耦合模理论的推导公式
- 格式:doc
- 大小:401.00 KB
- 文档页数:5
光栅布拉格光栅及其传感特性研究2一光纤光栅概述21.1 光纤光栅的耦合模理论21.2 光纤光栅的类型31.2.1 均匀周期光纤布拉格光栅31.2.2 线性啁啾光纤光栅31.2.3 切趾光纤光栅31.2.4 闪耀光纤光栅41.2.5 相移光纤光栅41.2.6 超结构光纤光栅41.2.7 长周期光纤光栅4二光纤布拉格光栅传感器52.1 光纤布拉格光栅应力传感器52.2 光纤布拉格光栅温度传感器62.3 光纤布拉格光栅压力传感器62.4 基于双折射效应的光纤布拉格光栅传感器7三光纤光栅传感器的敏化与封装103.1 光纤光栅传感器的温度敏化103.2 光纤光栅传感器的应力敏化103.2 光纤光栅传感器的交叉敏感及其解决方法10四光纤光栅传感网络与复用技术104.1 光纤光栅传感网络常用的波分复用技术114.1.1 基于波长扫描法的波分复用技术124.1.2 基于波长分离法的波分复用技术134.1.3 基于衍射光栅和CCD阵列的复用技术134.1.4 基于码分多址(CDMA)和密集波分复用(DWDM)技术144.2光纤光栅传感网络常用的空分复用技术144.3光纤光栅传感网络常用的时分复用技术164.4 光纤光栅传感网络的副载波频分复用技术184.4.1 光纤光栅传感副载波频分复用技术184.4.2 FBG传感网络的光频域反射复用技术184.5 光纤光栅传感网络的相干复用技术184.6 混合复用FBG传感网络184.6.1 WDM/TDM混合FBG网络184.6.2 SDM/WDM混合FBG网络184.6.3 SDM/TDM混合FBG网络184.6.4 SDM/WDM/TDM混和FBG网络184.6.5 光频域反射复用/波分复用混合FBG传感网络18五光栅光栅传感信号的解调方法18六激光传感器18光栅布拉格光栅及其传感特性研究一 光纤光栅概述1.1 光纤光栅的耦合模理论光纤光栅的形成基于光纤的光敏性,不同的曝光条件下、不同类型的光纤可产生多种不同的折射率分布的光纤光栅。
耦合模理论及其在微波和光纤技术中的应用(研究生课程用)钱景仁中国科学技术大学二零零五年目录绪言 (Preface) (1)第一章耦合模的一般理论§1.1 耦合模方程 (6)§1.2 强耦合与弱耦合 (11)§1.3 周期性耦合 (18)§1.4 耦合模与简正模 (29)§1.5 缓变参数情况下本地简正模广义理论 (33)§1.6 理想模、本地简正模和超本地简正模 (37)§1.7 耦合器应用举例 (42)§1.8 临界界面附近和稳相点附近的耦合模方程 (46)第二章闭合波导中的耦合模问题§2.1 介质填充波导 (51)§2.2 缓变表面阻抗和阻抗微扰 (59)§2.3 弯曲波导 (64)第三章光纤中的耦合模问题§3.1 光纤中的简正模式 (68)§3.2 耦合模理论的推广 (80)§3.3 非理想光纤的耦合模方程 (81)§3.4 用闭合波导理论来研究开波导 (86)第四章 螺旋光纤及弯曲光纤§4.1 螺旋光纤的耦合模分析 (89)§4.2 单模传输条件下的螺旋光纤 (93)§4.3 弯曲光纤 (98)第五章耦合功率方程§5.1多模波导和多模光纤的传输特性 (104)§5.2 多模波导中的耦合功率方程 (105)§5.3 多模光纤传输中的耦合功率方程 (107)中文参考文献 (109)英文参考文献 (110)PrefaceWhat is the coupled-mode theory? Is it a common theory in physics?Waves and vibration phenomena are popular in physics as we know such as mechanical vibrations, acoustic waves, light waves, microwaves and radio waves. Furthermore, connection or coupling among systems is also a general rule in universe. Everything presupposes the existence of some other thing. Cause-effect relations and action-reaction relations are generally existed among systems in the universe.It is obvious that there aren’t any ideal waves which exist independently and do not change their amplitudes and directions. A real wave or vibration is always connected with a source or other waves. Now, it is necessary to describe how these waves or vibrations (oscillations) couple to each other, and how their amplitudes change with the time or the distance. To illustrate the principle of the coupling between waves or vibrations (oscillations), let’s take pendulums as an example.Fig. aA pendulum can vibrate, that is to say it swings from side to side. We can give it a push and then it will vibrate at a fixed speed or at a certain frequency. If two pendulums with same frequency are hung on a string and one of them is set swinging as shown in Fig. a, it will swing less and less until it stops altogether, while the other pendulum will swing higher and higher until it reaches a maximum. Then the process will be reversed until the first pendulum reaches a maximum and the second comes torest once more. This cycle repeats itself again and again. It would repeat infinitely ifthere were no losses in the system.This is a typical experiment performed in most early physics courses. I had done it when I was in middle school.1Fig. b Frequencies are the same. Fig. c Frequencies are different.If these two pendulums have different frequencies, then transfer of energy between them will not be complete, and the first pendulum will not stop in the process. We can plot a graph to express the process as shown in Fig.b and Fig.c. The abscissa represents the time, and the ordinate A represents the amplitude of each pendulum. If the initial conditions at t =0 are as follows:()()1201,00A A ==,We can see the variations of the amplitudes of the two coupled pendulums in Fig.b and Fig.c, respectively, when their frequencies are the same and different. The time spacing between two adjacent maxima (or minima) is the period of the process, which is determined by the coupling between the two pendulums. The stronger the coupling is, the shorter the period is. The coupling between the two pendulums is caused by the fact that the pendulums are connected to a same string, and any vibration of one of the pendulums will have an effect on the other through the string.It has been recognized that coupled transmission lines, coupled electrical circuits, coupled optical fibers and coupled waveguides are analogous to coupled pendulums. The variations of the amplitudes of waves are the same as shown in the figures, but now the abscissa represents distance instant of time.Sometimes the coupling is not between the same kind of waves or oscillations, for example, in a traveling wave tube, a space-charge wave and an electromagnetic wavecouple to each other. In a crystal, an electrical vibration will cause a mechanical (or acoustic) vibration and vice versa.There should be some general rules or there is a generalized theory to describe these coupling problems. It is the so called coupled-mode theory. Here, mode means one of the models of wave forms.In the theory, all the coupled-mode or coupled-vibration problems are formulated by a set of coupled-mode equations, which are simultaneous differential equations of first order with variable or constant coefficients. In case of two modes, they can be written as follows:()()()()()()11122221j j j j dA z A z cA z dz dA z A z cA z dz ββ=−+=−+Where i β and c are functions of z in general case.When n modes or waves should be considered in a coupling problem, n differential equations will be used instead of two.A common method in electromagnetic theory is the modal approach in which the normal modes of the system (those fields which propagate unchanged except in phase) are found. This involves solving the wave equation adapted to the particular geometry of the system, and matching solutions at the boundaries to give the normal modes or eigensolutions. Any field of the system can then be expanded in terms of the normal modes, with the expansion coefficients determined by certain boundary conditions e.g. initial conditions. This modal-expansion or eigenvector method is physically intuitive and straightforward in principle, but modal solutions of the wave equation can only be found for a limited number of ideal systems of relatively simple geometry, including slabs and circular cylinders.Coupled-mode theory attempts to preserve the concept of modes for non-ideal systems in which an exact modal solution is not possible but where the normal modes of a reference system of simple geometry are known. These modes, in general, form a complete set so that they can be used to expand the fields of the non-ideal system.Because they do not satisfy the boundary conditions of the non-ideal system, the modes coupled or exchange power as they propagate. To derive the coupled-mode equations, Maxwell’s equations are transformed to those which determine how the individual mode amplitudes vary as a function of the parameters of the system. There have been several methods of coupled-mode analysis to formulate the coupled-mode equations. In the early times, people used to start directly from Maxwell’s equations along with the boundary conditions to derive these equations. Later, many other methods were utilized, such as using reciprocity theorem, starting from a Green function or stimulating equations of waveguides, someone also used variation method and perturbation approach, all these are substantial agreement.The method of coupled-modes is most useful when the deviation of the non-ideal system from the known reference system is not too great e.g. small deviations in refractive index or small deformation of cross-section. Although the imperfections may be small they can still produce marked effects, such as total transfer of power from one mode to the other in a waveguide or one waveguide to another. Coupled-mode theory has also been used to treat a variety of problems, including the cross-sectional deformation of waveguides. In many of the problems where the power transfer between modes is small, solutions can also be obtained by other techniques. However, coupled-mode theory has particular application to systems in which a large fraction of modal power may be transferred to other modes, as in the case of neighbouring waveguides in which complete transfer of power between waveguides can take place. This is unique for coupled-mode theory.The primary idea of the coupled-mode theory was first introduced by Pierce in 1940’s, when he worked on microwave electronic devices. Later, this idea was extended its use to the waveguide transmission by Miller and then the theory was fully developed. Recently, the theory has been widely used to solve optical fiber transmission problems and fiber gratings. On the other hand, the coupled-mode theory supervises the practice and many new coupling principles have been discovered. According them, a variety of devices have been designed, such as mode transducers, broadband optical fiber couplers and etc.A lot of coupling problems involving optics, acoustics and microwaves have been being solved by scientists of many countries, including Chinese scientists. Prof. Huang Hong-Chia, vice-president of Shanghai University, has made important contributions to coupled-mode theory. Some of his papers are listed in the end of this book for reference.In this book, the first chapter begins with the coupled-mode equations and is followed by many treatments to solve these equations. In Chapter 2, many typical coupled-mode problems in closed waveguides are solved. Those all problems will lead to the coupled-mode equations and then the coupling coefficients are derived. Chapter 3 begins with a discussion of the normal modes in optical fibers. The remainder of the chapter deals with coupling between these normal modes in imperfect optical fibers. In Chapter 4 helical fibers and bending fibers are studied. In the fifth chapter the coupled power theory is introduced, it consists of Pierce’s theory and Marcuse’s theory which are used in waveguide and optical fiber transmission, respectively.On the whole, coupled-mode theory is a general theory. Mathematically, it bases on the expansion theorem of eigen-functions, the existence of expansion in terms of eigen-functions makes the theory to be carried out. The mathematic areas in the theory are differential equations and linear algebra.第一章 耦合模的一般理论在这一章中,将首先从一般概念出发,得到耦合模方程。
第30卷第1期 2010年3月物 理 学 进 展PROGRESS IN PH YSICS V ol.30No.1 M ar.2010文章编号:1000-0542(2010)01-0037-44收稿日期:2009-11-18基金项目:国家自然科学基金(10674075,10974100,60577018)、天津市应用基础与前沿技术研究计划重点项目、国家863计划项目(2006A A01Z 217)、光电信息技术科学教育部重点实验室开放基金项目资助*Ema il:zhangw g@nanka 光纤耦合器的理论、设计及进展林锦海,张伟刚(南开大学现代光学研究所,光电信息技术科学教育部重点实验室,天津300071)摘要: 系统总结了光纤耦合器的发展历程,归纳提炼出各个阶段的标志性事件;详细阐述了光纤耦合器的耦合类型、制作方法、性能参数;详细评述了光纤耦合器的理论分析方法;全面分析了X 型、星型、光栅型、混合型等各种典型光纤耦合器的基本结构、工作原理及耦合特性;指出并展望了光纤耦合器的发展方向和应用前景。
作者率先提出并设计了超长周期光纤光栅耦合器,实验上实现了两个超长周期光纤光栅之间的有效耦合。
关键词:光纤光学;光纤耦合器;光纤通信;光纤传感;超长周期光纤光栅中图分类号:T N253;T N929 文献标识码:A0 引言光纤耦合器是一种用于传送和分配光信号的光纤无源器件,是光纤系统中使用最多的光无源器件之一,在光纤通信及光纤传感领域占有举足轻重的地位。
光纤耦合器一般具有以下几个特点:一是器件由光纤构成,属于全光纤型器件;二是光场的分波与合波主要通过模式耦合来实现;三是光信号传输具有方向性。
根据光的耦合原理,人们已经设计出了多种光纤耦合器器结构。
包括:X 型光纤耦合器、星型光纤耦合器、双包层光纤耦合器、光纤光栅耦合器、长周期光纤光栅耦合器、布拉格光纤耦合器、光子晶体光纤耦合器等。
随着各种光纤通信和光纤传感器件的广泛使用,光纤耦合器的地位和作用愈来愈重要,并已成为光纤通信和光纤传感领域不可或缺的一部分。
流固耦合分析(FSI)流固耦合分析(FSI)是涉及流体和固体之间相互作用的问题研究,其理论包括了几个主要方面:流体力学、固体力学、耦合边界条件、求解器等。
以下是流固耦合分析的详细理论讲解,带有相关公式和尽量详细的说明。
一、流体力学1. 守恒定律质量守恒定律:$$ \frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{u}) = 0 $$动量守恒定律:$$ \rho \frac{\partial \mathbf{u}}{\partial t} + \rho (\mathbf{u} \cdot \nabla) \mathbf{u} = \nabla \cdot \tau + \mathbf{f} $$其中,$\rho$是流体密度,$\mathbf{u}$是流体速度,$\tau$是应力张量,$\mathbf{f}$是体力。
2. 纳维-斯托克斯方程$$ \rho \frac{\partial \mathbf{u}}{\partial t} + \rho (\mathbf{u} \cdot \nabla) \mathbf{u} = \nabla \cdot (-p\mathbf{I} + \tau) + \mathbf{f} $$其中,$p$是静压力,$\mathbf{I}$是单位张量。
3. 边界条件(1)速度边界条件:$\mathbf{u} = \mathbf{u}_b$,其中$\mathbf{u}_b$是边界上的速度。
(2)压力边界条件:$p = p_b$,其中$p_b$是边界上的压力。
4. 流体力学求解器常用的流体力学求解器有OpenFOAM、ANSYS Fluent等。
二、固体力学1. 力学基本方程$$ \tau = \sigma\cdot \mathbf{n} $$其中,$\tau$是表面上的接触力,$\sigma$是固体的应力张量,$\mathbf{n}$是表面的单位法向量。
耦合模理论
耦合模型是一种系统分析模型,它假设多个系统之间存在耦合关系。
它提供了一个框架,用于分析系统之间的耦合关系,从而更好地理解系统之间的相互影响。
耦合模型的核心思想是以系统的变化为基础,从而提出系统之间的相互作用和耦合关系。
它不仅可以用来分析组织内部的耦合关系,也可以用来处理组织之间的耦合关系。
耦合模型的一个重要的概念是耦合强度。
耦合强度可以用来评估不同系统之间的耦合关系,以及它们之间的影响程度。
耦合强度可以用不同类型的耦合关系来衡量,包括联动性、弹性性和可预见性等。
耦合强度可以帮助分析师更好地了解系统之间的耦合关系,从而帮助他们进行决策分析。
耦合模型还包括耦合类型和耦合控制机制。
耦合类型描述了系统之间的耦合关系,它可以帮助分析师更好地理解系统之间的耦合关系。
耦合控制机制是指系统之间的控制关系,它可以帮助系统之间的控制机制发挥最大的效用。
耦合模型可以帮助组织做出更好的决策,从而改善组织的效率和效果。
它可以帮助组织管理者更好地理解系统之间的耦合关系,从而改进系统的性能和可靠性。
耦合模型还可以帮助组织管理者更好地控制系统,从而提高系统的可控性。
综上所述,耦合模型是一种系统分析模型,它可以帮助组织更好地理解系统之间的耦合关系,从而改善组织的效率和效果。
它可以帮助组织管理者更好地理解系统之间的耦合关系,从而改进系统的性能和可靠性。
它还可以帮助组织管理者更好地控制系统,从而提高系统的可控性。
耦合过程及其多尺度行为的理论与应用研究一、概述耦合过程及其多尺度行为的理论与应用研究,是一个跨学科的综合性研究领域,涉及物理学、化学、生物学、工程学等多个学科。
耦合过程指的是两个或多个系统或过程之间相互作用、相互影响的现象,这种相互作用往往导致系统整体性质的改变和新现象的产生。
而多尺度行为则是指在不同时间或空间尺度上,系统或过程所表现出的不同特征和规律。
在自然界和工程实践中,耦合过程及其多尺度行为广泛存在,如气候系统中的大气海洋陆地相互作用、生物体内的代谢过程与基因表达的相互调控、材料科学中的多相流与界面反应等。
这些耦合过程不仅影响着系统的基本性质和功能,同时也是许多复杂现象和问题的根源。
深入研究耦合过程及其多尺度行为,对于揭示自然现象的本质、优化工程设计和推动科技进步具有重要意义。
在理论层面,耦合过程及其多尺度行为的研究需要借助数学、物理和计算科学等多学科的知识和方法。
通过建立数学模型和仿真算法,可以定量描述和分析耦合过程的动力学行为、多尺度特征以及参数影响等。
随着计算机技术的不断发展,高性能计算和大数据分析等技术的应用也为耦合过程的研究提供了新的手段和可能性。
在应用层面,耦合过程及其多尺度行为的研究成果在多个领域具有广泛的应用前景。
在气候预测和环境保护中,可以通过研究大气海洋陆地等系统的耦合过程来预测极端天气和制定减排策略在生物医学工程中,可以利用多尺度模拟和优化方法来设计更高效的药物和医疗器械在材料科学和能源领域,可以通过研究材料的多尺度结构和性能关系来开发新型材料和提高能源利用效率。
耦合过程及其多尺度行为的理论与应用研究是一个充满挑战和机遇的研究领域。
通过深入探索和理解耦合过程的本质和规律,我们可以为自然现象的解释、工程设计的优化以及科技进步的推动提供有力的理论支撑和实践指导。
1. 耦合过程的概念与定义作为一种广泛存在于物理、生物、社会等系统中的现象,是指两个或多个系统、部分或元素之间存在的相互作用、相互关联以及能量或信息交换的过程。
耦合模理论耦合模理论(Coupled-Mode Theory ,CMT )是研究两个或多个电磁波模式间耦合的一般规律的理论。
CMT 可用于非接触电能传输(Contactless Power Transfer ,CPT )系统的计算,以降低多线圈耦合电路计算的复杂性。
为了用CMT 来估算线圈间的能量传输效率,首先用电路原理(Circuit Theory ,CT )的思想解决两个线圈的能量传输效率问题,然后通过CMT 得出两个线圈感应连接的能量传输效率方程,将两个方程对比后发现可以变换为一套相同的公式。
随后分析3个线圈、4个线圈、一直到n-1个线圈都可以变换为同一套公式,最后将此方法推广到在同一平面的n 个负载线圈的效率求解。
1 单负载的电路分析 1.1 电路分析在图1中磁共振系统的逆变和整流部分可以得到高频的交流电,U 是逆变后的交流电源,R 为原副边的内阻,R L 是负载,耦合系数12/K M L L =M 为L1和L2的互感。
系统最佳的工作频率就是谐振点ω,由集总参数的能量守恒原理可以得到 11211U R j L I j MI C ωωω⎛⎫⎛⎫=+-- ⎪ ⎪⎝⎭⎝⎭(1) L 212210R R L I j j MI C ωωω⎛⎫⎛⎫=++-- ⎪ ⎪⎝⎭⎝⎭(2) 222L 2221,(R )X L j MUI P I R X Mωω==++ (3) 令11i i X R j L C ωω⎛⎫=+-⎪⎝⎭, 2222221121L 2(())(R X )CT L LL P I R M R UI UI R X X M ωηω===+++ (4)在谐振状态下,010201021211,,,L L X R X R L L ωωωω====,从而得到 L2222(())(R R)LCTLM RR R R M ωηω=+++ (5) 1.2 CMT 分析CPT 系统中,常常只涉及稳态分析,在此也仅分析稳态特性。
主线圈的幅值在正弦时为一个常数;同理,次线圈的幅值也是一个常数,两个时间域线圈12(t),(t)a a 的原始储能可分别表示为2212(t),(t)a a 。
由CMT 可得111122(t)(j )(t)jK (t)(t)S a a a F ω=-+Γ++& (6) 2212121(t)(j )(t)jK (t)a a a ω=-+Γ+Γ+& (7)在上述公式中,12,,L ΓΓΓ分别为原线圈的损耗、负载线圈的损耗和负载的吸收功率,12K 为两个线圈的耦合率,(t)S F 为励磁损耗(忽略不计)。
CMT 中,1122(t),(t)j tj ta A e a A e ωω--==都是正弦信号;111222222,P 2P A A =Γ=Γ和L 22P 2L A =Γ分别为原线圈、副线圈和负载的功率。
由能量守恒定律可得2122222121222222LCMTL L L A P P P P A A A ηΓ==++Γ+Γ+Γ (8) 由方程(6)和(7)可得11222112L A jK A jK Γ+Γ==Γ,2L L L Q R ω=,11L Q R ω=,22L Q R ω=。
将两者之间关系1212,,222L LQ Q Q ωωωΓ=Γ=Γ=以及122K K ω=代入式(8),解得 1212L 2L 2112122222222222()(()K (())()(())()L LCMTL L LLLK K L L R R R R K L L R R M RR R R M R R ωηωωωΓ==Γ+ΓΓ+ΓΓ++++=+++ (9)和式(5)对比可知,两种方法求出的传输效率的表达式相同。
2 两个负载电路的传输效率分析 2.1 电路分析对于图2电路,2M 和3M 为1L 分别和2L 和3L 的互感,3L R 为线圈3所带的负载,2K 和3K 分别为两个负载线圈的耦合系数.同理可得11223311U R j L I j M I j M I C ωωωω⎛⎫⎛⎫=+--- ⎪ ⎪⎝⎭⎝⎭ (10)22221210L R R j L I j M I C ωωω⎛⎫⎛⎫=++-- ⎪ ⎪⎝⎭⎝⎭ (11)33331310L R R j L I j M I C ωωω⎛⎫⎛⎫=++-- ⎪ ⎪⎝⎭⎝⎭ (12)在谐振状态下的传输效率为2223322333211232222222()()1()()CT L L L L L L L L P I R I R M R R R M R R R UI UI G R R R R ωωη++++===++ (13) 式中:12323322222()()()()L L L L G R R R R M R R M R R ωω=++++++. 2.2 CMT 分析3个线圈的CMT 分析和两个线圈的CMT 分析方法类似,如下所示:1111122133(t)()(t)(t)(t)(t)S a j a jK a jK a F ω=-+Γ+++& (14) 22222121(t)(+)(t)(t)L a j a jK a ω=-+ΓΓ+& (15) 33333131(t)(+)(t)(t)L a j a jK a ω=-+ΓΓ+& (16)同理可得133122331223331323,,,,,L L L L L A L L L L L Q Q Q Q Q A jK R R R R R ωωωωωΓ+Γ======.同时有关系式2323123121323123,,,,,,2222222L L L L K K K K Q Q Q Q Q ωωωωωωωΓ=Γ=Γ=Γ=Γ===.从而解得22332312323112233223322222222222222CMTL L L L L L L L A A P P P P P P P A A A A A ηΓ+Γ+==++++Γ+Γ+Γ+Γ+Γ223332223222222()()()()L L L L L L M R R R M R R R G R R R R ωω+++=++ (17)式中:22323322222()()()()L L L L G R R R R R M R R M R R ωω=++++++.解出的结果和式(13)相同.用CT 方法和CMT 方法能够得到相同的效率公式. 33个负载电路的传输效率分析对于图3中3个负载电路的拓扑结构,用同样的方法能够证明用集总参数分析方法和CMT 求传输效率是相同的.22334411222CT L L L P I R I R I R UI UI η++== (18)2341234234CMTL L L L L L P P P P P P P P P P η++=++++++ (19)令234234324423234222222(()()()()()()()()())()()()L L L L L L L L L L L L R R R R R R R M R R R R M R R R R M R R R R R R R R R R ωωω∆=+++++++++++++++1223433243323222222222222()()()()()()L L L L L L L L L M R R R R R M R R R R R M R R R R R ωωω∆=++++++++,求得传输效率公式为1CMTη∆=∆(20)4n-1个负载电路的传输效率分析用集总参数分析图4拓扑结构,图4有n-1个负载线圈,有n个方程,分别为112211...n nU R j L I j M I j M ICωωωω⎛⎫⎛⎫=+----⎪⎪⎝⎭⎝⎭(21)110i i i iiLR R j L I j MICωωω⎛⎫⎛⎫=++--⎪⎪⎝⎭⎝⎭(2,...,)i n=(22)解上述n个方程,并将12,,...,nI I I代入2j2233n122222222,()...+i inCTnnL LL L L i j j iM R R RI R I R I RUIωη==≠+++==∆∑∏(23)式中:()2)jn n n222222,()(()j j inL L Lij j j j iR R R R R M R Rω====≠∆=++++∑∏∏∏用CMT方法分析图4的拓扑结构图,同样忽略励磁效应,由前面的方法可得11111221(t)()(t)(t)...(t)(t)n n Sa j a jK a jK a Fω=-+Γ+++&(24)211(t)(+)(t)(t)i i i i iLa j a jK aω=-+ΓΓ+&(2,...,)i n=(25)将以上各变量代换,得到222221212222i i iCMTi i i i i in nL Li in n n nL Li i i iP AP P A Aη======Γ==+Γ+Γ∑∑∑∑∑∑(26)将条件1211,,,,,222i i i i ii i i i ii i i iLL LL LA L L KQ Q KA jK R R Q QωωωωωΓ+Γ===Γ=Γ==代入式(26),忽略两个负载之间的耦合现象及原线圈的励磁后,用集总参数和CMT能得到同样的结果.。