的符号、缩略词、制图规范和计量单位,必须遵守国家规定的标准或本学科通用标准。
作者自己拟定的符号、记号缩略词,均应在第一次出现时加以说明。
六、注序要与文中提及的页码一致。
七、文中引述的参考文献一律列在文章末尾,应分别依次标出:【期刊文献】:编号、作者、文章题目、刊名、年份、卷期、引用页码【图书文献】:编号、作者、书号、出版单位、出版年份、版次、引用页码。
八、论文包括:摘要(中、英)、目录、绪论、章节、致谢、参考文献等。
(例如第一章、第二章第一节、第二节)九、目录单独标注页码;绪论、章节、致谢、参考文献等统一标注页码。
摘要(中、英)不标注页码。
十、指导教师评语、评阅人评语、答辩意见,在装订时,装订在论文的最后。
(见最后三页,打出来,放到论文打印稿的最后三页,顺序为指导教师、评阅人、答辩组组长)十一、字数:6000—12000字。
吉林大学应用技术学院No.毕业论文(设计)题目:_________________________________________________ _________________________________________________学生姓名__________________专业__________________班级__________________指导教师__________________年月日目录格式:目录(3号黑体,居中)绪论(4号宋体,行距22磅,下同)……………………………1第一章………………………………………………………………Y第1节……………………………………………………………Y第X节…………………………………………………………(略)第X章×××××(正文第X章)………………………………Y第1节……………………………………………………………Y第X节…………………………………………………………(略)结论………………………………………………………………Y参考文献……………………………………………………………Y致谢………………………………………………………………Y附录A ××××(必要时)………………………………………Y图1 ×××××(必要时)………………………………………Y(空2行)摘要(4号黑体,居中)XXXXXXXX(空1行)(4号黑体)××××××××××××××××(小4号宋体,1.5倍行距)×××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××××。
一类自伴与本质自伴的加权复合算子
赵国俊;郭树林
【期刊名称】《南京工程学院学报(自然科学版)》
【年(卷),期】2008(006)002
【摘要】研究了经典Bergman空间上加权复合算子的自伴性与本质自伴性.利用再生核函数刻化了自伴的加权复合算子;利用紧Carleson测度和紧Hankel算子给出了D上线性分式自映射所诱导的加权复合算子本质自伴的充要条件.
【总页数】5页(P1-5)
【作者】赵国俊;郭树林
【作者单位】南京工程学院基础部,江苏南京,211167;南京工程学院基础部,江苏南京,211167
【正文语种】中文
【中图分类】O174.5
【相关文献】
1.解析函数空间上的自伴加权复合算子 [J], 江治杰
2.铸瓷贴面修复伴牙本质暴露的前牙牙体缺损疗效观察 [J], 包凡;郭慧;董菲;汤雁利
3.Ⅲ型牙本质发育不全(壳牙)伴多生牙1例 [J], 唐瑭;刘波;陈梅红;刘娟
4.铸瓷贴面修复伴牙本质暴露的前牙牙体缺损效果分析 [J], 陈清;蒋佳秀
5.牙本质壳技术治疗牙缺失伴严重骨缺损一例报告 [J], 肖闻澜;胡琛;柳叶语;满毅
因版权原因,仅展示原文概要,查看原文内容请购买。
基于机器学习的卤化物双钙钛矿材料性能预测
张琪鑫;徐章洋;冯萍;涂洁磊
【期刊名称】《太阳能学报》
【年(卷),期】2024(45)4
【摘要】以卤化物双钙钛矿材料为研究对象,利用机器学习方法高速、高精确预测卤化物双钙钛矿材料的带隙和相对稳定性。
使用贝叶斯岭回归、梯度提升回归、支持向量回归和XGBoost这4种算法建立模型,分析得出:梯度提升回归可为相对稳定性提供最高性能预测(R^(2)=0.9161,MAE=0.2061),XGBoost可为带隙提供最高性能预测(R^(2)=0.9899,MAE=0.0542);采用SHAP方法解释模型后,对元素替换后的新样本进行筛选,最终获得18种光吸收范围理想且稳定性良好的卤化物双钙钛矿。
结果表明,相比传统方法,基于数据驱动的机器学习方法可有效加速功能材料的发现,提高设计效率。
【总页数】9页(P107-115)
【作者】张琪鑫;徐章洋;冯萍;涂洁磊
【作者单位】云南省农村能源工程重点实验室
【正文语种】中文
【中图分类】TB3;TP3
【相关文献】
1.基于有机金属卤化物钙钛矿材料的全固态太阳能电池研究进展∗
2.基于不同机器学习算法的钙钛矿材料性能预测
3.三维、二维卤化物钙钛矿材料性能及应用综述
4.DoS攻击下基于自适应事件触发的无人水面艇航向控制和故障检测
5.基于机器学习的无机钙钛矿材料形成能预测
因版权原因,仅展示原文概要,查看原文内容请购买。
两圆相交形成的闭合单连通区域第一类格林函数求解
解问鼎;陈钢;孙艺
【期刊名称】《大学物理》
【年(卷),期】2015(034)001
【摘要】求解了两圆导体柱板相交所形成的多种闭合单连通区域的第一类格林函数,并利用数学软件MATLAB绘制出其等值线图.
【总页数】4页(P19-22)
【作者】解问鼎;陈钢;孙艺
【作者单位】苏州大学物理科学与技术学院,江苏苏州215006;苏州大学物理科学与技术学院,江苏苏州215006;苏州大学物理科学与技术学院,江苏苏州215006【正文语种】中文
【中图分类】O441
【相关文献】
1.复杂形状单连通区域二维第一类格林函数的制作 [J], 王福谦
2.用保角变换法制作二维第一类格林函数 [J], 王福谦
3.由两个相交球面围成的区域中的格林函数 [J], 林为干;金航
4.单连通区域上解析函数的插值问题 [J], 文鸣
5.单连通区域上的正规函数与Koebe弧序列 [J], 刘泊涵
因版权原因,仅展示原文概要,查看原文内容请购买。
NA样本下随机设计的半参数回归模型的弱相合性
张捷;胡宏昌;朱丹丹
【期刊名称】《数学杂志》
【年(卷),期】2013(033)005
【摘要】本文研究了误差为NA序列下随机设计的半参数回归模型的问题.利用权函数和最小二乘估计的方法给出了参数、非参数及误差方差的估计,在较弱的条件下获得了它们的弱相合性结果.
【总页数】8页(P849-856)
【作者】张捷;胡宏昌;朱丹丹
【作者单位】湖北师范学院数学与统计学院,湖北黄石435002;湖北师范学院数学与统计学院,湖北黄石435002;湖北师范学院数学与统计学院,湖北黄石435002【正文语种】中文
【中图分类】O212.1
【相关文献】
1.半参数回归模型拟极大似然估计的弱相合性 [J], 胡宏昌;徐侃;陈琴
2.NA样本半参数回归模型估计的矩相合性 [J], 周兴才;胡舒合
3.随机截断下NA样本半参数回归模型中的相合估计 [J], 朱春浩;孙光辉
4.随机缺失情况下固定设计半参数回归模型的相合性 [J], 裴晓换;郭鹏江
5.NA样本固定设计下半参数回归模型中估计的强相合性 [J], 李永明
因版权原因,仅展示原文概要,查看原文内容请购买。
求解带二次约束的非凸二次规划的一种分支定界算法(英文)杨永健;高岳林
【期刊名称】《应用数学》
【年(卷),期】2006(19)1
【摘要】本文提出了一种求解带二次约束和线性约束的二次规划的分支定界算法.在算法中,我们运用Lipschitz条件来确定目标函数和约束函数的在每个n矩形上的上下界,对于n矩形的分割,我们采用选择n矩形最长边的二分法,同时我们采用了一些矩形删除技术,在不大幅增加计算量的前提下,起到了加速算法收敛的效果.从理论上我们证明了算法的收敛性,同时数值实验表明该算法是有效的.
【总页数】5页(P25-29)
【关键词】二次规划;二次约束;分支定界;最优化
【作者】杨永健;高岳林
【作者单位】上海大学数学系
【正文语种】中文
【中图分类】O212.2
【相关文献】
1.一种新的求解带有非凸二次约束的非凸二次规划问题的加速全局优化方法 [J], 吴慧卓;段东东;张可村
2.线性约束非凸二次规划的有限分支定界算法 [J], 田朝薇;宋海洲
3.基于D.C.分解的一类箱型约束的非凸二次规划的新型分支定界算法 [J], 付文龙;
杜廷松;翟军臣
4.求解单二次约束非凸二次规划问题的全局最优DC算法 [J], 王建国;郑芳英;胡觉亮
5.一种新的二次约束二次规划问题的分支定界算法 [J], 黄小利;高岳林;谢金宵;谷剑峰
因版权原因,仅展示原文概要,查看原文内容请购买。
带边界约束的4片相邻三角Bézier曲面的近似合并
陈军;王国瑾
【期刊名称】《计算机辅助设计与图形学学报》
【年(卷),期】2009(021)008
【摘要】L1范数形式精确给出.通过提高合并三角Bézier曲面的次数,可减小合并误差、改善合并效果.数值实例表明,该方法计算简单、直接,适用性强,逼近效果佳.【总页数】7页(P1047-1053)
【作者】陈军;王国瑾
【作者单位】浙江大学数学系计算机图象图形研究所,杭州,310027;浙江大学CAD,&,CG国家重点实验室,杭州,310027
【正文语种】中文
【中图分类】TP391
【相关文献】
1.两相邻张量积Bézier曲面的近似合并 [J], 郭清伟;朱功勤
2.两相邻Bézier曲线的近似合并 [J], 郭清伟
3.两相邻带参四次Bézier曲线的近似合并 [J], 岳丽;秦新强;胡钢;李凯
4.两相邻Bézier曲线近似合并的一种方法 [J], 郭清伟;朱功勤
5.带形状参数的三次三角域Bézier曲面 [J], 查东东;刘华勇;王曾珍
因版权原因,仅展示原文概要,查看原文内容请购买。
毕业论文(设计)格式参考要求1.毕业论文(设计)排版格式1.1.纸张B5(JIS);1.2.版面上边:2.5cm下边:2.0cm左边:1.5cm 右边:1.5cm页眉:1.0cm 页脚:1.0cm 装订:1.0cm;1.3.目录自动生成;1.4.文字、图表、公式等全部打印;1.5.封面和摘要单面打印(单独一张),其余双面打印;1.6.编排顺序封面、摘要、目录、正文、结论(含致谢)、参考文献1.7.章节编号采用三级标题排序一级标题为绪论、第一章、第二章、…、结论、参考文献、3号加黑宋体,居中;二级标题为1.1、1.2、…,小3号加黑宋体,顶格;三级标题为1.1.1、1.1.2、…,4号加黑宋体,顶格;1.8.正文小4号宋体;1.9.页眉正文中每页加页眉,内容与章目内容一致,5号宋体加黑,居中;1.10.页码摘要不加页码;目录用罗马数字加页码(I,II,III…,居中);正文用阿拉伯数字加页码(1,2,3…,居中);1.11.参考文献常用格式书名、作者、出版社、出版年月、起止页码几种常用文献的著录格式如下:专著:序号著者.书名.出版地:出版者,出版年月译著:序号著者.书名.译者译.出版地:出版者,出版年月期刊:序号著者.篇名.刊名,出版年,卷(期):起止页码学位论文:序号著者.篇名.保存地:保存者,授予年电子文献:序号著者.篇名.文献出处.发布日期标准文献:序号标准代码及编号—发布年,标准名称2.内容要求2.1.题目字数一般不超过20个汉字;2.2.摘要是一篇完整的短文,即正文的缩写,字数300-500。
要突出毕业论文(设计)中心内容,具有独立性和自含性;2.3.关键词 3-5个,针对标题提炼关键词,附在摘要后面;2.4.绪论主要介绍毕业论文(设计)的选题背景、意义。
说明为什么要论述这个问题,问题出现的环境和条件,解决该问题后能起什么作用。
另外,拟采用什么方法来研究这个问题;2.5.正文 8,000-10,000字,要在阅读大量文献和调研的基础上,运用辩证逻辑思维方法,对所立主题进行全面、具体、本质而科学的论证,做到主题突出,结构合理,层次分明,语言流畅,论据充分,论证有力;2.6.结论在正文之后(单占一页);其内容之一是对毕业论文(设计)的总结,突出核心;内容之二是对学院和相关人的致谢。
一类张量特征值互补问题的分式规划等价形式
熊高峰;凌晨
【期刊名称】《杭州电子科技大学学报》
【年(卷),期】2015(000)006
【摘要】提出了一类与非线性微分包含问题密切相关的张量高次特征值互补问题。
研究了此类张量高次特征值互补问题与一类齐次多项式分式规划的等价关系,为进一步设计算法提供了一条有效途径。
在此基础上,得到了一个关于张量高次特征值互补问题解的存在性结果。
【总页数】5页(P75-79)
【作者】熊高峰;凌晨
【作者单位】杭州电子科技大学理学院,浙江杭州310018;杭州电子科技大学理
学院,浙江杭州310018
【正文语种】中文
【中图分类】O221.2
【相关文献】
1.二阶锥上的张量二次特征值互补问题 [J], 闫伟杰;凌晨
2.张量广义高次特征值互补问题解的一个刻划 [J], 常肖蕊;凌晨
3.严格半正张量特征值互补问题的 Pareto-谱估计 [J], 凌莉芸;凌晨
4.求解张量特征值互补问题的光滑牛顿法 [J], 单锡泉;李梅霞
5.改进的谱投影梯度法解张量特征值互补问题 [J], 童皖彬; 凌晨; 何洪津
因版权原因,仅展示原文概要,查看原文内容请购买。
第58卷2020年吉林大学学报(理学版)Journal of Jilin University(Science Edition)Vol.582020吉林大学学报(理学版)Jilin Daxue Xuebao(Lixue Ban)第58卷目次数学三角代数上一类局部非线性三重高阶可导映射.....................费秀海,戴磊(1)(1)带积分边界条件的分数阶微分方程正解的存在性...................何兴玥,高承华(1)(9)带时滞非经典扩散方程依赖于时间的拉回吸引子...................王芳平,马巧珍(1)(15)具有指数型二分性时标动力学方程的反周期解.....................孟鑫,吕鑫(1)(24)一般三阶非线性常微分方程的正周期解............................邓正平,李永祥(1)(29)求解一类随机Hamilton系统的分裂算法...................李鑫宇,陈旭梅,岳华(1)(35)具有迁移性质的Ross-Macdonald系统的格子Boltzmann方法......李婷,闫广武(1)(41)带有耗散梯度函数的抛物方程爆破与有效性分析...................凌征球,何冰(1)(47)重叠和分组函数的分配性方程求解................................吴涛,赵彬(1)(54)通有构形的特征多项式...........................................孙莹,高瑞梅(1)(65)直觉模糊0-覆盖信息系统及其之间的同态.........................张利娟,杨海龙(1)(70)不相干算子和强不相干算子的刻画.......................田瑞,陈峥立,李蕊(1)(77)一类线性化多项式的核...........................................金永,姜敬敬(1)(86)基于免逆牛顿法的对称张量Z-特征对可信验证....................................桑海风,李敏,刘畔畔,王春艳,栾天(1)(90)一类奇摄动方程组的内部层.......................................张煜韬,倪明康(2)(189)因子von Neumann代数上的非线性斜Jordan三重可导映射........宁彤,张建华(2)(202)Yetter-Drinfeld拟模范畴上的Hopf拟模..................................张涛(2)(209)非齐度量测度Morrey-Herz空间上的Marcinkiewicz积分算子及其交换子.............................................................宋福杰,赵凯(2)(219)一个较精确加强型的半离散Hilbert型不等式.......................辛冬梅,杨必成(2)(225)什截曲率为常数的Sasaki统计流形中子流形的广义标准A Casorati曲率不等式.............................................................李德恩,张量(2)(231)闭G-V模糊拟阵的模糊圈公理....................................吴德垠,杨高进(2)(239)带加性噪声和线性记忆的可拉伸吊桥方程的随机吸引子.....................姚晓斌(2)(251)分数阶脉冲泛函微分方程积分边值问题解的存在性.............................................李庭乐,贾梅,刘锡平,郑雯静(2)(261)一类非线性耦合对流扩散方程组的临界Fujita曲线.................郭微,高云柱(2)(271)基于Chebyshev神经网络的非线性Fredholm积分方程数值解法李娜,韩惠丽,房彦兵(2)(277)两不同故障状态可修复系统的稳定性分析.........................赵志欣,唐慧(2)(285)ii吉林大学学报(理学版)第58卷图形密码中一类特殊图的几种标号............完全二部图K9,(9<n<92)的点可区别E-全染色-2类图完美匹配数按匹配顶点分类的递推求法•…一类非Newton流方程整体解的存在唯一性……周期系数非线性差分方程的动力学性质..........一类非Newton微极流体方程组强解的存在唯一性一种改进的三维子空间极小化共轭梯度法......广义修正随机梯度与广义Skorohod积分........徐建军,袁洪君(3)(449)顾彦波,李敬文,王露露(2)(293)......杨伟光,陈祥恩(2)(301......唐保祥,任韩(2)(309)曹名圆,杨月婷,张晏毓,黄庆道(3)(457史伟伟,王长佳,高艳超(3)(463刁新柳,刘红卫,赵婷(3)(470周玉兰,程秀强,薛蕊,李晓慧(3)(479)一类分数阶比例时滞微分方程的数值计算方法.....................王林君,张路(3)(486)含有时滞的倒向重随机控制系统最大值原理.......................许洁,吕显瑞(3)(493)矩阵方程A+X=AX广义三次矩阵解与绝对值方程的解.............................................吕洪斌,杨忠鹏,陈梅香,王信存(3)(498)构建以/x A2)(A1A2>0)为核的半离散Hilbert型不等式的充要条件及应用.............................................................洪勇,曾志红(3)(507)一类基于心理作用的SIRS传染病模型...........基于广义模态柔度矩阵的结构损伤识别.........[卜线性斜常循环码...................... (w i n)-纯遗传环...............................因子von Neumann代数上非线性*-Lie导子的刻画二次Hom-Novikov超代数......................模糊蕴涵下三角序和的一般形式...............李文轩,李辉来,赵彦军(3)(513)谢少鹏,吴柏生,钟慧湘(3)(518)宋贤梅,刘玮,陈法龙(3)(527)杨艳秋,王德辉(3)(563)郭景阁,杨璐璐,赵仁育(3)(535)庞永锋,张丹莉,马栋(3)(539 ........孙冰,周鑫(3)(545轩素玲,周红军,刘妮(3)(550)缺失数据下MGINAR(p)模型的参数估计具有垂直传播传染病模型的动力学分析李小平,黄蓉,李辉来(3)(569)稀疏图平方图的染色数上界张艳(3)(575)图的冠积和边冠积的染色杨青,田双亮,索郎王青(3)(590) Banach代数中广义Drazin逆的相关结果.郭丽,许小杰,谷天瑜,于德跃,雷鸣(3)(595)一类耦合半线性扩散方程组的Fujita临界曲线............周倩,那杨,高冬(4)(733)大尺度湿大气原始方程组对黏性系数的连续依赖性.........................李远飞(4)(744)一类四阶低曲率方程弱解的存在唯一性靳曼莉,郭丽(4)(753)一类二阶非线性周期边值问题正解集的全局结构贾凯军(4)(761)球外部区域上含梯度项椭圆边值问题的径向解伏彤彤,李永祥(4)(768)一类非线性分数阶微分方程耦合系统边值问题的两个正解....................................................彭钟琪,李媛,薛益民(4)(775)内蕴平方函数在分数次Morrey空间上的加权有界性..................李瑞,陶双平(4)(782)变指标分数次Hardy算子高阶交换子在变指数Herz-Morrey空间的加权有界性保持一类正规特征值的可加映射.................辛银萍(4)(791)赵旭,史维娟,吉国兴(4)(798)2020 年第58卷 目次i iHom-Jordan 李超代数的交换扩张马丽丽,李强(4)(803)斜逆laurent.级数环的弱Armendariz 性质史叶萍,王尧,任艳丽(4)(808 )空间型上的近Yamabe 孤立子陈佳蕊,刘建成(4)(815 )算子代数上强保持Q 斜Jordan 乘积的映射贾娟,齐霄霏(4)(819 )保积Hom d 李超三系的拟导子和型心吴险峰,赵秀芳,杜君花,傅俊伟(4)(825 )K.3.5P的点可区别的一般全染色.....热源参数识别问题的Bayes 遗传算法•- 单调变分不等式问题外梯度方法的推广尹伟石,杨佳睿,陈祥恩刘晓奇,徐轩闻道君,张蓉,何光带有约束条件的零一膨胀Poisson 回归模型刘影,华志强图2-2P 和2-n K 1,,.3完美匹配的计数唐保祥,任韩具强阻尼项的四阶弱耦合双曲方程组解爆破时间的下界估计陈洁姝,金鑫一类双耦合线性退化抛物方程组的近似可控性周倩,许凤丹,高冬(4)(4)(4)(4)(4)(4)(5 )(832 )(841 )(847 )(853 )(859 )(864 )(1027)非线性阻尼Berger 方程的时间依赖全局吸引子一类二阶拟线性瞬态方程组的Phragmen-T.indelof 型二择性结果...........................................李远飞,肖胜中,汪璇,杜亚利,梁玉婷(5 )(1035)郭连红,曾鹏(5 )(1047)Banach 空间中分数阶脉冲积-微分方程的e 指数型Ulam-Hyers 稳定性.............................................................赵彦霞,杨和(5 )(1055)Rot.a-Baxt.er q -3-李代数…一类非交换n 李代数的结构林丽鑫(5 )(1066)有限群的非交换主因子四元数群到一类10P 阶非交换群的同态数量限制度的IC 平面图中轻弦4-圈的权和 .....具有变系数四阶抛物方程的B 样条有限元法半无限极大极小离散化问题的一个非单调SQCQP 算法美式多资产期权定价问题的有限差分法白瑞蒲,吴婴丽鲍宏伟,高百俊,张佳李凤娇,高百俊田京京秦丹丹,唐鑫鑫,黄文竹杨永亮,王福胜,甄娜张琪,左平,郝永乐,杨程博,李婷婷带跳随机波动率模型的美式期权及美式障碍期权定价薛广明,林福宁基于Collatz-Wielandt 函数的不可约非负矩阵最大特征值算法吕洪斌,张美黎,商钰莹,王信存(5 )(5 )(5 )(5 )(5 )(5 )(5 )(5 )(5 )(1073)(1079)(1085)(1093)(1100)(1107)(1113 )(1119 )(1130)求解渗流方程的一种修正的中心型有限体积法••…含参集值向量均衡问题有效解下半连续的最优条件陈国芳,吴丹,吕俊良(5 )(1135)张传美,孟旭东(5 )(1142)两两NQD 序列完全矩收敛的精确渐近性对流-扩散方程初边值问题的重整化群方法卢哲昕,谭希丽,张勇,刘天泽周冉,张艳妮矩阵环的乘法导子王灵燕,徐晓伟半结合3-李代数的结构白瑞蒲,张艳一类非交换内循环群到有限群的同态个数张良一类离散可积系统的孤子解樊方成,周冉(5 )(5 )(6 )(6 )(6 )(6 )(1149)(1154)(1287)(1293)(1299)(1303)带有非线性边界条件的弱衰退记忆型非自治经典反应扩散方程解的渐近性汪璇,梁玉婷(6 )(1309)iv吉林大学学报(理学 版)第58卷多孔介质中Brinkman-Forchheimer模型的结构稳定性高阶卷积型积分微分方程的重心有理插值配点法……基于格子Boltzmann方法的量子等离子体离子声波的数值模拟NSD序列部分和乘积的渐近分布随机变延迟微分方程平衡方法的收敛性和稳定性无相位远场数据反演散射障碍的神经网络方法求解混合型拟周期散射问题的间断Galerkin算法栾天,一种求解Euler方程的高阶格式任琴琴,一类边界退化耦合抛物方程组的近似能控性计算机科学基于关系触发词与单层GRU模型的关系抽取方法王磊,刘露,牛亮,基于模糊神经网络的MVB故障诊断算法吕洪武,基于自适应Hata模型的无线电发射源定位方法一种基于曲波变换与引导滤波增强的图像融合方法张慧,基于Adaboost首帧检测的时空上下文人脸跟踪算法张尧,才华,李心达,网络入侵中的模糊区域判断算法用于肺结节检测和分类的两阶段深度学习方法基于时空相关性的传感器网络数据压缩算法王林景,异构环境下高速互联网络覆盖优化控制算法基于MAC层协议的自适应退避算法王宏志,戚小莎,基于维基百科信息框的本体信息提取面向大规模数据的特征趋势推理算法基于MBD和DEM耦合的新型CAE软件王博,于哲舟,袁军,基于局部时空模式的体育视频行为识别温长吉,赵珊珊,基于权重调节和用户偏好的协同过滤算法董立岩,基于GAN改进的人脸表情识别算法及应用李婷婷,遥感卫星地面站资源调度的混合分解算法刘静怡,田妙苗,黄鹏,基于小波分析的広多样性「匿名大数据自适应延迟调度算法空间颜色聚类算法及其在图像特征提取中的应用李健,姜楠,宝音巴特,张帆,Canopy在划分聚类算法中对K选取的优化控制活动轮廓演化的快速图像分割方法••…王海燕,崔文超,王宗奇,包学忠,尹伟石,赵航,史肖冰,常莉红,贾锋,金晓民,石金诚,李远飞(6)(1318)韩惠丽,张红(6)(1327)王慧敏,刘艳红(6)(1334)赵珈玉,陆冬梅(6)(1339)胡琳,郭慧清(6)(1345)杨文红,曲福恒(6)(1357)王春艳,郭丽(6)(1366)郑秋亚,梁益华(6)(1371)刘亚新,杜润梅(6)(1378)胡封晔,彭涛(1)(95)王宏志,胡黄水(1)(104)郭德贵,曹捷(1)(109)马旭,朱乐(1)(113)米晓红,孙俊喜(2)(314).........黄熙岱(2)(321)薛潺涓,王欣(2)(329)高志宇,姚鹏帅(2)(337)管乃彦,郭娟利(2)(343)胡黄水,王晓宇(2)(349)陈刚,徐星羽(2)(355).......吴春琼(2)(364)付宏,于建群(2)(371)申利未,任虹宾(2)(379)修冠宇,马佳奇(3)(599)胡玉龙,魏枫林(3)(605)林友明,马广彬(3)(611)王慧,程正兴(3)(620)张伟健,王薇(3)(627)许佩迪,李闯(3)(634)张丽萍,李慧静(3)(639)2020 年第58卷 目次V基于大数据分析的散乱缺损信息无损恢复方法王雅超(3 )(645 )LQR 优化的BP 神经网络PID 控制器设计唐伎玲,赵宏伟,王婷婷,胡黄水(3 )(651 )无刷直流电机转速智能混合控制器设计王婷婷,胡黄水,赵宏伟,王出航(3 )(659 )基于Top k 查询算法的图书自整合信息快速检索方法基于变步长随机行走算法的IC 电源网络动态分析……汤战勇,郝 杰,郭董光芹,夏文秀(3 )(666 )军,刘宝英(4)(868 )基于结构信息相似度的线性投影灰度化算法陈广秋,王冰雪,刘美,刘广文(4)(877 )一种基于规则与句法合成的层次化语句分析识别算法贾继康,邵玉斌,龙杜庆治(4)(885 )基于FCN 的眼底图像中央凹自动检测算法杨,黄文博(4)(893 )基于支持向量机和用户反馈的图像检索算法谭翔纬(4)(899 )基于卷积神经网络的粗粒度数据分布式算法骆焦煌(4)(906 )基于跨层复制连接卷积神经网络的遥感图像融合王明丽,王 刚,郭晓新,王献昌(4)(913 )基于改进卷积神经网络的短文本分类模型高云龙,吴川,(4)(923 )基于NSST 与改进稀疏表示的医学图像融合方法......基于指标选择和加权融合的无线传感器网络安全风险评估朱宏伟(4)(931 )袁开银,王峰(4)(937 )基于量子自组织网络的水淹层识别方法..........卢爱平,李建平,李盼池,范友贵基于可信度小波神经网络的多传感器数据融合方法(4)(944 )英,董思羽(4)(953 )基于残差网络的海洋温跃层分析方法初晓,孟祥鹤哲,张凯,胡成全(4)(960 )一种自适应非负矩阵分解算法李鑫,张伟,张蕾(4)(965 )一种基于Kriging 模型加点策略的多目标粒子群优化算法..................................陈静,唐傲天,刘震,徐 基于有向无环图的高效区块链共识算法王壹铭,初剑峰,王永军,曹晓聪陈彦东(5 )(5 )(1159)(1167)基于概念格的稀疏数据协同过滤校正自然噪声方法(5 )(1173)基于三角模糊化的Mamdani 模糊系统输出算法王贵君(5 )(1181 )基于深度学习的二值图像目标轮廓识别算法李菊霞(5 )(1189)基于新进化优化BP 学习算法的心音识别方法袁倩影,全海燕(5 )(1195)基于协同滤波的尖峰噪声抑制方法周伟,罗凯(5 )(1202)刁庶,燕陈华,森,朵琳,陈雪,朱明杨丙基于改进粒子群优化算法的可控发射电流频率SHEPWM 控制方法基于最优簇头数的环形无线传感器网络分簇算法王宏志,武莎莎,基于证据理论加权融合的无线传感器网络路由算法单细胞RNA-seq 数据缺失元素补全算法 …… 基于GA-BP 神经网络的序列虹膜质量评价算法.........................张齐贤,朱晓冬,基于改进高分辨率网络的人脸性别和年龄识别……一种基于数据的GitHub 项目个性化混合推荐方法于生宝,房 钰,高丽辉,刁 庶(5 )(1207)鲁晓帆,胡黄水,王出航,郭嫚嫚(5 )(1215...............李蕾,方明科(5 )(1223...............崔璐,刘桂锋(5 )(1229刘元宁,王超群,吴祖慷,李昕龙(6 )(1382......肖红,张瑶瑶,原野(6 )(1391何错琦,马宇骁,张 炎,刘华虓(6 )(1399)Vi吉林大学学报(理学版)第58卷基于逻辑分区的仿箱鲀鱼群负载均衡分簇控制算法..................................吴佳楠,吴剑,邸焕双,王玉英,李念峰(6)基于动量因子优化学习率的BP神经网络PID参数整定算法..................................胡黄水,赵思远,刘清雪,王出航,王婷婷(6)遗传算法优化的无刷直流电机模糊PID控制器设计..................................王婷婷,王宏志,刘清雪,胡黄水,王出航(6)一种基于梯度下降算法的蜕变关系生成方法..................................穆翔宇,范钰,李苏吉,张鹏,刘磊(6)基于阈值分割法和卷积神经网络的图像识别算法……李鹏松,李俊达,吴良武,胡建平(6)基于文化混洗蛙跳算法求解连续空间优化问题..............张强,朱刘涛,王颖(6)基于CRF和多元规则的层次化句法分析..................................杨陈菊,孙俊,皮乾东,邵玉斌,龙华(6)基于尺度不变特征变换的快速图像特征区域检测............................丁永胜(6)物理激光诱导黄铜中Zn等离子体光谱的时间演化特性..................................王莉,傅院霞,徐丽,宫昊,杨浩(1)分数阶不确定Like-Ba。
一致凸Hilbert空间乘积空间的最佳逼近元
廖正琦;郑兴德
【期刊名称】《重庆文理学院学报(自然科学版)》
【年(卷),期】2004(003)004
【摘要】获得了一致凸Hilbert空间乘积空间中的关于弱闭凸集最佳逼近元的存在与唯一性定理.
【总页数】3页(P5-6,9)
【作者】廖正琦;郑兴德
【作者单位】重庆交通学院,基础科学部,重庆,南岸,400074;重庆交通学院,继续教育学院,重庆,南岸,400074
【正文语种】中文
【中图分类】O177
【相关文献】
1.一致凸线性距离空间的最佳联合逼近性 [J], 曲文波;刘金霞
2.严格凸Banach空间中最佳逼近元的存在与唯一性 [J], 金茂明;孙胜利
3.一致凸Hilbert空间乘积空间的最佳逼近元 [J], 廖正琦;郑兴德;;;
4.一致凸Banach空间乘积空间最佳逼近元的存在与唯一性定理 [J], 廖正琦
5.实Hilbert空间中点到无穷余维子空间的距离及最佳逼近元 [J], 叶留青
因版权原因,仅展示原文概要,查看原文内容请购买。
一个关于上凸密度的公开问题的否定回答(英文)
尹建东;聂饶荣;周作领
【期刊名称】《应用数学》
【年(卷),期】2014(27)2
【摘要】对于一个满足开集条件的自相似集E,本文得到如下有趣结论:如果E存在几乎处处最好覆盖{Ui}∞i=1,使得E-∪i≥1Ui是可数集,则E-E0是至多可数集,其中E0={x∈E|珡Ds c(E,x)=1}.作为应用,否定回答了周作领等在[周作领,瞿成勤,朱智伟.自相似集的结构———Hausdorff测度与上凸密度[M].北京:科学出版社,2008]中提出的一个公开问题.
【总页数】6页(P237-242)
【关键词】Hausdorff测度;自相似集;上凸密度
【作者】尹建东;聂饶荣;周作领
【作者单位】南昌大学数学系;中山大学岭南学院
【正文语种】中文
【中图分类】O174.12
【相关文献】
1.关于Halpern公开问题的一个回答 [J], 商美娟;高俊宇;苏永福
2.一个关于上凸密度猜测的否定回答 [J], 尹建东
3.Gillespie所提出一个问题的否定回答 [J], 汪军鹏;刘仲奎;杨晓燕;
4.关于Lévy过程一个公开问题的部分回答 [J], 郑静
5.Gy ri的一个问题的否定回答 [J], 周德堂
因版权原因,仅展示原文概要,查看原文内容请购买。
动态半绝对离差投资组合选择模型
郭福华;邓飞其
【期刊名称】《系统工程》
【年(卷),期】2006(24)9
【摘要】考虑连续时间金融市场的投资组合选择问题。
在标准的B lack-Scholes
型金融市场下,建立了动态均值-半绝对离差投资组合选择模型,研究了模型的求解方法,得到了最优投资组合策略的解析表达式及均值-半绝对离差的有效前沿方程。
同时,与动态均值-方差模型作了比较分析。
最后,通过实证分析说明了模型的求解方法。
【总页数】6页(P68-73)
【关键词】半绝对离差;动态投资组合;有效前沿
【作者】郭福华;邓飞其
【作者单位】华南理工大学系统工程研究所
【正文语种】中文
【中图分类】F830;O221
【相关文献】
1.风险项目投资组合决策的一个均值-半绝对离差模型 [J], 郑媛媛;胡支军
2.均值-绝对离差投资组合修正模型 [J], 康志林
3.基于均值半绝对价值离差的资产组合选择模型 [J], 高锦;印凡成;黄健元
4.推广的半绝对离差和动态投资组合选择 [J], 郭福华;邓飞其
5.机会约束下的均值-半绝对离差投资组合问题研究 [J], 胡支军;李静
因版权原因,仅展示原文概要,查看原文内容请购买。
半无界双曲型混合边界定解问题
倪乃卓
【期刊名称】《中央民族大学学报:自然科学版》
【年(卷),期】1995(000)002
【摘要】本文通过两次拉氏变换使一维半无界双曲型混合边界定解问题转化为代数方程问题得解。
【总页数】5页(P177-181)
【作者】倪乃卓
【作者单位】中央民族大学
【正文语种】中文
【中图分类】O175
【相关文献】
1.基于自然边界归化的半无界区域上的重叠型区域分解算法 [J], 刘敬刚
2.基于自然边界归化的半无界区域上非重叠型区域分解算法 [J], 刘敬刚
3.在无界区域上的一类弱耗散半线性双曲型方程的吸引子 [J], 韩英豪;石奇祥;任怡静
4.高阶半线性抛物—双曲型方程的定解问题 [J], 孙广成
5.半无界弦振动方程与半无界杆热传导方程三类边界问题的研究 [J], 郝同壬
因版权原因,仅展示原文概要,查看原文内容请购买。
Dependent Rounding in Bipartite GraphsRajiv Gandhi Samir Khuller Srinivasan Parthasarathy Aravind SrinivasanAbstractWe combine the pipage rounding technique of Ageev&Sviridenko with a recent rounding method developed by Srini-vasan,to develop a new randomized rounding approachfor fractional vectors defined on the edge-sets of bipartitegraphs.We show various ways of combining this techniquewith other ideas,leading to the following applications:richer random-graph models for graphs with a givendegree-sequence;improved approximation algorithms for:(i)throughput-maximization in broadcast scheduling,(ii)delay-minimization in broadcast scheduling,and(iii)capacitated vertex cover;fair scheduling of jobs on unrelated parallel machines.A useful feature of our method is that it lets us prove certain(probabilistic)per-user fairness properties.1.IntroductionV arious combinatorial optimization problems include hardcardinality constraints:e.g.,a broadcast server may be ableto broadcast at most one topic per time step.Two of theknown approaches to accommodate such constraints are thedeterministic method of Ageev&Sviridenko[1],and a prob-abilistic method developed by Srinivasan[17].In this work,we combine these two approaches to develop a dependentrandomized rounding scheme(the term“dependent”under-scores the fact that various random choices we make heregraphs like the Web graph and the Internet graph(see,e.g., the talks at[8]);in particular,there has been much study of the power law property of the degree-sequences of such graphs (see,e.g.,[6]).Random graph models for such graphs can let us simulate various algorithms on such massive graphs[7], and hence there has been much renewed interest in generating (and studying the properties of)random graphs with a given degree sequence;see,e.g.,[10].However,since a graph is far more than its degree sequence,we ask:can we model addi-tional features of such graphs?Concretely,suppose empirical measurements show,e.g.,that vertices of degreeOur applications come about by combining the dependent rounding with various other ideas.The per-user guaranteesthat we are able to provide,as well as application(a),aresome of the novel features of our results;in particular,to ourknowledge,these are not achievable through currently knownapproaches.2.The Dependent Rounding SchemeSuppose we are given the bipartite graph andthe values as in the introduction.Our dependent random-ized rounding scheme is as follows.Initialize for each.We will probabilistically modify the inseveral(at most)iterations such that at the end(at which point we will set for all).Our iterations will satisfy the following two invariants:(I1)For all,.(I2)Call rounded if,andfloating if.Once an edge gets rounded,never changes.An iteration proceeds as follows.Let be the currentset offloating edges.If,we are done.Otherwise,find(in linear time)a simple cycle or maximal path in thesubgraph,and partition the edge-set of into twomatchings and.Note that such a partition exists since is a bipartite graph.DefineSince the edges in are currentlyfloating,it is easy to see that the positive reals and exist.Now,independent of all random choices made so far,we execute the following randomized step:With probability,setfor all,and for all;with the complementary probability of,set for all,and for all.This completes the description of an iteration.A simple check shows that the invariants(I1)and(I2)are maintained, and that at least onefloating edge gets rounded in every iter-ation.Let us now analyze the above randomized algorithm.First of all,since every iteration rounds at least onefloating edge,we see from(I2)that we need at most iterations.Let us now prove(P2)for a vertex.If had at most onefloating edge incident on it at the beginning of our dependent round-ing,it is easy to verify that(P2)holds;so suppose initially had at least twofloating edges incident on it.We claim that as long as has at least twofloating edges incident on it,the value remains at its initial value of .To see this,first note that if is not in the cycle/maximal path chosen in an iteration,then is not altered in that iteration.Next,consider an iteration in which had at least twofloating edges incident on it,and in which was in the cycle/path.Then,must have degree two in,and so, it must have one edge in and one in.Then,since edges have their value increased/decreased by the same amount as edges in have their value de-creased/increased,we see that does not change in this iteration.Now consider the last iteration at the beginning of which had at least twofloating edges incident on it.At the end of this iteration,we will have,and will have at most onefloating edge incident on it.It is now easy to note that(P2)holds.Properties(P1)and(P3)can be proved by induction on the number offloating edges,inspired by the approach of[17]; we just give a sketch of the proofs here.Fix a vertex and an edge;let be the random variable denoting the value of at the beginning of iteration.We will show by backward induction on that(2) we may then substitute to see that(P1) holds.The base case where,is trivial.Assum-ing(2)for,let us prove it for.Supposefor some.In iteration,either is set towith probability,or there are values and such that: with probability,andwith probability.So by the induction hypothesis,equalsThis completes our sketch of the proof for(P1).Property(P3) can be proven by a similar,slightly more complicated,induc-tion.2.1.Random-graph models for massive graphsRecently,there has been growing interest in modeling the underlying graph of the Internet,WWW,and other such mas-sive networks.If we can model such graphs using appro-priate random graphs,then we can sample multiple times from such a model and test out candidate algorithms we have for such graphs,such as Web-crawlers.A particularly suc-cessful result of the study of such graphs has been the un-covering of the power-law behavior of the vertex-degrees ofmany such graphs(see,e.g.,[6]);hence,there has been much interest in generating(and studying)random graphs with a given degree-sequence(see,e.g.,[10]).Web/Internet mea-surements capture a lot of connectivity information in the graph,in addition to the distribution of the degrees of the nodes.In particular,through repeated sampling,these mod-els capture the probability with which a node of a certain de-gree might share an edge with a node of degree.Our question here is:since a network is much more than its de-gree sequence,can we model connectivity in addition to the degree-sequence?Concretely,given,a degree-sequence ,and values,we wish to generate an-vertex random graphin which:(A1)vertex has degree with probability,and (A2)the probabilityof edge occurring is.(Note that we must have.)This is the problem we focus on,in order to take a step beyond degree-sequences.It is easy to see that our dependent rounding scheme com-pletely solves this problem,if is bipartite.Next,can we get such a result for general graphs?Unfortunately,the answer is no:the reader can verify that no such distribution(i.e.,ran-dom graph model)exists for the triangle with(and hence with).This ex-ample has being odd,which violates the basic property that the sum of the vertex-degrees should be even. However,even if the vertex-degrees add up to an even num-ber,there are simple cases of non-bipartitegraphs where there is no space of random graphs which satisfies(A1)and(A2). (Consider two vertex-disjointtriangles with all six values being,and connect the two triangles by and edge whose value is.)Thus,we need to compromise–hopefully just a little–for general graphs.We show how to efficiently generate random graphs that preserve(A2),and relax(A1)to have with probability one that for each,its(random)degree satisfies.The only other method we know of in this context is to construct a random graph where each edge is put in independently,with probability. This again preserves(A1),but does much worse for(A2): the high-probability guarantee we get here is that for each,.The binary variable iff request is satisfied at some time.Thefirst set of constraints ensurethat whenever a request is satisfied,page is broadcast at.The second set of constraints ensure that at most one page is broadcast at any given time.The last two constraints ensure that the variables assume integral values. By letting the domain of and be,we obtain the LP relaxation for the problem.Maximize(3)3.1.2A-approximation Algorithm1.Solve optimally the LP relaxation.2.Construct a bipartite graph as follows. consists of vertices that represent time slots.Let be a ver-tex in corresponding to time.Consider a page and the time instances during which page is broadcast fractionally in the LP solution.Let these time slots besuch that.We will group these time slots into windows,,such that in each window except thefirst and the last,exactly one page is broadcast fraction-ally.Thefirst and last windows may broadcast a full page or less.The grouping of time slots into windows is done as fol-lows.Choose uniformly at random.represents the amount of service provided by thefirst window.For each time instance,we will associate a fraction that rep-resents the amount of contribution made by time slot to-wards the fractional broadcast of page in.For all and for,define and as follows.Ifthen,and oth-erwise.For all,if thenand otherwise.A time slot belongs to iff.This implies that a window consists of consecutive time slots and that a time slot can belong to at most two windows.Also,the to-tal number of windows,. The vertex set consists of vertices that represent pages.For each page,we have vertices in.For all and is connected to vertices corresponding to time-slots in.The value of an edge is equal to.This construction is illustrated in Figure1,in which a subgraph of that is induced on the vertices and edges relevant to a par-Wp W p2pvp1vp2vp3vp4WpFigure 1.Subgraph of relevant to page whose,values are.ticular page are shown.and,values are.3.Perform dependent rounding on.In the rounded solu-tion,if an edge gets chosen then we broadcast page at time.Analysis.Consider a request.Let.Let be the fraction of request satisfied by the optimal LP so-lution before its deadline.Note that the fraction can span at most two adjacent windows.Let. Picking uniformly at random is equivalent to pick-ing uniformly at random.Fix.Let andbe the set of time slots serving in and respec-tively.Let be the random variable that is iff page is broadcast during slot in the rounded solution and is oth-erwise.Note that and are at most, because of property of dependent rounding.Lemma3.1For afixed,let be the random variable that is if is satisfied in the rounded solution and is oth-erwise.Then,E if,and E if.Proof:implies EifotherwiseLemma3.2Let be the random variable that is iff is satisfied before in the rounded solution and is otherwise. Then,EProof:E EOPT.Proof:Since,E E. Using Lemma3.2,we get ER EQUEST C ONSOLIDATION page1234for down to do56if then78910else1112returnFigure2.Algorithm to obtain,where is.Note that for any two edgesand,and correspond to request for two different pages.4.Perform dependent rounding on.For any request,if an edge is selected then broadcast page at.3.2.3AnalysisFor any request,let be the fraction of re-quest satisfied in the LP solution at or before thefirst time in-stance such that and.Let be the cost of satisfying this fraction of request.Let be the cost of satisfying the next half of request,i.e,the cost of satis-fying exactly half fraction of after.Let be the cost of satisfying the last fraction of request.Letbe the cost of satisfying in the LP so-lution.Note that for a request,since we have and.For a request,. Let be the random variable that is iff page is broadcast during slot in the rounded solution and is otherwise.Lemma3.5For any request,if is the random variable denoting the cost of satisfying in the rounded solution then we have E.Proof:Since,we get ELemma3.6Consider any requests and,where isfirst such time instance after.If is the random variable denoting the cost of sat-isfying in the rounded solution then we have E.Proof:Since,we have E.Theorem3.7The above rounding scheme yields a-speed, -approximate solution.3.2.4A-speed,-factor AlgorithmIn this section we give a-algorithm that builds on the -algorithm developed in Section3.2.2.Note that in the -speed solution the requests in get satisfied optimally us-ing the two channels as shown in Lemma3.5.By using two channels we can only guarantee a factor of for the requests in.We now show that by using an extra channel we can satisfy the requests in optimally thus obtaining a-speed,-approximate solution.In addition to the four steps in Section3.2.2,we perform steps and as described below.5.Construct a bipartite graph as follows. For each time instance,we have a vertex in.In, for each time,we have one vertex representing all requests such that and. Each vertex is connected to where and .The value associated with each edge is .6.Perform dependent rounding on.For an edgethat gets chosen in the rounded solution,broadcast page at time.We will refer to the broadcast on this channel as the third channel.Lemma3.8For any request,if is the random variable denoting the cost of satisfying in the rounded solution then we have E.Proof:Recall the definition of from Section 3.2.3.Let.By property(P2)of dependent round-ing at most one edge incident on the vertex representing gets chosen.By property(P1)of dependent rounding,re-quest gets satisfied on the third channel with a probability with an expected cost of.It gets satisfied on thefirst two channels(pages broadcast in step)with a probability.E(5) Let be the last time instance that contributes towards the cost..Also,.Com-bining these facts with Equation(5),we get ETheorem3.9The above rounding scheme yields a-speed, -approximate solution.Proof In steps1-4,we broadcast at most two pages per time instance as argued in Theorem3.7.In steps5-6,we broad-cast at most one page at any time instance since the fractional value of edges incident on any vertex in is at most one. Thus steps1-6ensure a-speed solution.The proof of opti-mality follows from Lemmas 3.5and3.8.4.Capacitated Vertex CoverLet be an undirected graph with vertex setand edge set.Suppose that denotes the weight of vertex and denotes the capacity of vertex(we assume that is an integer).A capacitated vertex cover is a function such that there exists an orienta-tion of the edges of in which the number of edges directed into vertex is at most.(These edges are said to be covered by or assigned to.)The weight of the cover is,where.The MINIMUM CAPACI-TATED VERTEX COVER problem is that of computing a min-imum weight capacitated cover.The problem generalizes the MINIMUM WEIGHT VERTEX COVER problem which can be obtained by setting for every.The main difference is that in vertex cover,by picking a node in the cover we can cover all edges incident to,in this problem we can only cover a subset of at most edges incident to node .Clearly,the problem is NP-hard since it generalizes a well known NP-hard problem.We denote by the edges in which are incident to .We also denote by the degree of. For we denote by the subgraph induced by.We denote an edge with end-vertices as a set.We deal with orientation(direction)of edges.Ori-enting an edge from to is equivalent to replacing it by a directed edge(an arc).A primal-dual factor2 approximation was given by Guha,Hassin,Khuller and Or [12]and a factor4approximation was given using LP round-ing.In this paper,we derive a2approximation by a simple LP rounding method,using dependent rounding.One advan-tage of this approach is the ease of implementation compared to a primal-dual algorithm(since very fast and easy to use LP solvers are available).In addition,more general objec-tive functions can be easily captured in this framework,such as assignment costs(see Section4.2).Recently,Chuzhoy and Naor[5]addressed a variant of capacitated vertex cover prob-lem in which there is a bound on.In other words,a vertex can be used at most times to cover edges.They gave a-approximation for the unweighted case and showed that the weighted case is hard to approximate within a factor of.As a corollary to our rounding procedure,for the weighted version,we obtain a-approximate solution in which a vertex is used at most times.4.1.IP formulation and rounding schemeAn IP formulation is as follows([12]).Minimize(6)In this formulation,denotes that the edgeis covered by vertex.Clearly,the values of in a feasible solution correspond to a capacitated cover.While we do not need the constraints for the IP formulation,they will play an important role in the relaxation.Algorithm Threshold and Round:1.Solve the above LP to obtain an optimal fractional solu-tion.2.Pick a value uniformly at random in the interval.In other words,after rounding the values to we simply define the value to be the number of copies of that are required to cover all the edges assigned to it.Theorem4.1The expected cost of the integral solution produced by Algorithm Threshold and Round,is at most ,where is the cost of the minimum frac-tional solution to the relaxation.Moreover,E.Corollary4.2If is an upper bound on,then Algo-rithm Threshold and Round produces a-approximate solu-tion in which.The proof of Theorem4.1is quite complicated and omit-ted.We will show that if we pick asthen the expected cost of the algo-rithm is at most.Proof:We will show that for any vertex,the expected cost of is at most.Since the cost of the solution produced is,the bound follows.Let be the number of edges assigned to by edges that have their value at least.Let,where and is an integer.Notice thatEWe would like to prove that this is at most.We consider two cases:If then the LHS is simply1.If,the claim follows. If and then for the unassigned edges we have,i.e.,at most three times the cost of the op-timal LP solution.4.2.Assignment CostsWe can generalize this problem in the following way:in addition to having weights on the vertices,we have an assign-ment cost for assigning an edge to vertex.In the IP, the only change that we make is to addto the objective function.We now solve the resulting relax-ation of the IP to the natural LP and run Algorithm Threshold and Round by choosing in the same way.Suppose that in the optimal solution of the linear program, the optimum cost is which represents the optimum fractional cost due to the weighted sum of chosen vertices and the assignment cost of edges.Theorem4.4Algorithm Threshold and Roundfinds a solu-tion such that the expected assignment cost is at most.Thus this gives a2approximation for the problem with vertex weights and assignment costs(since the total cost is at most).5.Scheduling on Unrelated Parallel MachinesGiven a set of jobs,a set of machines,and(for each and)the time required to process job on machine,the problem is to schedule the jobs on the ma-chines so as to minimize the makespan.Lenstra,Shmoys and Tardos[15]give a-approximate solution for this problem; their result is as follows.Define a linear program LP with a variable for each machine and job;is iff job is scheduled on machine.Let.LP asks for a feasible solution for the following system of lin-ear constraints:(i)for all;(ii)for all;(iii)for all;and(iv)for all.It is easy to see that the given instance has makespan at most only if LP has a feasible solution; thus,the infimum of all such“feasible”is a lower bound on the optimal makespan.We will throughout let be a lower bound on this infimum which is close to the infimum with high precision;such a can be computed efficiently via a bisection search.Then,the work of[15]presents a round-ing method to produce a schedule of makespan at most, which is a-approximation.Since then,it has been an open question if we can do better in polynomial time.In the spirit of offering per-user guarantees,we can also ask the following question.Are there constants and for which we can construct a randomized schedule that has makespan at most with probability,and where each given job gets scheduled with probability at least?(The al-gorithm of[15]provides and.)As pointed out by Chandra Chekuri to us,this is indeed possible forand[4].It is not clear how to extend this approach to achieve and;we show such a result here.Let be as above,and let the vector denote an op-timal solution to LP.We need the following notion of -weighted dependent rounding.Briefly,we will work with a star graph,whose center is some machine and whose leaves are the jobs.We have a dependent round-ing instance on this graph given by the vector;we modify our dependent rounding scheme as follows.Note that there is no cycle in.In dependent rounding,suppose we pick a path;let the values be the probabilis-tically changing values as in Section2.We now define to be the smallest positive for which either or;define to be the smallest positive for which either or. With probability,increment by and decre-ment by;with probability,decrement by and increment by. Finally,suppose the maximal path is just an edge.Ifand,set to be zero(this is crucial);else(i.e.,if or if),set with probability and set with proba-bility.This scheme has some useful properties which we exploit below.Algorithm.We are given a constant,and proceed as follows.1.Find the lower bound by bisection search,and solve LP optimally to get a solution vector.2.Consider a bipartite graph,where is the set of jobs,is the set of machines and an edgeiff.Repeatedly applying a“scaling-rounding-rescaling”technique of[14]a certain number of times,we obtain the following modified instance.The load on each ma-chine is at most.Moreover,every job is assigned at least fractionally,where.Crucially,there are constants and(with) such that for all,one of the following two conditions holds: (a),or(b)for all such that, we have.3.For each,let be the subgraph of induced on vertex and its neighbors.Perform-weighted de-pendent rounding on all the independently,for a certain .Schedule job on an arbitrary machine for which gets rounded to,if such an exists.Theorem5.1The above algorithm yields a-approximate solution in which each job is scheduled with a probability of at leastpubl.html[2] A.Bar-Noy,R.Bar-Yehuda, A.Freund,J.Naor andB.Schieber.A Unified Approach to Approximating Re-source Allocation and Scheduling.Proc.ACM Sympo-sium on Theory of Computing,735-744,2000.[3] A.Bar-Noy,S.Guha,Y.Katz,J.Naor, B.Schieberand H.Shachnai.Throughput Maximization of Real-TimeScheduling with Batching.Proc.ACM-SIAM Symposiumon Discrete Algorithms,742-751,2002.[4] C.Chekuri and S.Khanna.A PTAS for the Multiple Knap-sack Problem.Proc.ACM-SIAM Symposium on DiscreteAlgorithms,213–222,2000.[5]J.Chuzhoyand J.Naor.Covering Problems with Hard Ca-pacities.Proc.IEEE Symposium on Foundations of Com-puter Science,2002(to appear).[6] C.Cooper and A.Frieze.On a general model of webgraphs.Proc.European Symposium on Algorithms,500–511,2001.[7] C.Cooper and A.Frieze.Crawling on web graphs.Proc.ACM Symposium on Theory of Computing,419–427,2002.[8]DIMACS Workshop on Internet and WWW Mea-surement,Mapping and Modeling,2002.See/Workshops/Internet/program.html.[9]T.Erlebach,A.Hall.NP-Hardness of broadcast schedul-ing and inapproximability of single-source unsplittablemin-costflow.Proc.13th Annual ACM-SIAM Sympo-sium on Discrete Algorithms,194-202,2002.[10] F.Chung Graham and L.Lu.Connected components inrandom graphs with given degree sequences.Manuscript. [11]R.Gandhi,S.Khuller,Y.Kim and Y.C.Wan.Algorithmsfor Minimizing Response Time in Broadcast Schedul-ing.Proc.Ninth Conference on Integer Programming andCombinatorial Optimization,425–438,2002.[12]S.Guha,R.Hassin,S.Khuller and E.Or.Capacitated Ver-tex Covering with Applications.Proc.ACM-SIAM Sym-posium on Discrete Algorithms,858-865,2002.[13] B.Kalyanasundaram,K.Pruhs,and M.Velauthapillai.Scheduling broadcasts in wireless networks.In Proc.Eu-ropean Symposium of Algorithms,LNCS1879,Springer-Verlag,290-301,2000.[14] F.T.Leighton,C.J.Liu,S.B.Rao and A.Srinivasan.New Algorithmic Aspects of the Local Lemma with Ap-plications to Routing and Partitioning.SIAM Journal onComputing,V ol.31,626-641,2001.[15]J.K.Lenstra,D.B.Shmoys and´E.Tardos.Approximationalgorithms for scheduling unrelated parallel machines.Mathematical Programming,46:259–271,1990.[16] D.B.Shmoys,´E.Tardos and K.Aardal.ApproximationAlgorithms for Facility Location Problems.Proc.ACMSymposium on Theory of Computing,265–274,1997. [17] A.Srinivasan.Distributions on Level-Sets with Appli-cations to Approximation Algorithms.Proc.IEEE Sym-posium on Foundations of Computer Science,588–597,2001.。