耦合模理论
- 格式:pdf
- 大小:873.71 KB
- 文档页数:113
model coupling theory模型耦合理论(Model Coupling Theory)是指将不同的模型或子模型通过某种方式相互连接,形成一个整体模型的理论和方法。
它旨在解决多个模型之间相互依赖、相互影响的问题,以及提高模型的准确性和可靠性。
模型耦合理论的基本思想是将多个模型组合成一个整体模型,使得各个子模型之间可以相互传递信息、相互影响,并通过协同作用达到更准确的结果。
模型耦合可以是线性的、非线性的,也可以是静态的、动态的。
在模型耦合理论中,常用的耦合方式有以下几种:1. 驱动-响应耦合(Driver-Response Coupling):一个模型作为主模型,驱动其他模型的运行,并根据其他模型的响应进行调整。
这种耦合方式常用于模拟系统的控制过程。
2. 数据耦合(Data Coupling):不同模型之间通过共享数据进行耦合。
模型之间的数据交换可以是单向的或双向的,可以是离散的或连续的。
3. 参数耦合(Parameter Coupling):不同模型之间通过共享参数进行耦合。
一个模型的输出可以作为另一个模型的输入参数,或者两个模型共享相同的参数。
4. 接口耦合(Interface Coupling):不同模型之间通过定义共同的接口进行耦合。
接口定义了模型之间的输入和输出,使得模型之间可以进行交互。
模型耦合理论的应用非常广泛,包括气候模型、生态模型、经济模型等领域。
通过将不同的模型耦合起来,可以更好地模拟和预测复杂系统的行为,提高决策的科学性和准确性。
然而,模型耦合也带来了一些挑战,如模型之间的数据一致性、模型之间的计算效率等问题,需要进一步研究和解决。
第30卷第1期 2010年3月物 理 学 进 展PROGRESS IN PH YSICS V ol.30No.1 M ar.2010文章编号:1000-0542(2010)01-0037-44收稿日期:2009-11-18基金项目:国家自然科学基金(10674075,10974100,60577018)、天津市应用基础与前沿技术研究计划重点项目、国家863计划项目(2006A A01Z 217)、光电信息技术科学教育部重点实验室开放基金项目资助*Ema il:zhangw g@nanka 光纤耦合器的理论、设计及进展林锦海,张伟刚(南开大学现代光学研究所,光电信息技术科学教育部重点实验室,天津300071)摘要: 系统总结了光纤耦合器的发展历程,归纳提炼出各个阶段的标志性事件;详细阐述了光纤耦合器的耦合类型、制作方法、性能参数;详细评述了光纤耦合器的理论分析方法;全面分析了X 型、星型、光栅型、混合型等各种典型光纤耦合器的基本结构、工作原理及耦合特性;指出并展望了光纤耦合器的发展方向和应用前景。
作者率先提出并设计了超长周期光纤光栅耦合器,实验上实现了两个超长周期光纤光栅之间的有效耦合。
关键词:光纤光学;光纤耦合器;光纤通信;光纤传感;超长周期光纤光栅中图分类号:T N253;T N929 文献标识码:A0 引言光纤耦合器是一种用于传送和分配光信号的光纤无源器件,是光纤系统中使用最多的光无源器件之一,在光纤通信及光纤传感领域占有举足轻重的地位。
光纤耦合器一般具有以下几个特点:一是器件由光纤构成,属于全光纤型器件;二是光场的分波与合波主要通过模式耦合来实现;三是光信号传输具有方向性。
根据光的耦合原理,人们已经设计出了多种光纤耦合器器结构。
包括:X 型光纤耦合器、星型光纤耦合器、双包层光纤耦合器、光纤光栅耦合器、长周期光纤光栅耦合器、布拉格光纤耦合器、光子晶体光纤耦合器等。
随着各种光纤通信和光纤传感器件的广泛使用,光纤耦合器的地位和作用愈来愈重要,并已成为光纤通信和光纤传感领域不可或缺的一部分。
Transmission of Wireless Power in Two-Coil and Four-Coil Systems using Coupled Mode TheoryManasi Bhutada, Vikaram Singh, ChiragWartyDept. of Electrical and Electronics EngineeringIntelligent Communication LabMumbai, India无线电传输在双线圈及四线圈系统中的耦合模理论电气与电子工程系智能通信实验室印度,孟买姓名:学号:班级:日期:2016年7月2日Abstract—Wireless Power Transfer (WPT) systems are considered as sophisticated alternatives for modern day wired power transmission. Resonance based wireless power delivery is an efficient technique to transfer power over a relatively long distance. This paper presents a summary of a two-coil wireless power transfer system with the design theory, detailed formulations and simulation results using the coupled mode theory (CMT). Further by using the same theory, it explains the four-coil wireless power transfer system and its comparison with the two-coil wireless transfer power system. A four-coil energy transfer system can be optimized to provide maximum efficiency at a given operating distance. Design steps to obtain an efficient power transfer system are presented and a design example is provided. Further, the concept of relay is described and how relay effect can allow more distant and flexible energy transmission is shown.摘要——无线电源传输(WPT)系统被认为是复杂的现代有线输电的替代品。
热-流-固耦合建模过程热-流-固耦合作用是存在高度非线性的复杂耦合作用。
有关这三场的耦合作用研究在地石油工程、热资源开发、地下核废料存储安全、采矿工程等很多领域有着非常重要的应用价值。
由于研究对象的不同,热流固耦合模型的形式存在差异,建立符合实际问题的三场耦合模型十分困难,文中在国内外学者对三场耦合模型理论研究的进展状况的基础上,通过一个例子,介绍了用adina建立模型的过程。
1三场耦合理论模式介绍在三场耦合尤其是三场耦合机制的研究过程中,人们根据各自对三场耦合的认识提出了不同的三场耦合作用模式。
1995年前有关三场耦合作用模式的研究在场与场之间的联系关系上主要是以速度等变量为桥梁,如HART、Jing提出的作用模式,其中Jing主要描述的核储存库三场耦合模式,后来作用模式发展为主体为物理现象,它们之间的相互联系是以场作用或物理作用为桥梁的,如Guvanasen、柴军瑞的作用模式,前者同样以核废料储库库围岩三场耦合作用研究为主,后者为一般模式。
Jing等描述了核废料贮库围岩裂隙岩体中的热-液-力耦合过程,如图1所示。
Hart 等提出了如图2所示的三场耦合作用模式。
柴军瑞从岩体渗流-应力-温度三者两两之间的相互关系出发,建立了如图3的作用模式。
图中:口渗透水流对岩体固相的力学作用,一般应用有效应力原理来反映;a’为应力引起裂隙岩体空隙率和渗透特性变化,目前有经验关系式(如Lours负指数关系式)和理论关系式(包括各种概化情况下和各种概化模型下的理论关系式)两大类表示方法;b为温度引起热应变(力)及与温度有关的岩体固相力学特性变化;b’为岩体固相力学变形引起热力学特性变化及岩体固相内部热耗散;c为水流的热对流及与岩体固相的热交换;c’为温度势梯度引起水份运动及与温度有关的水特性变化。
图1裂隙岩体中的热液力耦合过程(据Jing等。
1995年)图2三场耦合模式(Hart)图3渗流-应力-温度之间的相互关系图2热流固耦合理论的提出三场耦合理论是由流-固两场耦合理论发展而来的,在流-固耦合理论中,有的假设温度场是恒定的,或者是不考虑温度场的变化与流体流动、岩石变形间的耦合作用。
耦合模理论
耦合模型是一种系统分析模型,它假设多个系统之间存在耦合关系。
它提供了一个框架,用于分析系统之间的耦合关系,从而更好地理解系统之间的相互影响。
耦合模型的核心思想是以系统的变化为基础,从而提出系统之间的相互作用和耦合关系。
它不仅可以用来分析组织内部的耦合关系,也可以用来处理组织之间的耦合关系。
耦合模型的一个重要的概念是耦合强度。
耦合强度可以用来评估不同系统之间的耦合关系,以及它们之间的影响程度。
耦合强度可以用不同类型的耦合关系来衡量,包括联动性、弹性性和可预见性等。
耦合强度可以帮助分析师更好地了解系统之间的耦合关系,从而帮助他们进行决策分析。
耦合模型还包括耦合类型和耦合控制机制。
耦合类型描述了系统之间的耦合关系,它可以帮助分析师更好地理解系统之间的耦合关系。
耦合控制机制是指系统之间的控制关系,它可以帮助系统之间的控制机制发挥最大的效用。
耦合模型可以帮助组织做出更好的决策,从而改善组织的效率和效果。
它可以帮助组织管理者更好地理解系统之间的耦合关系,从而改进系统的性能和可靠性。
耦合模型还可以帮助组织管理者更好地控制系统,从而提高系统的可控性。
综上所述,耦合模型是一种系统分析模型,它可以帮助组织更好地理解系统之间的耦合关系,从而改善组织的效率和效果。
它可以帮助组织管理者更好地理解系统之间的耦合关系,从而改进系统的性能和可靠性。
它还可以帮助组织管理者更好地控制系统,从而提高系统的可控性。
和社会可持续发展的应用研究,其成果可直接为社会需求和1 概述当今世界,人类对地球环境的影响已成为制约人类社会持续发展的重要因素。
如温室气体的增加与全球变暖、植被破坏与生物多样性丧失、土地退化、淡水资源短缺等,都是人类所面临的一系列重大而又紧迫的全球环境问题。
为此,国际科学联合理事会( ICS U) 于1986 年组织拟定了以研究全球环境变化为目的的国际地圈生物圈计划( I G BP) ,旨在研究地球系统内相互作用的物理、化学和生物过程。
1993 年开始的全球环境变化与陆地生态系统( G CTE) 和水文循环的生物圈方面(B AHC) 等项目即是该计划的组成部分。
这些项目是全球环境变化研究中地球科学研究的热点和难题。
统与物理气候系统之间的相互关系。
这两个系统由全球水文循环和系统的状态变量(如温室气体的浓度、地面粗糙度和反射率等) 相联系,耦合组成了地球巨系统。
在这个巨系统中,水文循环在地圈—生物圈—大气圈的相互作用中占有重要地位。
BAHC 项目即是为研究水文循环的生物控制,以及生态系统在气候、水文和环境中的重要性而设立的。
该项目的研究侧重在4 个方面: ①土壤—植被—大气转化模型的研制和检验; ②陆面性质和能量交换的区域尺度研究, 重点考虑土地利用、植被类型、土壤、水文和其他条件的陆面不均一性作用,以及地形和表层及次表层横向水流的影响; ③生民经济建设服务。
2 研究现状B AHC 项目作为国际地圈生物圈计划( I G BP) 的核心计划一,试图开发将陆面特征、陆面的能量与水汽通量纳入大陆和球模式中。
它探索的主题是:植被作用于水文循环的物理过水文循环的生物控制,以及生物系统在气候、水文和环境中的用;进一步认识水、碳和能量在土壤—植被—大气界面中的交过程;评价由于气候和其他变化导致的陆面性质的变化情况,而对不同尺度生物圈、大气圈、水圈乃至地圈交互作用的影估计植物群落陆相淡水生态系统在陆面和大气之间碳、水、能和其他物质中的作用;改进不同尺度下模拟模型的参数估计术;研究模拟模型在全球范围内的普适性,以便能充分利用生系统土壤和遥感的各种数据库信息;模拟气候变化及影响等B AHC 计划的特定目标是: ①研究生物圈对水文循环的制及其对气候和环境的重要性; ②增进对土壤—植被—大气面处水、碳和能量交换的了解和模拟能力; ③定量描述地球态系统和陆面特征在陆—气间能量、水和其它有关物质的输作用; ④定量描述环境变化的水文效应; ⑤描述影响生物圈物理地球系统相互作用的大陆尺度的变化; ⑥提供改进的参评价技术,使其能在世界范围内广泛应用,并能够利用从常规径和遥感,尤其是卫星资料推得的关于生态系统和土壤等方和地球物理气候系统的耦合研究,试图通过学科间的交叉渗透和合作,认识和了解控制整个地球系统关键的、相互作用的物理、化学和生物过程,探索和预测全球环境变化,分析对付全球环境变化的对策,以防止和减轻全球环境恶化的不利影响,促进人类社会的持续发展。
耦合模理论及其在微波和光纤技术中的应用(研究生课程用)钱景仁中国科学技术大学二零零五年目录绪言 (Preface) (1)第一章耦合模的一般理论§1.1 耦合模方程 (6)§1.2 强耦合与弱耦合 (11)§1.3 周期性耦合 (18)§1.4 耦合模与简正模 (29)§1.5 缓变参数情况下本地简正模广义理论 (33)§1.6 理想模、本地简正模和超本地简正模 (37)§1.7 耦合器应用举例 (42)§1.8 临界界面附近和稳相点附近的耦合模方程 (46)第二章闭合波导中的耦合模问题§2.1 介质填充波导 (51)§2.2 缓变表面阻抗和阻抗微扰 (59)§2.3 弯曲波导 (64)第三章光纤中的耦合模问题§3.1 光纤中的简正模式 (68)§3.2 耦合模理论的推广 (80)§3.3 非理想光纤的耦合模方程 (81)§3.4 用闭合波导理论来研究开波导 (86)第四章 螺旋光纤及弯曲光纤§4.1 螺旋光纤的耦合模分析 (89)§4.2 单模传输条件下的螺旋光纤 (93)§4.3 弯曲光纤 (98)第五章耦合功率方程§5.1多模波导和多模光纤的传输特性 (104)§5.2 多模波导中的耦合功率方程 (105)§5.3 多模光纤传输中的耦合功率方程 (107)中文参考文献 (109)英文参考文献 (110)PrefaceWhat is the coupled-mode theory? Is it a common theory in physics?Waves and vibration phenomena are popular in physics as we know such as mechanical vibrations, acoustic waves, light waves, microwaves and radio waves. Furthermore, connection or coupling among systems is also a general rule in universe. Everything presupposes the existence of some other thing. Cause-effect relations and action-reaction relations are generally existed among systems in the universe.It is obvious that there aren’t any ideal waves which exist independently and do not change their amplitudes and directions. A real wave or vibration is always connected with a source or other waves. Now, it is necessary to describe how these waves or vibrations (oscillations) couple to each other, and how their amplitudes change with the time or the distance. To illustrate the principle of the coupling between waves or vibrations (oscillations), let’s take pendulums as an example.Fig. aA pendulum can vibrate, that is to say it swings from side to side. We can give it a push and then it will vibrate at a fixed speed or at a certain frequency. If two pendulums with same frequency are hung on a string and one of them is set swinging as shown in Fig. a, it will swing less and less until it stops altogether, while the other pendulum will swing higher and higher until it reaches a maximum. Then the process will be reversed until the first pendulum reaches a maximum and the second comes torest once more. This cycle repeats itself again and again. It would repeat infinitely ifthere were no losses in the system.This is a typical experiment performed in most early physics courses. I had done it when I was in middle school.1Fig. b Frequencies are the same. Fig. c Frequencies are different.If these two pendulums have different frequencies, then transfer of energy between them will not be complete, and the first pendulum will not stop in the process. We can plot a graph to express the process as shown in Fig.b and Fig.c. The abscissa represents the time, and the ordinate A represents the amplitude of each pendulum. If the initial conditions at t =0 are as follows:()()1201,00A A ==,We can see the variations of the amplitudes of the two coupled pendulums in Fig.b and Fig.c, respectively, when their frequencies are the same and different. The time spacing between two adjacent maxima (or minima) is the period of the process, which is determined by the coupling between the two pendulums. The stronger the coupling is, the shorter the period is. The coupling between the two pendulums is caused by the fact that the pendulums are connected to a same string, and any vibration of one of the pendulums will have an effect on the other through the string.It has been recognized that coupled transmission lines, coupled electrical circuits, coupled optical fibers and coupled waveguides are analogous to coupled pendulums. The variations of the amplitudes of waves are the same as shown in the figures, but now the abscissa represents distance instant of time.Sometimes the coupling is not between the same kind of waves or oscillations, for example, in a traveling wave tube, a space-charge wave and an electromagnetic wavecouple to each other. In a crystal, an electrical vibration will cause a mechanical (or acoustic) vibration and vice versa.There should be some general rules or there is a generalized theory to describe these coupling problems. It is the so called coupled-mode theory. Here, mode means one of the models of wave forms.In the theory, all the coupled-mode or coupled-vibration problems are formulated by a set of coupled-mode equations, which are simultaneous differential equations of first order with variable or constant coefficients. In case of two modes, they can be written as follows:()()()()()()11122221j j j j dA z A z cA z dz dA z A z cA z dz ββ=−+=−+Where i β and c are functions of z in general case.When n modes or waves should be considered in a coupling problem, n differential equations will be used instead of two.A common method in electromagnetic theory is the modal approach in which the normal modes of the system (those fields which propagate unchanged except in phase) are found. This involves solving the wave equation adapted to the particular geometry of the system, and matching solutions at the boundaries to give the normal modes or eigensolutions. Any field of the system can then be expanded in terms of the normal modes, with the expansion coefficients determined by certain boundary conditions e.g. initial conditions. This modal-expansion or eigenvector method is physically intuitive and straightforward in principle, but modal solutions of the wave equation can only be found for a limited number of ideal systems of relatively simple geometry, including slabs and circular cylinders.Coupled-mode theory attempts to preserve the concept of modes for non-ideal systems in which an exact modal solution is not possible but where the normal modes of a reference system of simple geometry are known. These modes, in general, form a complete set so that they can be used to expand the fields of the non-ideal system.Because they do not satisfy the boundary conditions of the non-ideal system, the modes coupled or exchange power as they propagate. To derive the coupled-mode equations, Maxwell’s equations are transformed to those which determine how the individual mode amplitudes vary as a function of the parameters of the system. There have been several methods of coupled-mode analysis to formulate the coupled-mode equations. In the early times, people used to start directly from Maxwell’s equations along with the boundary conditions to derive these equations. Later, many other methods were utilized, such as using reciprocity theorem, starting from a Green function or stimulating equations of waveguides, someone also used variation method and perturbation approach, all these are substantial agreement.The method of coupled-modes is most useful when the deviation of the non-ideal system from the known reference system is not too great e.g. small deviations in refractive index or small deformation of cross-section. Although the imperfections may be small they can still produce marked effects, such as total transfer of power from one mode to the other in a waveguide or one waveguide to another. Coupled-mode theory has also been used to treat a variety of problems, including the cross-sectional deformation of waveguides. In many of the problems where the power transfer between modes is small, solutions can also be obtained by other techniques. However, coupled-mode theory has particular application to systems in which a large fraction of modal power may be transferred to other modes, as in the case of neighbouring waveguides in which complete transfer of power between waveguides can take place. This is unique for coupled-mode theory.The primary idea of the coupled-mode theory was first introduced by Pierce in 1940’s, when he worked on microwave electronic devices. Later, this idea was extended its use to the waveguide transmission by Miller and then the theory was fully developed. Recently, the theory has been widely used to solve optical fiber transmission problems and fiber gratings. On the other hand, the coupled-mode theory supervises the practice and many new coupling principles have been discovered. According them, a variety of devices have been designed, such as mode transducers, broadband optical fiber couplers and etc.A lot of coupling problems involving optics, acoustics and microwaves have been being solved by scientists of many countries, including Chinese scientists. Prof. Huang Hong-Chia, vice-president of Shanghai University, has made important contributions to coupled-mode theory. Some of his papers are listed in the end of this book for reference.In this book, the first chapter begins with the coupled-mode equations and is followed by many treatments to solve these equations. In Chapter 2, many typical coupled-mode problems in closed waveguides are solved. Those all problems will lead to the coupled-mode equations and then the coupling coefficients are derived. Chapter 3 begins with a discussion of the normal modes in optical fibers. The remainder of the chapter deals with coupling between these normal modes in imperfect optical fibers. In Chapter 4 helical fibers and bending fibers are studied. In the fifth chapter the coupled power theory is introduced, it consists of Pierce’s theory and Marcuse’s theory which are used in waveguide and optical fiber transmission, respectively.On the whole, coupled-mode theory is a general theory. Mathematically, it bases on the expansion theorem of eigen-functions, the existence of expansion in terms of eigen-functions makes the theory to be carried out. The mathematic areas in the theory are differential equations and linear algebra.第一章 耦合模的一般理论在这一章中,将首先从一般概念出发,得到耦合模方程。