(精选)德州市2016-2017学年八年级下期末模拟数学试卷有答案
- 格式:docx
- 大小:177.04 KB
- 文档页数:8
山东省德州市八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)某不等式组的解集在数轴上表示如图,则这个不等式组可能是()A .B .C .D .2. (2分)(2013·舟山) 下列图案中,属于轴对称图形的是()A .B .C .D .3. (2分) (2019八上·长兴期中) 已知a>b,则下列不等式不成立的是()A . 3a>3bB . b+3<a+3C . -a>-bD . 3-2a<3-2b4. (2分)正三角形的边心距、半径和高的比是()A . 1:2:3B . 1: :C . 1: :3D . 1:2:5. (2分) (2017八下·抚宁期末) 已知一次函数y=-2x+2,点A(-1,a),B(-2,b)在该函数图像上,则a与b 的大小关系是().A . a < bB . a>bC . a ≥ bD . a = b6. (2分)(2017·河北模拟) 已知,则的值是()A .B . ﹣C . 2D . ﹣27. (2分)如图所示,各边相等的五边形ABCDE中,若∠ABC=2∠DBE,则∠ABC等于()A . 60°B . 120°C . 90°D . 45°8. (2分)下列命题错误的是()A . 对角线互相垂直平分的四边形是菱形B . 平行四边形的对角线互相平分C . 矩形的对角线相等D . 对角线相等的四边形是矩形9. (2分)宁宁同学拿了一个天平,测量饼干与糖果的质量(每块饼干的质量都相同,每颗糖果的质量都相同).第一次:左盘放两块饼干,右盘放三颗糖果,结果天平平衡;第二次,左盘放10克砝码,右盘放一块饼干和一颗糖果,结果天平平衡;第三次:左盘放一颗糖果,右盘放一块饼干,下列哪一种方法可使天平再度平衡()A . 在糖果的称盘上加2克砝码B . 在饼干的称盘上加2克砝码C . 在糖果的称盘上加5克砝码D . 在饼干的称盘上加5克砝10. (2分)如图.若要使平行四边形ABCD成为菱形.则需要添加的条件是()A . AB=CDB . AD=BCC . AB=BCD . AC=BD二、填空题 (共6题;共6分)11. (1分)分解因式:x2﹣4x=________.12. (1分)(2014•丹东)若式子有意义,则实数x的取值范围是________.13. (1分) (2017七下·湖州月考) 如图,甲类纸片是边长为2的正方形,乙类纸片是边长为1的正方形,丙类纸片是长、宽边长分别为2和1的长方形.现有甲类纸片5张,乙类纸片9张,丙类纸片13张,从三类纸片中取若干张拼成一个正方形,则拼成的正方形的面积最大为________.14. (1分)(2010·希望杯竞赛) 如图,在3×3的正方形网格中标出了∠1和∠2。
2016~2017学年度下学期期末测试卷八年级数学(考试时间:120分钟满分:120分)一、选择题(12小题,每小题3分,共36分,在每题给出的四个选项中,只有一项是符合题目要求的,将你的结果填在括号()内)1.9的值是()A. 9B. 3C. -3D. 32.关于一组数据的平均数、中位数、众数,下列说法中正确的是()A.平均数一定是这组数中的某个数B.中位数一定是这组数中的某个数C.众数一定是这组数中的某个数D.以上说法都不对3.对于函数y=﹣3x是怎样平移得到y=﹣3x+3()A.向上平移3个单位长度而得到B.向下平移3个单位长度而得到C.向左平移3个单位长度而得到D.向右平移3个单位长度而得到4.在直角三角形中,两条直角边的长分别是6和8,则斜边上的中线长是( )A. 10B. 5C. 8.5D. 5.55.函数y=3x﹣4与函数y=2x+3的交点的坐标是( )A.(5,6)B.(7,﹣7)C.(﹣7,﹣17)D.(7,17)2016~2017学年度下学期期末测试卷(八年级数学)第1页(共8页)2016~2017学年度下学期期末测试卷(八年级数学)第2页(共8页)6.下列二次根式中,最简二次根式是( )A.a8 B.a5 C. D.b a a 22+7.如图,有两颗树,一颗高7米,另一颗高4米,两树 相距4米,一只鸟从一棵树的树梢飞到另一颗树的树梢, 问小鸟至少飞行了( )米A. 4B. 5C. 6D. 78.点P 1(x 1,y 1),点P 2(x 2,y 2)是一次函数y =-4x+3图象上的两个点,且x 1<x 2,则y 1与y 2的大小关系是( )A . y 1>y 2B . y 1>y 2>0C . y 1<y 2D . y 1=y 2 9.不能判断四边形ABCD 是平行四边形的是( ) A . AB=CD ,AD=BC B . AB=CD ,AB ∥CD C . AB=CD ,AD ∥BC D . AB ∥CD ,AD ∥BC10.一个样本的方差为S ²= ,那么这个样本的平均数为( )A . 6B .C . 5D .11.下列图形中,表示一次函数y=kx+t 与正比例函数y=ktx (k 、t 为常数,且kt ≠0)的图象的是( )xyxyxyxyooooA BCD613a 65()()()⎥⎦⎤⎢⎣⎡-++-+-25625225161x x x 第7题图2016~2017学年度下学期期末测试卷(八年级数学)第3页(共8页)12.如图,四边形ABED 和四边形AFCD 都是平行四边形,AF 和DE 相交成直角,AG=3cm ,DG=4cm ,平行四边形ABED 的面积是36㎝², 则四边形ABCD 的周长为( ) A. 49 cm B . 43 cm C . 41 cm D . 46 cm二 、填空题(本大题共6小题,每小题3分,共18分)13. 函数y=kx 的图象经过点P(3,-1),则k 的值为 . 14. 一组数据-1,0,1,2的平均值是 .15. 已知直线y =2x +8与两条坐标轴围成的三角形的面积是__________. 16. 已知菱形的两条对角线分别是6和8,则这个菱形的边长是_________. 17.如图,在△ABC 中,D 、E 分别是AB 、AC 的中点, 若BC=18,则DE= .第17题图 第18题图18.如图,在正方形纸片ABCD 中,一边长为12,将顶点A 折叠至DC 边上的点E ,使DE=5,折痕为PQ ,则PQ 的长为 .ADB FG第12题图ABCD E三、解答题(共66分)解答应写出必要的文字说明、演算过程或推理步骤.19.(6分)计算(1)(2)20.(6分)按列表、描点、连线的要求,在同一坐标系中画出y=2x和y=2x+1的图象,请你观察两个函数的解析式及其图象,问有什么共同点和不同点?22+3()2-2+(3)(3)2016~2017学年度下学期期末测试卷(八年级数学)第4页(共8页)21.(8分)如图,长为4米的梯子搭在墙上与地面成450角,作业时调整为600角,请求出梯子的顶端沿墙面升高了多少米?第21题图22.(8分)为了了解某校1500名学生的视力情况,从中抽取一部分学生进行抽样调查,利用所得视力数据为:4.0,4.1,4.2,4.3,4.4,4.5,4.6,4.7,4.8,4.9,5.0,5.1,5.2,5.3并绘制了如下的统计图。
1FED CB A(-1,1)1y(2,2)2yxyO 405060708090某班学生1~8月课外阅读数量705858427583本数2016-2017学年八年级数学(下)期末检测试卷(时间:120分钟满分:150分)一、选择题(本题共10小题,每小题4分,共40分)1.二次根式21、12 、30 、x+2 、240x、22yx+中,最简二次根式有()个。
A、1 个B、2 个C、3 个D、4个2.若式子23xx--有意义,则x的取值范围为().A、x≥2B、x≠3C、x≥2或x≠3D、x≥2且x≠33.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是()A.7,24,25 B.1113,4,5222 C.3,4, 5 D.114,7,8224、在四边形ABCD中,O是对角线的交点,能判定这个四边形是正方形的是()(A)AC=BD,AB∥CD,AB=CD (B)AD∥BC,∠A=∠C(C)AO=BO=CO=DO,AC⊥BD (D)AO=CO,BO=DO,AB=BC5、如图,在平行四边形ABCD中,∠B=80°,AE平分∠BAD交BC于点E,CF∥AE交AE于点F,则∠1=()A.40°B.50°C.60°D.80°6、表示一次函数y=mx+n与正比例函数y=mnx(m、n是常数且mn≠0)图象是()7.如图所示,函数xy=1和34312+=xy的图象相交于(-1,1),(2,2)两点.当21yy>时,x的取值范围是()A.x<-1 B.—1<x<2 C.x>2 D. x<-1或x>28、在方差公式()()()[]2222121xxxxxxnSn-++-+-= 中,下列说法不正确的是()A. n是样本的容量B.nx是样本个体 C. x是样本平均数 D. S是样本方差9、多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是()(A)极差是47 (B)众数是42 (C)中位数是58 (D)每月阅读数量超过40的有4个月MFEA第6题图第5题图第7题图BCADO15题图10、如图,在△ABC 中,AB =3,AC =4,BC =5,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为EF 中点,则AM 的最小值为【 】A .54B .52C .53D .65二、填空题(本题共10小题,每小题4分,共40分)11.48-133-⎛⎫ ⎪ ⎪⎝⎭+)13(3--30-23-= 12.边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2,则S 1+S 2的值为( )13. 平行四边形ABCD 的周长为20cm ,对角线AC 、BD 相交于点O ,若△BOC 的周长比△AOB 的周长大2cm ,则CD = cm 。
2016-2017学年山东省德州市八年级(下)期末数学试卷一、选择题(每小题3分,共36分)1.若有意义,则m能取的最小整数值是()A.m=0B.m=1C.m=2D.m=32.下列各组数中,以它们为边长的线段不能构成直角三角形的是()A.1,, B.3,4,5 C.5,12,13 D.2,2,33.下列二次根式中属于最简二次根式的是()A.B.C.D.4.函数y=2x﹣5的图象经过()A.第一、三、四象限B.第一、二、四象限C.第二、三、四象限D.第一、二、三象限5.如图,矩形ABCD中,对角线AC,BD交于点O.若∠AOB=60°,BD=8,则AB的长为()A.4B. C.3 D.56.如图,正方形ABCD中,AE垂直于BE,且AE=3,BE=4,则阴影部分的面积是()A.16B.18C.19D.217.某市一周的日最高气温如图所示,则该市这周的日最高气温的众数是()A.25B.26C.27D.288.已知P1(﹣3,y1),P2(2,y2)是一次函数y=﹣x-1的图象上的两个点,则y1,y2的大小关系是()A.y1=y2B.y1<y2C.y1>y2 D.不能确定9. 2022年将在北京﹣张家口举办冬季奥运会,很多学校开设了相关的课程.如表记录了某校4名同学短道速滑选拔赛成绩的平均数与方差s2:(,应该选择()A.队员1B.队员2C.队员3D.队员410.如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,∠ABC的平分线交AD于点F,若BF=12,AB=10,则AE的长为()A.13B.14C.15D.1611.如图,菱形ABCD的一边中点M到对角线交点O的距离为5cm,则菱形ABCD的周长为()A.5cmB.10cmC.20cmD.40cm12.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论①k<0;②a>0;③当x<3时,y1<y2中,正确的个数是()A.0B.1C.2D.3二、填空题(每小题4分,共20分)13.已知一组数据x1,x2,x3,x4,x5的平均数是2,那么另一组数据3x1﹣2,3x2﹣2,3x3﹣2,3x4﹣2,3x5﹣2的平均数是.14.函数中,自变量x的取值范围是.15.计算=.16.矩形纸片ABCD的边长AB=8,AD=4,将矩形纸片沿EF折叠,使点A与点C重合,折叠后在某一面着色(如图),则着色部分的面积为.17.如图,直线y=kx+b(k≠0)与x轴交于点(﹣4,0),则关于x的方程kx+b=0的解为x=.三、解答题(本大题共7个小题,写出必要解题步骤,共64分)18.当x=时,求x2﹣x+1的值.第5题图第7题图第6题图第10题图第12题图第11题图第17题图第16题图19.一艘轮船以16海里/时的速度离开港口(如图),向北偏东40°方向航行,另一艘轮船在同时以12海里/时的速度向北偏西一定的角度的航向行驶,已知它们离港口一个半小时后相距30海里(即BA=30),问另一艘轮船的航行的方向是北偏西多少度?20.已知:如图,点E,F 分别为口ABCD 的边BC,AD 上的点,且∠1=∠2. 求证:AE=CF.21.阅读对人成长的影响是巨大的,一本好书往往能改变人的一生,每年的4月23日被联合国教科文组织确定为“世界读书日”.某校本学年开展了读书活动,在这次活动中,八年级(1)班40名学生读书册数的情况如表:根据表中的数据,求:(1)该班学生读书册数的平均数; (2)该班学生读书册数的中位数.22.世界上大部分国家都使用摄氏温度(℃),但美国、英国等国家的天气预报使用华氏温度(℉).两种计量之间有如表对应: 已知华氏温度y(℉)是摄氏温度x(℃)的一次函数.(1)求该一次函数的表达式; (2)当华氏温度﹣4℉时,求其所对应的摄氏温度.23.如图,矩形ABCD 的对角线AC 、BD 交于点O,且DE ∥AC,CE ∥BD. (1)求证:四边形OCED 是菱形;(2)若∠BAC=30°,AC=4,求菱形OCED 的面积.24.已知:甲乙两车分别从相距300千米的A 、B 两地同时出发相向而行,其中甲到达B 地后立即返回,如图是它们离各自出发地的距离y(千米)与行驶时间x(小时)之间的函数图象. (1)求甲车离出发地的距离y 甲(千米)与行驶时间x(小时)之间 的函数关系式,并写出自变量的取值范围;(2)它们出发小时时,离各自出发地的距离相等,求乙车离 出发地的距离y 乙(千米)与行驶时间x(小时)之间的函数 关系式,并写出自变量的取值范围;(3)在(2)的条件下,求它们在行驶的过程中相遇的时间.2016-2017学年山东省德州市八年级(下)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共36分)1.若有意义,则m能取的最小整数值是()A.m=0B.m=1C.m=2D.m=3【分析】根据二次根式的性质,被开方数大于等于0,即可求解.【解答】解:由有意义,则满足3m﹣1≥0,解得m≥,即m≥时,二次根式有意义.则m能取的最小整数值是m=1.故选B.【点评】主要考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式;性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.2.下列各组数中,以它们为边长的线段不能构成直角三角形的是()A.1,, B.3,4,5 C.5,12,13 D.2,2,3【分析】欲求证是否为直角三角形,利用勾股定理的逆定理即可.这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、12+()2=3=()2,故是直角三角形,故错误;B、42+32=25=52,故是直角三角形,故错误;C、52+122=169=132,故是直角三角形,故错误;D、22+22=8≠32,故不是直角三角形,故正确.故选D.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.3.下列二次根式中属于最简二次根式的是()A.B.C.D.【分析】B、D选项的被开方数中含有未开尽方的因数或因式;C选项的被开方数中含有分母;因此这三个选项都不是最简二次根式.【解答】解:因为:B、=4;C、=;D、=2;所以这三项都不是最简二次根式.故选A.【点评】在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数等于或大于2,也不是最简二次根式.4.函数y=2x﹣5的图象经过()A.第一、三、四象限B.第一、二、四象限C.第二、三、四象限D.第一、二、三象限【分析】根据一次函数的性质解答.【解答】解:在y=2x﹣5中,∵k=2>0,b=﹣5<0,∴函数过第一、三、四象限,故选A.【点评】本题考查了一次函数的性质,能根据k和b的值确定函数所过象限是解题的关键.5.如图,矩形ABCD中,对角线AC,BD交于点O.若∠AOB=60°,BD=8,则AB的长为()A.4B. C.3 D.5【分析】先由矩形的性质得出OA=OB,再证明△AOB是等边三角形,得出AB=OB=4即可.【解答】解:∵四边形ABCD是矩形,∴OA=AC,OB=BD=4,AC=BD,∴OA=OB,∵∠AOB=60°,∴△AOB是等边三角形,∴AB=OB=4;故选:A.【点评】本题考查了矩形的性质、等边三角形的判定与性质;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.6.如图,正方形ABCD中,AE垂直于BE,且AE=3,BE=4,则阴影部分的面积是()A.16B.18C.19D.21【分析】由已知得△ABE为直角三角形,用勾股定理求正方形的边长AB,用S阴影部分=S正方形ABCD﹣S△ABE求面积.【解答】解:∵AE垂直于BE,且AE=3,BE=4,∴在Rt△ABE中,AB2=AE2+BE2=25,∴S阴影部分=S正方形ABCD﹣S△ABE=AB2﹣×AE×BE=25﹣×3×4=19.故选C.【点评】本题考查了勾股定理的运用,正方形的性质.关键是判断△ABE为直角三角形,运用勾股定理及面积公式求解.7.某市一周的日最高气温如图所示,则该市这周的日最高气温的众数是()A.25B.26C.27D.28【分析】一组数据中出现次数最多的数据叫做众数,依此求解即可.【解答】解:由图形可知,25出现了3次,次数最多,所以众数是25.故选A.【点评】本题考查了众数的概念,求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.8.已知P1(﹣3,y1),P2(2,y2)是一次函数y=﹣x﹣1的图象上的两个点,则y1,y2的大小关系是()A.y1=y2B.y1<y2C.y1>y2 D.不能确定【分析】根据P1(﹣3,y1),P2(2,y2)是一次函数y=﹣x﹣1的图象上的两个点,由﹣3<2,结合一次函数y=﹣x﹣1在定义域内是单调递减函数,判断出y1,y2的大小关系即可.【解答】解:∵P1(﹣3,y1),P2(2,y2)是一次函数y=﹣x﹣1的图象上的两个点,且﹣3<2,∴y1>y2.故选:C.【点评】此题主要考查了一次函数图象上点的坐标特征,要熟练掌握.9. 2022年将在北京﹣张家口举办冬季奥运会,很多学校开设了相关的课程.如表记录了某校4名同学短道速滑选拔赛成绩的平均数与方差s2:,应该选择()A.队员1B.队员2C.队员3D.队员4【分析】据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:因为队员1和2的方差最小,但队员2平均数最小,所以成绩好,所以队员2成绩好又发挥稳定.故选B.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.10.如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,∠ABC的平分线交AD于点F,若BF=12,AB=10,则AE的长为()A.13B.14C.15D.16【分析】先证明四边形ABEF是平行四边形,再证明邻边相等即可得出四边形ABEF是菱形,得出AE⊥BF,OA=OE,OB=OF=BF=6,由勾股定理求出OA,即可得出AE的长.【解答】解:如图所示:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠AEB,∵∠BAD的平分线交BC于点E,∴∠DAE=∠BAE,∴∠BAE=∠BEA,∴AB=BE,同理可得AB=AF,∴AF=BE,∴四边形ABEF是平行四边形,∵AB=AF,∴四边形ABEF是菱形,∴AE⊥BF,OA=OE,OB=OF=BF=6,∴OA===8,∴AE=2OA=16;故选:D.【点评】本题考查平行四边形的性质与判定、等腰三角形的判定、菱形的判定和性质、勾股定理等知识;熟练掌握平行四边形的性质,证明四边形ABEF是菱形是解决问题的关键.11.如图,菱形ABCD的一边中点M到对角线交点O的距离为5cm,则菱形ABCD的周长为()A.5cmB.10cmC.20cmD.40cm【分析】根据菱形的性质得出AB=BC=CD=AD,AO=OC,根据三角形的中位线求出BC,即可得出答案.【解答】解:∵四边形ABCD是菱形,∴AB=BC=CD=AD,AO=OC,∵AM=BM,∴BC=2MO=2×5cm=10cm,即AB=BC=CD=AD=10cm,即菱形ABCD的周长为40cm,故选D.【点评】本题考查了菱形的性质和三角形的中位线定理,能根据菱形的性质得出AO=OC是解此题的关键.12.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论①k<0;②a>0;③当x<3时,y1<y2中,正确的个数是()A.0B.1C.2D.3【分析】根据y1=kx+b和y2=x+a的图象可知:k<0,a<0,所以当x<3时,相应的x的值,y1图象均高于y2的图象.【解答】解:∵y1=kx+b的函数值随x的增大而减小,∴k<0;故①正确∵y2=x+a的图象与y轴交于负半轴,∴a<0;当x<3时,相应的x的值,y1图象均高于y2的图象,∴y1>y2,故②③错误.故选:B.【点评】本题考查了两条直线相交问题,难点在于根据函数图象的走势和与y轴的交点来判断各个函数k,b的值.二、填空题(每小题4分,共20分)13.已知一组数据x1,x2,x3,x4,x5的平均数是2,那么另一组数据3x1﹣2,3x2﹣2,3x3﹣2,3x4﹣2,3x5﹣2的平均数是.【分析】平均数的计算方法是求出所有数据的和,然后除以数据的总个数.先求数据x1,x2,x3,x4,x5的和,然后再用平均数的定义求新数据的平均数.【解答】解:一组数据x1,x2,x3,x4,x5的平均数是2,有(x1+x2+x3+x4+x5)=2,那么另一组数据3x1﹣2,3x2﹣2,3x3﹣2,3x4﹣2,3x5﹣2的平均数是(3x1﹣2+3x2﹣2+3x3﹣2+3x4﹣2+3x5﹣2)=4.故答案为4.【点评】本题考查的是样本平均数的求法及运用,即平均数公式:.14.函数中,自变量x的取值范围是x≥3.【分析】根据二次根式有意义的条件是a≥0,即可求解.【解答】解:根据题意得:x﹣3≥0,解得:x≥3.故答案是:x≥3.【点评】本题考查了函数自变量的取值范围的求法,求函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.15.计算=.【分析】根据二次根式的加减法运算法则,先将各个二次根式化简为最简二次根式,然后将被开方数相同的二次根式合并.【解答】解:原式==3.【点评】二次根式的加减法运算一般可以分三步进行:①将每一个二次根式化成最简二次根式;②找出其中的同类二次根式;③合并同类二次根式.16.矩形纸片ABCD的边长AB=8,AD=4,将矩形纸片沿EF折叠,使点A与点C重合,折叠后在某一面着色(如图),则着色部分的面积为22.【分析】根据折叠的性质得到CG=AD=4,GF=DF=CD﹣CF,∠G=90°,根据勾股定理求出FC,根据三角形的面积公式计算即可.【解答】解:由折叠的性质可得:CG=AD=4,GF=DF=CD﹣CF,∠G=90°,则△CFG为直角三角形,在Rt△CFG中,FC2=CG2+FG2,即FC2=42+(8﹣FC)2,解得:FC=5,∴△CEF的面积=×FC×BC=10,△BCE的面积=△CGF的面积=×FG×GC=6,则着色部分的面积为:10+6+6=22,故答案为:22.【点评】本题考查的是翻转变换的性质、勾股定理的应用,掌握翻转变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.17.如图,直线y=kx+b(k≠0)与x轴交于点(﹣4,0),则关于x的方程kx+b=0的解为x=﹣4.【分析】方程kx+b=0的解其实就是当y=0时一次函数y=kx+b与x轴的交点横坐标.【解答】解:由图知:直线y=kx+b与x轴交于点(﹣4,0),即当x=﹣4时,y=kx+b=0;因此关于x的方程kx+b=0的解为:x=﹣4.故答案为:﹣4【点评】本题主要考查了一次函数与一次方程的关系,关键是根据方程kx+b=0的解其实就是当y=0时一次函数y=kx+b与x轴的交点横坐标解答.三、解答题(本大题共7个小题,写出必要解题步骤,共64分)18.(6分)当x=时,求x2﹣x+1的值.【分析】先根据x=,整理成x=+1,再把要求的式子进行配方,然后把x的值代入,即可得出答案.【解答】解:∵x=∴x=+1,∴x2﹣x+1=(x﹣)2+=(+1﹣)2+=3.【点评】本题考查的是二次根式的化简求值,在进行此类运算时,一般先把二次根式化为最简二次根式的形式后再运算.19.(8分)一艘轮船以16海里/时的速度离开港口(如图),向北偏东40°方向航行,另一艘轮船在同时以12海里/时的速度向北偏西一定的角度的航向行驶,已知它们离港口一个半小时后相距30海里(即BA=30),问另一艘轮船的航行的方向是北偏西多少度?【分析】先根据题意得出OA及OB的长,再根据勾股定理的逆定理判断出△OAB的形状,进而可得出结论.【解答】解:由题意可知,OA=16+16×=24(海里),OB=12+12×=18(海里),AB=30海里,∵242+182=302,即OA2+OB2=AB2,∴△OAB是直角三角形,∵∠AOD=40°,∴∠BOD=90°﹣40°=50°,即另一艘轮船的航行的方向是北偏西50度.【点评】本题考查的是勾股定理的应用,根据题意判断出△AOB是直角三角形是解答此题的关键.20.(10分)已知:如图,点E,F分别为▱ABCD的边BC,AD上的点,且∠1=∠2.求证:AE=CF.【分析】先由平行四边形的对边平行得出AD∥BC,再根据平行线的性质得到∠DAE=∠1,而∠1=∠2,于是∠DAE=∠2,根据平行线的判定得到AE∥CF,由两组对边分别平行的四边形是平行四边形得到四边形AECF是平行四边形,从而根据平行四边形的对边相等得到AE=CF.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠1,∵∠1=∠2,∴∠DAE=∠2,∴AE∥CF,∵AF∥EC,∴四边形AECF是平行四边形,∴AE=CF.【点评】本题考查了平行四边形的判定与性质,平行线的判定与性质,难度适中.证明出AE∥CF是解题的关键.21.(10分)阅读对人成长的影响是巨大的,一本好书往往能改变人的一生,每年的4月23日被联合国教科文组织确定为“世界读书日”.某校本学年开展了读书活动,在这次活动中,八年级(1)班40名学生读书册数的情况如表:根据表中的数据,求:(1)该班学生读书册数的平均数; (2)该班学生读书册数的中位数. 【分析】(1)根据平均数=,求出该班同学读书册数的平均数;(2)将图表中的数据按照从小到大的顺序排列,再根据中位数的概念求解即可. 【解答】解:(1)该班学生读书册数的平均数为: =6.3(册),答:该班学生读书册数的平均数为6.3册. (2)将该班学生读书册数按照从小到大的顺序排列,由图表可知第20名和第21名学生的读书册数分别是6册和7册,故该班学生读书册数的中位数为:=6.5(册).答:该班学生读书册数的中位数为6.5册.【点评】本题考查了中位数和平均数的知识,解答本题的关键在于熟练掌握求解平均数的公式和中位数的概念:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.22.(10分)世界上大部分国家都使用摄氏温度(℃),但美国、英国等国家的天气预报使用华氏温度(℉).两种计量之间有如表对应:(1)求该一次函数的表达式;(2)当华氏温度﹣4℉时,求其所对应的摄氏温度.【分析】(1)设y=kx +b,利用图中的两个点,建立方程组,解之即可; (2)令y=﹣4,求出x 的值,再比较即可.【解答】解:(1)设一次函数表达式为y=kx +b(k ≠0). 由题意,得解得∴一次函数的表达式为y=1.8x +32.(2)当y=﹣4时,代入得﹣4=1.8x +32,解得x=﹣20.∴华氏温度﹣4℉所对应的摄氏温度是﹣20℃.【点评】本题考查一次函数的应用,只需仔细分析表中的数据,利用待定系数法即可解决问题.23.(10分)如图,矩形ABCD 的对角线AC 、BD 交于点O,且DE ∥AC,CE ∥BD. (1)求证:四边形OCED 是菱形;(2)若∠BAC=30°,AC=4,求菱形OCED 的面积.【分析】(1)根据平行四边形的判定得出四边形OCED 是平行四边形,根据矩形的性质求出OC=OD,根据菱形的判定得出即可. (2)解直角三角形求出BC=2.AB=DC=2,连接OE,交CD 于点F,根据菱形的性质得出F 为CD中点,求出OF=BC=1,求出OE=2OF=2,求出菱形的面积即可. 【解答】(1)证明:∵CE ∥OD,DE ∥OC, ∴四边形OCED 是平行四边形,∵矩形ABCD,∴AC=BD,OC=AC,OD=BD, ∴OC=OD,∴四边形OCED 是菱形;(2)解:在矩形ABCD 中,∠ABC=90°,∠BAC=30°,AC=4, ∴BC=2, ∴AB=DC=2,连接OE,交CD 于点F,∵四边形ABCD 为菱形, ∴F 为CD 中点,∵O为BD中点,∴OF=BC=1,∴OE=2OF=2,∴S菱形OCED=×OE×CD=×2×2=2.【点评】本题考查了矩形的性质和菱形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键,注意:菱形的面积等于对角线积的一半.24.(10分)已知:甲乙两车分别从相距300千米的A、B两地同时出发相向而行,其中甲到达B地后立即返回,如图是它们离各自出发地的距离y(千米)与行驶时间x(小时)之间的函数图象.(1)求甲车离出发地的距离y甲(千米)与行驶时间x(小时)之间的函数关系式,并写出自变量的取值范围;(2)它们出发小时时,离各自出发地的距离相等,求乙车离出发地的距离y乙(千米)与行驶时间x(小时)之间的函数关系式,并写出自变量的取值范围;(3)在(2)的条件下,求它们在行驶的过程中相遇的时间.【分析】(1)由图知,该函数关系在不同的时间里表现成不同的关系,需分段表达.当行驶时间小于3时是正比例函数;当行使时间大于3小时小于小时是一次函数.可根据待定系数法列方程,求函数关系式.(2)4.5小时大于3小时,代入一次函数关系式,计算出乙车在用了小时行使的距离.从图象可看出求乙车离出发地的距离y(千米)与行驶时间x(小时)之间是正比例函数关系,用待定系数法可求解.(3)两者相向而行,相遇时甲、乙两车行使的距离之和为300千米,列出方程解答,由题意有两次相遇.【解答】解:(1)当0≤x≤3时,是正比例函数,设为y=kx,x=3时,y=300,代入解得k=100,所以y=100x;当3<x≤时,是一次函数,设为y=kx+b,代入两点(3,300)、(,0),得解得,所以y=540﹣80x.综合以上得甲车离出发地的距离y与行驶时间x之间的函数关系式为:y=.(2)当x=时,y甲=540﹣80×=180;乙车过点(,180),y乙=40x.(0≤x≤)(3)由题意有两次相遇.①当0≤x≤3,100x+40x=300,解得x=;②当3<x≤时,(540﹣80x)+40x=300,解得x=6.综上所述,两车第一次相遇时间为第小时,第二次相遇时间为第6小时.【点评】本题主要考查用待定系数法求一次函数关系式,并会用一次函数研究实际问题,具备在直角坐标系中的读图能力.此题中需注意的是相向而行时相遇的问题.。
德州市八年级下学期数学期末试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2018·岳池模拟) 要使分式有意义,则的取值范围是()A .B .C . >D . <2. (2分) (2019八下·淮安月考) 下列电视台的台标,是中心对称图形的是()A .B .C .D .3. (2分)下列说法正确的是()A . x=1是不等式-2x<1的解集B . x=-3是不等式-x<1的解集C . x>-2是不等式-2x<1的解集D . 不等式-x<1的解集是x<-14. (2分) (2017八上·宜城期末) 把多项式x2+ax+b分解因式,得(x﹣1)(x+3),则a,b的值分别是()A . a=2,b=3B . a=2,b=﹣3C . a=﹣2,b=3D . a=﹣2,b=﹣35. (2分)已知四边形ABCD是平行四边形,下列结论中不正确的有()①当AB=BC时,它是菱形②当AC⊥B D时,它是菱形③当∠ABC=90o时,它是矩形④当AC=BD时,它是正方形A . 1个B . 2个C . 3个D . 4个6. (2分) (2016八上·阜康期中) 已知一个正多边形的一个外角为36°,则这个正多边形的边数是()A . 8B . 9C . 10D . 117. (2分)满足分式方程的x值是()A . 2B . ﹣2C . 1D . 08. (2分)(2017·安次模拟) 如图a,有两个全等的正三角形ABC和DEF,点D、C分别为△ABC、DEF的内心;固定点D,将△DEF顺时针旋转,使得DF经过点C,如图b,则图a中四边形CNDM与图b中△CDM面积的比为()A . 2:1B . 2:C . 4:3D . :9. (2分)如图,在菱形ABCD中,不一定成立的是().A . 四边形ABCD是平行四边形B . AC⊥BDC . ABD是等边三角形D . ∠CAB=∠CAD10. (2分) (2017八下·兴隆期末) 如图,函数y=2x和y=ax+4的图象相交于点A(,3),则不等式2x≥ax+4的解集为()A . x≥B . x≤3C . x≤D . x≥3二、填空题 (共9题;共11分)11. (1分) (2018八上·汽开区期末) 分解因式: ________.12. (1分) (2017七下·蒙阴期末) 不等式:的非正整数解个数有________个.13. (2分)若实数满足 ,则 =________.14. (1分) (2019八下·镇江月考) 如图,在□ABCD中,BE平分∠ABC,BC=6,DE=2,则□ABCD的周长等于________.15. (1分) (2012·茂名) 若分式的值为0,则a的值是________.16. (2分)已知,,则 =________17. (1分)有一根长24cm的小木棒,把它分成三段,组成一个直角三角形,且每段的长度都是偶数,则三段小木棒的长度分别是________ cm,________ cm,________ cm.18. (1分)(2016·广州) 分式方程的解是________.19. (1分)(2019·海州模拟) 如图,在正方形ABCD中,E是对角线BD上一点,DE=4BE,连接CE,过点E 作EF⊥CE交AB的延长线于点F,若AF=8,则正方形ABCD的边长为________.三、解答题 (共9题;共105分)20. (10分) (2018·宜昌) 解不等式组,并把它的解集在数轴上表示出来.21. (10分)(2017·抚州模拟) 计算与解分式方程(1) |1﹣2sin45°|﹣ +()﹣1(2) + =3.22. (5分)(2018·东营模拟) 计算题(1)计算:|﹣ |﹣+2sin60°+()﹣1+(2﹣)0(2)先化简,再求值:÷(1﹣),其中a= ﹣2.23. (15分)如图,在正方形网格中,△ABC的三个顶点都在格点上,结合所给的平面直角坐标系解答下列问题:(1)①将△ABC向右平移5个单位长度,画出平移后的△A1B1C1;②画出△ABC关于x轴对称的△A2B2C2;③将△ABC绕原点O旋转180°,画出旋转后的△A3B3C3;(2)在△A1B1C1、△A2B2C2、△A3B3C3中,△________与△________成轴对称;△________与△________成中心对称.24. (10分)(2018·盘锦) 东东玩具商店用500元购进一批悠悠球,很受中小学生欢迎,悠悠球很快售完,接着又用900元购进第二批这种悠悠球,所购数量是第一批数量的1.5倍,但每套进价多了5元.(1)求第一批悠悠球每套的进价是多少元;(2)如果这两批悠悠球每套售价相同,且全部售完后总利润不低于25%,那么每套悠悠球的售价至少是多少元?25. (15分)(2019·平阳模拟) 已知四边形ABCD是边长为10的菱形,对角线AC、BD相交于点E,过点C 作CF∥DB交AB延长线于点F,联结EF交BC于点H.(1)如图1,当EF⊥BC时,求AE的长;(2)如图2,以EF为直径作⊙O,⊙O经过点C交边CD于点G(点C、G不重合),设AE的长为x,EH的长为y;①求y关于x的函数关系式,并写出定义域;②联结EG,当△DEG是以DG为腰的等腰三角形时,求AE的长.26. (10分)(2017·樊城模拟) 某商店试销一种新商品,该商品的进价为40元/件,经过一段时间的试销发现,每月的销售量会因售价在40~70元之间的调整而不同.当售价在40~50元时,每月销售量都为60件;当售价在50~70元时,每月销售量与售价的关系如图所示,令每月销售量为y件,售价为x元/件,每月的总利润为Q 元.(1)当售价在50~70元时,求每月销售量为y与x的函数关系式?(2)当该商品售价x是多少元时,该商店每月获利最大,最大利润是多少元?(3)若该商店每月采购这种新商品的进货款不低于1760元,则该商品每月最大利润为________元.27. (15分)(2017·虞城模拟) 如图①所示,已知在矩形ABCD中,AB=60cm,BC=90cm,点P从点A出发,以3cm/s的速度沿AB运动;同时,点Q从点B出发,以20cm/s的速度沿BC运动.当点Q到达点C时,P、Q两点同时停止运动.设点P、Q运动的时间为t(s).(1)当t=________s时,△BPQ为等腰三角形;(2)当BD平分PQ时,求t的值;(3)如图②,将△BPQ沿PQ折叠,点B的对应点为E,PE、QE分别与AD交于点F、G.探索:是否存在实数t,使得AF=EF?如果存在,求出t的值:如果不存在,说明理由.28. (15分) (2016九上·重庆期中) 如图1,矩形ABCD中,AB=6,∠DBC=30°,DM平分∠BDC交BC于M,△EFG中,∠F=90°,GF= ,∠E=30°,点F、G、B、C共线,且G、B重合,△EFG沿折线B﹣M﹣D方向以每秒个单位长度平移,得到△E1F1G1 ,平移过程中,点G1始终在折线B﹣M﹣D上,△E1F1G1与△DBM无重叠时,△E1F1G1停止运动,设△E1F1G1与△DBM重叠部分面积为S,平移时间为t,(1)当△E1F1G1的顶点G1恰好在BD上时,t=________秒;(2)直接写出S与t的函数关系式,及自变量t的取值范围;(3)如图2,△E1F1G1平移到G1与M重合时,将△E1F1G1绕点M旋转α°(0°<α<180°)得到△E2F2G1,点E1、F1分别对应E2、F2,设直线F2E2与直线DM交于P,与直线DC交于Q,是否存在这样的α,使△DPQ为直角三角形?若存在,求α的度数和DQ的长;若不存在,请说明理由.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共9题;共11分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、19-1、三、解答题 (共9题;共105分)20-1、21-1、21-2、22-1、22-2、23-1、23-2、24-1、24-2、25-1、26-1、26-2、26-3、27-1、27-2、27-3、28-1、28-2、28-3、。
2016--2017学年八年级(下)期末数学试卷一、选择题(每题3分,共18分)1.(3分)二次根式有意义的条件是()A.x>2 B.x<2 C.x≥2 D.x≤22.(3分)下列各组数中能作为直角三角形的三边长的是()A.1,2,3 B.3,4,5 C.4,5,6 D.7,8,93.(3分)若一次函数y=x+4的图象上有两点A(﹣,y1)、B(1,y2),则下列说法正确的是()A.y1>y2 B.y1≥y2C.y1<y2D.y1≤y24.(3分)如图,四边形ABCD的对角线AC和BD交于点O,则下列不能判断四边形ABCD是平行四边形的条件是()A.OA=OC,AD∥BC B.∠ABC=∠ADC,AD∥BCC.AB=DC,AD=BC D.∠ABD=∠ADB,∠BAO=∠DCO5.(3分)在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的()A.众数B.中位数C.平均数D.方差6.(3分)在平面直角坐标系中,平行四边形ABCD的顶点A,B,D的坐标分别是(0,0),(5,0),(2,3),则顶点C的坐标是()A.(3,7)B.(5,3)C.(7,3)D.(8,2)二、填空题(每题3分,共24分)7.(3分)将直线y=2x向下平移2个单位,所得直线的函数表达式是.8.(3分)直线y=kx+b(k>0)与x轴的交点坐标为(2,0),则关于x的不等式kx+b>0的解集是.9.(3分)计算:﹣=.10.(3分)如图所示,在△ABC中,∠B=90°,AB=3,AC=5,将△ABC折叠,使点C与点A重合,折痕为DE,则△ABE的周长为.11.(3分)如图,平行四边形ABCD中,AD=5,AB=3,若AE平分∠BAD交边BC于点E,则线段EC的长度为.12.(3分)已知一组数据1,2,0,﹣1,x,1的平均数是1,则这组数据的中位数为.13.(3分)一次函数y=kx+3的图象过点A(1,4),则这个一次函数的解析式.14.(3分)如图,菱形ABCD周长为16,∠ADC=120°,E是AB的中点,P 是对角线AC上的一个动点,则PE+PB的最小值是.三、解答题(本大题共2小题,每题5分,共10分)15.(5分)计算:﹣+.16.(5分)如图,平行四边形ABCD中,AE=CE,请仅用无刻度的直尺完成下列作图:(1)在图1中,作出∠DAE的角平分线;(2)在图2中,作出∠AEC的角平分线.四、解答题(本大题共2小题,每题6分,共12分)17.(6分)已知一次函数y=kx﹣4,当x=2时,y=﹣3.(1)求一次函数的解析式;(2)将该函数的图象向上平移6个单位,求平移后的图象与x轴的交点的坐标.18.(6分)为了倡导“节约用水,从我做起”,南沙区政府决定对区直属机关300户家庭的用水情况作一次调查,区政府调查小组随机抽查了其中50户家庭一年的月平均用水量(单位:吨),调查中发现每户用水量均在10﹣14吨/月范围,并将调查结果制成了如图所示的条形统计图.(1)请将条形统计图补充完整;(2)这50户家庭月用水量的平均数是,众数是,中位数是;(3)根据样本数据,估计南沙区直属机关300户家庭中月平均用水量不超过12吨的约有多少户?五、解答题(本大题共2小题,每小题8分,共16分)19.(8分)已知:如图,四边形ABCD是平行四边形,AE∥CF,且分别交对角线BD于点E,F(1)求证:△AEB≌△CFD;(2)连接AF,CE,若∠AFE=∠CFE,求证:四边形AFCE是菱形.20.(8分)在平面直角坐标系xOy中,点A(0,4),B(3,0),以AB为边在第一象限内作正方形ABCD,直线L:y=kx+3.(1)当直线l经过D点时,求点D的坐标及k的值;(2)当直线L与正方形有两个交点时,直接写出k的取值范围.六、解答题(本大题共2小题,每小题10分,共20分)21.(10分)以四边形ABCD的边AB、AD为边分别向外侧作等边三角形ABF 和ADE,连接EB、FD,交点为G.(1)当四边形ABCD为正方形时(如图1),EB和FD的数量关系是;(2)当四边形ABCD为矩形时(如图2),EB和FD具有怎样的数量关系?请加以证明;(3)四边形ABCD由正方形到矩形到一般平行四边形的变化过程中,∠EGD是否发生变化?如果改变,请说明理由;如果不变,请在图3中求出∠EGD的度数.22.(10分)李刚家去年养殖的“丰收一号”多宝鱼喜获丰收,上市20天全部售完,李刚对销售情况进行了跟踪记录,并将记录情况绘成图象,日销售量y(单位:千克)与上市时间x(单位:天)的函数关系如图1所示,多宝鱼价格z(单位:元/件)与上市时间x(单位:天)的函数关系如图2所示.(1)观察图象,直接写出日销售量的最大值;(2)求李刚家多宝鱼的日销售量y与上市时间x的函数解析式;(3)试比较第10天与第12天的销售金额哪天多?参考答案与试题解析1.解:由题意得,x﹣2≥0,解得x≥2.故选C.2.解:A、因为12+22≠32,故不是勾股数;故此选项错误;B、因为32+42=52,故是勾股数.故此选项正确;C、因为42+52≠62,故不是勾股数;故此选项错误;D、因为72+82≠92,故不是勾股数.故此选项错误;故选:B.3.解:把A(﹣,y1)、B(1,y2)分别代入y=x+4得y1=﹣+4=,y2=1+4=5,所以y1<y2.故选C.4.解:A、∵AD∥BC,∴∠ADB=∠CBD,在△BOC和△DOA中,∴△BOC≌△DOA(AAS),∴BO=DO,∴四边形ABCD是平行四边形,正确,故本选项错误;B、∵∠ABC=∠ADC,AD∥BC,∴∠ADC+∠DCB=180°,∴∠ABC+∠BCD=180°,∴AB∥DC,∴四边形ABCD是平行四边形,正确,故本选项错误;C、∵AB=CD,AD=BC,∴四边形ABCD是平行四边形,正确,故本选项错误;D、由∠ABD=∠ADB,∠BAO=∠DCO,无法得出四边形ABCD是平行四边形,错误,故本选项正确;故选:D.5.解:由于总共有9个人,且他们的分数互不相同,第5的成绩是中位数,要判断是否进入前5名,故应知道中位数的多少.故选:B.6.解:已知A,B,D三点的坐标分别是(0,0),(5,0),(2,3),∵AB在x轴上,∴点C与点D的纵坐标相等,都为3,又∵D点相对于A点横坐标移动了2﹣0=2,∴C点横坐标为2+5=7,∴即顶点C的坐标(7,3).故选:C.7.解:由题意得:平移后的解析式为:y=2x﹣2=2x﹣2,即.所得直线的表达式是y=2x﹣2.故答案为:y=2x﹣2.8.解:∵直线y=kx+b(k>0)与x轴的交点为(2,0),∴y随x的增大而增大,当x>2时,y>0,即kx+b>0.故答案为:x>2.9.解:=2﹣=.故答案为:.10.解:∵在△ABC中,∠B=90°,AB=3,AC=5,∴BC===4,∵△ADE是△CDE翻折而成,∴AE=CE,∴AE+BE=BC=4,∴△ABE的周长=AB+BC=3+4=7.故答案为:7.11.解:∵AE平分∠BAD交BC边于点E,∴∠BAE=∠EAD,∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC=5,∴∠DAE=∠AEB,∴∠BAE=∠AEB,∴AB=BE=3,∴EC=BC﹣BE=5﹣3=2,故答案为:2.12.解:这组数据的平均数为1,有(1+2+0﹣1+x+1)=1,可求得x=3.将这组数据从小到大重新排列后,观察数据可知最中间的两个数是1与1,其平均数即中位数是(1+1)÷2=1.故答案为:1.13.解:由题意,得k+3=4,解得,k=1,所以,该一次函数的解析式是:y=x+3,故答案为y=x+314.解:如图,连接BD,∵四边形ABCD是菱形,∴∠BAD=∠ADC=×120°=60°,∵AB=AD(菱形的邻边相等),∴△ABD是等边三角形,连接DE,∵B、D关于对角线AC对称,∴DE与AC的交点即为所求的点P,PE+PB的最小值=DE,∵E是AB的中点,∴DE⊥AB,∵菱形ABCD周长为16,∴AD=16÷4=4,∴DE=×4=2.故答案为:2.15.解:﹣+=3﹣4+=0.16.解:(1)连接AC,AC即为∠DAE的平分线;如图1所示:(2)①连接AC、BD交于点O,②连接EO,EO为∠AEC的角平分线;如图2所示.17.解:(1)由题意可得2k﹣4=﹣3,解得k=,∴一次函数解析式为y=x﹣4;(2)把该函数图象向上平移6个单位可得y=x﹣4+6=x+2,令y=0可得x+2=0,解得x=﹣4,∴平移后图象与x轴的交点坐标为(﹣4,0).17.解:(1)根据条形图可得出:平均用水11吨的用户为:50﹣10﹣5﹣10﹣5=20(户),如图所示:(2)这50 个样本数据的平均数是11.6,众数是11,中位数是11;故答案为;11.6,11,11;(3)样本中不超过12吨的有10+20+5=35(户),∴广州市直机关300户家庭中月平均用水量不超过12吨的约有:300×=210(户).18.解:(1)证明:如图:∵四边形ABCD是平行四边形,∴AB∥DC,AB=DC,∴∠1=∠2,∵AE∥CF,∴∠3=∠4,在△AEB和△CFD中,,∴△AEB≌△CFD(AAS);(2)∵△AEB≌△CFD,∴AE=CF,∵AE∥CF,∴四边形AFCE是平行四边形.∵∠5=∠4,∠3=∠4,∴∠5=∠3.∴AF=AE.∴四边形AFCE是菱形.19.解:(1)如图,过D点作DE⊥y轴,则∠AE D=∠1+∠2=90°.在正方形ABCD中,∠DAB=90°,AD=AB.∴∠1+∠3=90°,∴∠2=∠3.又∵∠AOB=∠AED=90°,在△AED和△BOA中,,∴△AED≌△BOA,∴DE=AO=4,AE=OB=3,∴OE=7,∴D点坐标为(4,7),把D(4,7)代入y=kx+3,得k=1;(2)当直线y=kx+3过B点时,把(3,0)代入得:0=3k+3,解得:k=﹣1.所以当直线l与正方形有两个交点时,k的取值范围是k>﹣1.21.(1)EB=FD,理由如下:∵四边形ABCD为正方形,∴AB=AD,∵以四边形ABCD的边AB、AD为边分别向外侧作等边三角形ABF和ADE,∴AF=AE,∠FAB=∠EAD=60°,∵∠FAD=∠BAD+∠FAB=90°+60°=150°,∠BAE=∠BAD+∠EAD=90°+60°=150°,∴∠FAD=∠BAE,在△AFD和△ABE中,,∴△AFD≌△ABE,∴EB=FD;(2)EB=FD.证:∵△AFB为等边三角形∴AF=AB,∠FAB=60°∵△ADE为等边三角形,∴AD=AE,∠EAD=60°∴∠FAB+∠BAD=∠EAD+∠BAD,即∠FAD=∠BAE∴△FAD≌△BAE∴EB=FD;(3)解:同(2)易证:△FAD≌△BAE,∴∠AEB=∠ADF,设∠AEB为x°,则∠ADF也为x°于是有∠BED为(60﹣x)°,∠EDF为(60+x)°,∴∠EGD=180°﹣∠BED﹣∠EDF=180°﹣(60﹣x)°﹣(60+x)°=60°.22.解:(1)观察图象,发现当x=12时,y=120为最大值,∴日销售量的最大值为120千克.(2)设李刚家多宝鱼的日销售量y与上市时间x的函数解析式为y=kx+b,当0≤x≤12时,有,解得:,∴此时日销售量y与上市时间x的函数解析式为y=10x;当12<x≤20时,有,解得:,∴此时日销售量y与上市时间x的函数解析式为y=﹣15x+300.综上可知:李刚家多宝鱼的日销售量y与上市时间x的函数解析式为y=.(3)设多宝鱼价格z与上市时间x的函数解析式为z=mx+n,当5≤x≤15时,有,解得:,∴此时多宝鱼价格z与上市时间x的函数解析式为y=﹣2x+42.当x=10时,y=10×10=100,z=﹣2×10+42=22,当天的销售金额为:100×22=2200(元);当x=12时,y=10×12=120,z=﹣2×12+42=18,当天的销售金额为:120×18=2160(元).∵2200>2160,∴第10天的销售金额多.。
山东省德州市八年级数学下学期期末质量检测模拟试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)下列数字中既是轴对称图形又是中心对称图形的有几个()A . 1个B . 2个C . 3个D . 4个2. (2分)如图,在平面直角坐标系中,▱OABC的顶点A在x轴上,顶点B的坐标为(6,4).若直线l经过点(1,0),且将▱OABC分割成面积相等的两部分,则直线l的函数解析式是()A . y=x+1B . y=x+1C . y=3x-3D . y=x-13. (2分)一直角三角形两边分别为3和5,则第三边为()A . 4B .C . 4或D . 24. (2分)(2018·柘城模拟) 所示,有一张一个角为的直角三角形纸片,沿其一条中位线剪开后,不能拼成的四边形是()A . 邻边不等的矩形B . 等腰梯形C . 有一个角是锐角的菱形D . 正方形5. (2分)在“We like maths.”这个句子的所有字母中,字母“e”出现的频数是()A . 2B . 3C . 4D . 56. (2分)已知函数y=(x﹣a)(x﹣b)(其中a>b)的图象如下面右图所示,则函数y=ax+b的图象可能正确的是()A .B .C .D .7. (2分)(2017·黄浦模拟) Word文本中的图形,在图形格式中大小菜单下显示有图形的绝对高度和绝对宽度,同一个图形随其放置方向的变化,所显示的绝对高度和绝对宽度也随之变化.如图①、②、③是同一个三角形以三条不同的边水平放置时,它们所显示的绝对高度和绝对宽度如下表,现有△ABC,已知AB=AC,当它以底边BC水平放置时(如图④),它所显示的绝对高度和绝对宽度如下表,那么当△ABC以腰AB水平放置时(如图⑤),它所显示的绝对高度和绝对宽度分别是()图形图①图②图③图④图⑤绝对高度 1.50 2.00 1.20 2.40?绝对宽度 2.00 1.50 2.50 3.60?A . 3.60和2.40B . 2.56和3.00C . 2.56和2.88D . 2.88和3.008. (2分)在频数分布表中,各小组的频数之和()A . 小于数据总数B . 等于数据总数C . 大于数据总数D . 不能确定9. (2分) (2020八上·咸丰期末) 在平面直角坐标系中,点P(﹣3,﹣5)关于y轴对称点的坐标为()A . (﹣3,﹣5)B . (3,5)C . (3,﹣5)D . (5,﹣3)10. (2分)已知y1=2x﹣5,y2=﹣2x+3,如果y1<y2 ,则x的取值范围是()A . x>2B . x<2C . x>﹣2D . x<﹣2二、填空题 (共8题;共8分)11. (1分) (2017八下·东城期中) 如图直线与轴交于点,则时,的取值范围为________.12. (1分) (2017七下·东营期末) 若一个正n边形的每个内角为156°,则这个正n边形的边数是________13. (1分)观察图形由(1)→(2)的变化过程,写出A、B对应点的坐标分别为 ________ .14. (1分) (2018七下·乐清期末) 已知一组数据的频数是4,数据总数是20个,则这组数据的频率是________.15. (1分) (2019八下·洪泽期中) 某校对八年级1600名男生的身高进行了测量,结果身高(单位:m)在1.58~1.65这一小组的频率为0.4,则该组的人数为________人.16. (1分)(2019·宁波模拟) 如图,O是正方形ABCD边上一点,以O为圆心,OB为半径画圆与AD交于点E,过点E作⊙O的切线交CD于F,将△DEF沿EF对折,点D的对称点D'恰好落在⊙O上.若AB=6,则OB的长为________.17. (1分) (2017八下·泰兴期末) 如图,在中,,点为上任意一点,连接,以为邻边作平行四边形,连接,则的最小值为________.18. (1分)如图,D为等边△ABC边AC的中点,E是BC延长线上一点,且CE= BC,则△DBE是一个________三角形.(只填出一个你认为正确的结论.)三、解答题 (共6题;共58分)19. (5分)在Rt△ABC中,AB=BC=5,∠B=90°,将一块等腰直角三角板的直角顶点放在斜边AC的中点O 处,将三角板绕点O旋转,三角板的两直角边分别交AB,BC或其延长线于E,F两点,如图①与②是旋转三角板所得图形的两种情况.(1)三角板绕点O旋转,△OFC是否能成为等腰直角三角形?若能,指出所有情况(即给出△OFC是等腰直角三角形时BF的长);若不能,请说明理由;(2)三角板绕点O旋转,线段OE和OF之间有什么数量关系?用图①或②加以证明;(3)若将三角板的直角顶点放在斜边上的点P处(如图③),当AP:AC=1:4时,PE和PF有怎样的数量关系?证明你发现的结论.20. (10分) (2017八上·江都期末) 如图,直线y=2x+3与x轴相交于点A,与y轴相交于点B.(1)求△AOB的面积;(2)过B点作直线BP与x轴相交于P,△AB P的面积是,求点P的坐标.21. (8分) (2017八下·邗江期中) 为了解某校九年级学生的身高情况,随机抽取部分学生的身高进行调查,利用所得数据绘成如图统计图表:频数分布表身高分组频数百分比x<155510%155≤x<160a20%160≤x<1651530%165≤x<17014bx≥170612%总计100%(1)填空:a=________,b=________;(2)补全频数分布直方图________;(3)该校九年级共有600名学生,估计身高不低于165cm的学生大约有多少人?22. (15分) (2019八下·江都月考) 在平行四边形ABCD中,∠BAD的平分线交线段BC于点E,交线段DC 的延长线于点F,以EC、CF为邻边作平行四边形ECFG.(1)如图1,证明平行四边形ECFG为菱形;(2)如图2,若∠ABC=90°,M是EF的中点,求∠BDM的度数;(3)如图3,若∠ABC=120°,请直接写出∠BDG的度数.23. (10分)(2016·连云港) 环保局对某企业排污情况进行检测,结果显示:所排污水中硫化物的浓度超标,即硫化物的浓度超过最高允许的1.0mg/L.环保局要求该企业立即整改,在15天以内(含15天)排污达标.整改过程中,所排污水中硫化物的浓度y(mg/L)与时间x(天)的变化规律如图所示,其中线段AB表示前3天的变化规律,从第3天起,所排污水中硫化物的浓度y与时间x成反比例关系.(1)求整改过程中硫化物的浓度y与时间x的函数表达式;(2)该企业所排污水中硫化物的浓度,能否在15天以内不超过最高允许的1.0mg/L?为什么?24. (10分) (2017八下·海宁开学考) 随着“新年”临近,儿童礼品开始热销,某厂每月固定生产甲、乙两种礼品共100万件,甲礼品每件成本15元,乙礼品每件成本12元,现甲礼品每件售价22元,乙礼品每件售价18元,且都能全部售出.(1)若某月甲礼品的产量为x万件,总利润为y万元,写出y关于x的函数关系式.(2)如果每月投入的总成本不超过1380万元,应怎样安排甲、乙礼品的产量,可使所获得的利润最大?参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共8分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共6题;共58分)19-1、20-1、20-2、21-1、21-2、21-3、22-1、22-2、22-3、23-1、23-2、24-1、24-2、。
八年级下册数学德州数学期末试卷测试题(Word 版含解析)一、选择题1.若代数式252xx --有意义,则x 的取值范围是( ) A .2x ≠B .25x ≤C .25x ≤且2x ≠ D .25x ≥且2x ≠ 2.以长度分别为下列各组数的线段为边,其中能构成直角三角形的是( ) A .4,5,6B .1,1,2C .6,8,10D .5,12,143.如图,在四边形ABCD 中,对角线AC 、BD 相交于点O ,下列条件不能判定这个四边形是平行四边形的是( )A .//AB CD ,//AD BC B .//AB CD ,AB CD = C .OA OC =,OB OD =D .//AB CD ,AD BC =4.篮球队5名场上队员的身高(单位:cm )分别是:189,191,193,195,196.现用一名身高为192cm 的队员换下身高为196cm 的队员,与换人前相比,场上队员的身高( )A .平均数变小,方差变小B .平均数变小,方差变大C .平均数变大,方差变小D .平均数变大,方差变大5.若顺次连接四边形各边中点所得的四边形是菱形,则该四边形一定是( )A .矩形B .一组对边相等,另一组对边平行的四边形C .对角线相等的四边形D .对角线互相垂直的四边形6.如图,菱形ABCD 的对角线AC BD ,相交于点O ,DH AB ⊥于点H ,连接OH ,若AH DH =,则DHO ∠的度数是( )A .25°B .22.5°C .30°D .15°7.如图,在正方形ABCD 中,AP ∥CQ ,AP =CQ ,∠BQC =90°,若正方形ABCD 的面积为64,且AP +BQ =10,则PQ 的长为( )A 7B .7C 14D .148.甲、乙两车分别从A ,B 两地同时出发,沿同一条公路相向而行,相遇时甲、乙所走路程的比为23︰,甲、乙两车离AB 中点C 的路程(y 千米)与甲车出发时间(t 时)的关系图象如图所示,则下列说法错误的是( )A .A ,B 两地之间的距离为180千米 B .乙车的速度为36千米/时C .a 的值为3.75D .当乙车到达终点时,甲车距离终点还有30千米二、填空题9.已知实数x ,y 满足21124x x y -+-+=,则代数式y x 的值为____.10.如图,菱形ABCD 的对角线AC ,BD 相交于点O ,已知4OA =,菱形ABCD 的面积为24,则BD 的长为______.11.《九章算术》是我国古代重要的数学著作之一,其中记载了一道“折竹抵地”问题:今有竹高一丈,末折抵地,去本三尺,问折者高几何?译为:如图所示,ABC 中,90,ACB ∠=︒10,3,AC AB BC +==求AC 的长.在这个问题中,可求得的长为_________.12.如图,在矩形ABCD 中,对角线AC ,BD 相交于点O ,60AOB ∠=︒,6AC =,则BC 的长是________.13.若一次函数2y x b =+(b 为常数)的图象经过点(b ,9),则b =____.14.如图,矩形ABCD 的对角线AC ,BD 相交于点O ,分别过点C ,D 作BD ,AC 的平行线,相交于点E .若AD=6,则点E 到AB 的距离是________.15.如图所示,直线2y x =+与两坐标轴分别交于A 、B 两点,点C 是OB 的中点,D 、E 分别是直线AB 、y 轴上的动点,当CDE ∆周长最小时,点D 的坐标为_____.16.如图,已知矩形ABCD 中AB =3,BC =5,E 是的边CD 上一点,将△ADE 沿直线AE 翻折后,点D 恰好落在边BC 上的点F 处,那么DE 的长为____.三、解答题17.计算: (11213127(2)(32﹣3)(2+23).18.台风是一种自然灾害,它以台风中心为圆心在周围上千米的范围内形成极端气候,有极强的破坏力,有一台风中心沿东西方向AB 由点A 行驶向点B ,已知点C 为一海港,且点C 与直线AB 上两点A 、B 的距离分别为300km 和400km ,又AB =500km ,以台风中心为圆心周围250km 以内为受影响区域. (1)海港C 会受台风影响吗?为什么?(2)若台风的速度为20km/h ,台风影响该海港持续的时间有多长?19.如图,在4×4的网格直角坐标系中(图中小正方形的边长代表一个单位长),已知点A (﹣1,﹣1),B (2,2). (1)线段AB 的长为 ;(2)在小正方形的顶点上找一点C ,连接AC ,BC ,使得S △ABC =92.①用直尺画出一个满足条件的△ABC ; ②写出所有符合条件的点C 的坐标.20.如图(1),Rt CEF 中,90C ∠=︒,CEF ∠,CFE ∠的外角平分线交于点A ,过点A 分别作直线CE ,CF 的垂线,B ,D 为垂足.(1)求证:四边形ABCD 是正方形.(2)若已知3BE =,2DF =,请求AEF 的面积;(3)如图(2),连接BD ,与AE ,AF 分别交于点M ,N ,求证:2MA MN MD =⋅. 21.观察、发现:121+=21(21)(21)-+-=221(2)1--=2121--=2﹣1 (1)试化简:132+ ; (2)直接写出:11n n++= ;(3)求值:121++132++143++…+110099+ . 22.某书定价a 元,如果一次购买10本以上.超过10本部分打8折,下面用列表法表达了购买书的数量和付款金额这两个变量的对应关系. 购买书数量(本) 1 5 10 1520付款金额(元)a 40 80 112 b(1)请直接写出上表中a ,b 的值.(2)请用解析法求出购买书数量与付款金额之间的函数关系.(3)小强一次购买书恰好花了92元8角,小华购买了8本书,分别计算他们的购买书量和付款金额.23.(探究发现)(1)如图1,ABC 中AB AC =,,点D 为BC 的中点,E 、F 分别为边AC 、AB 上两点,若满足,则AE 、、AB 之间满足的数量关系是_______________.(类比应用)(2)如图2,ABC 中,AB AC =,,点D 为BC 的中点,E 、F 分别为边AC 、AB 上两点,若满足,试探究AE 、、AB 之间满足的数量关系,并说明理由.(拓展延伸)(3)在ABC 中,,,点D 为BC 的中点,E 、F 分别为直线AC 、AB 上两点,若满足,,请直接写出的长.24.如图1,已知直线24y x =+与y 轴,x 轴分别交于A ,B 两点,以B 为直角顶点在第二象限作等腰Rt ABC ∆.(1)求点C 的坐标,并求出直线AC 的关系式;(2)如图2,直线CB 交y 轴于E ,在直线CB 上取一点D ,连接AD ,若AD AC =,求证:BE DE =.(3)如图3,在(1)的条件下,直线AC 交x 轴于点M ,72P a ⎛⎫- ⎪⎝⎭,是线段BC 上一点,在x 轴上是否存在一点N ,使BPN ∆面积等于BCM ∆面积的一半?若存在,请求出点N 的坐标;若不存在,请说明理由.25.如图1,ABC ∆中,CD AB ⊥于D ,且::2:3:4BD AD CD =; (1)试说明ABC ∆是等腰三角形;(2)已知Δ40ABC S =cm 2,如图2,动点M 从点B 出发以每秒1cm 的速度沿线段BA 向点A 运动,同时动点N 从点A 出发以相同速度沿线段AC 向点C 运动,当其中一点到达终点时整个运动都停止.设点M 运动的时间为t (秒). ①若DMN ∆的边与BC 平行,求t 的值;②在点N 运动的过程中,ADN ∆能否成为等腰三角形?若能,求出t 的值;若不能,请说明理由.【参考答案】一、选择题 1.B 解析:B 【分析】根据二次根式被开方数大于等于零及分式有意义的条件:分母不等于零解答. 【详解】解:由题意得:250,20x x -≥-≠, 得25x ≤,【点睛】此题考查二次根式被开方数大于等于零及分式有意义的条件,熟记两个条件是解题的关键.2.C解析:C【分析】利用勾股定理的逆定理逐一进行判断即可.【详解】A.222+=≠,故该选项不符合题意;45416B.222+=≠,故该选项不符合题意;1122C.222+==,故该选项符合题意;6810010D.222+=≠,故该选项不符合题意.51216914故选C.【点睛】本题主要考查了勾股定理的逆定理,熟练掌握勾股定理的逆定理是解本题的关键.3.D解析:D【解析】【分析】分别利用平行四边形的判定方法进行判断,即可得出结论.【详解】解:∵AB∥CD,AD∥BC,∴四边形ABCD是平行四边形,故选项A不合题意;∵AB∥CD,AB=CD,∴四边形ABCD是平行四边形,故选项B不合题意;∵OA=OC,OB=OD,∴四边形ABCD是平行四边形,故选项C不合题意;∵AB∥CD,AD=BC,∴四边形ABCD不一定是平行四边形,∴故选项D符合题意;故选:D.【点睛】本题考查了平行四边形的判定,掌握平行四边形的判定方法是本题的关键.4.A解析:A【解析】【分析】分别计算出原数据和新数据的平均数和方差即可得.解:原数据的平均数为1891911931951965++++=192.8,则原数据的方差为15[(189-192.8)2+(191-192.8)2+(193-192.8)2+(195-192.8)2+(196-192.8)2]=4.512,新数据的平均数为1891911931951925++++=192,则新数据的方差为15[(189-192)2+(191-192)2+(193-192)2+(195-192)2+(192-192)2]=4,所以平均数变小,方差变小,故选:A.【点睛】本题主要考查了方差和平均数,解题的关键是掌握方差的计算公式.5.C解析:C【分析】据已知条件可以得出要使四边形EFGH为菱形,应使EH=EF=FG=HG,根据三角形中位线的性质可以求出四边形ABCD应具备的条件.【详解】解:连接AC,BD,∵四边形ABCD中,E、F、G、H分别是四条边的中点,要使四边形EFGH为菱形,∴EF=FG=GH=EH,∵FG=EH=12DB,HG=EF=12AC,∴要使EH=EF=FG=HG,∴BD=AC,∴四边形ABCD应具备的条件是BD=AC,故选:C.【点睛】此题主要考查了三角形中位线的性质以及菱形的判定方法,正确运用菱形的判定定理是解决问题的关键.6.B解析:B【解析】求出∠HDO ,再证明∠DHO=∠HDO 即可解决问题; 【详解】∵AH DH DH AB =⊥,, ∴45DAH ADH ∠=∠=︒. ∵四边形ABCD 是菱形,∴12252DAO DAB ∠=∠=.°, ∵AC BD ⊥,∴90675AOD ADO ∠=︒∠=︒,., ∴225HDO ADO ADH ∠=∠-∠=︒.. ∵90DHB DO OB ∠=︒=,,∴OH OD =, ∴225DHO HDO ∠=∠=︒.. 故选B. 【点睛】此题考查菱形的性质,解题关键在于掌握菱形具有平行四边形的一切性质; 菱形的四条边都相等; 菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.判断OH 为直角三角形斜边上的中线.7.D解析:D 【解析】 【分析】延长AP 交BQ 于点E ,证明△ABE ≌△BCQ 可得△PEQ 为等腰直角三角形,PE =QE =BQ ﹣AP ,由四边形面积为64可得BQ 2+AP 2=64,再由勾股定理得PQ =()22BQ AP -. 【详解】解:延长AP 交BQ 于点E ,∵四边形ABCD 为正方形, ∴AB =BC ,∠DAB =∠ABC =90°, ∵AP ∥CQ ,∠BQC =90°, ∴∠AEB =∠AEQ =90°,∵∠QBC +∠ABE =∠ABE +∠BAE =90°, ∴∠QBC =∠BAE , 在Rt △ABE 和Rt △BCQ 中,AEB BQC BAE CBQ AB BC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴Rt △ABE ≌Rt △BCQ (AAS ), ∴BE =CQ ,AE =BQ , ∵AP =CQ ,∴PE =AE ﹣AP =BQ ﹣AP , QE =BQ ﹣BE =BQ ﹣CQ =BQ ﹣AP , ∵正方形ABCD 的面积为64, ∴AB =BC8, ∵AP =CQ ,AP +BQ =10, ∴CQ +BQ =10, ∵∠BQC =90° 在Rt △BQC 中, BQ 2+CQ 2=BC 2=64, 即BQ 2+AP 2=64,∵(AP +BQ )2=AP 2+BQ 2+2AP •BQ =64+2AP •BQ =100, ∴AP •BQ =18,在Rt △PEQ 中,由勾股定理得,PQ===故选:D . 【点睛】本题主要考查了正方形的性质、全等三角形的判定与性质、等腰三角形的性质和勾股定理,准确计算是解题的关键.8.D解析:D 【分析】根据两车相遇时甲、乙所走路程的比为2:3及两车相遇所用时间,即可求出A 、B 两地之间的距离;根据乙车的速度=相遇时乙车行驶的路程÷两车相遇所用时间,进而求出乙车的速度;根据甲车的速度=相遇时甲车行驶的路程÷两车相遇所用时间即可求出甲车的速度,然后根据时间=两地之间路程的一半÷甲车的速度,进而求出a 值;根据时间=两地之间路程÷乙车的速度求出乙车到达终点所用时间,再求出该时间内甲车行驶的路程,用两地间的距离与甲车行驶的路程之差即可得出结论. 【详解】解:A 、A 、B 两地之间的距离为18×2÷32()2323-++=180(千米),所以A 正确; B 、乙车的速度为180323⨯+÷3=36(千米/小时),所以B 正确;C 、甲车的速度为1802323⨯÷+=24(千米/小时), a 的值为180÷2÷24=3.75,所以C 正确;D 、乙车到达终点的时间为180÷36=5(小时),甲车行驶5小时的路程为24×5=120(千米),当乙车到达终点时,甲车距离终点距离为180﹣120=60(千米),所以D 错误. 故选:D【点睛】本题考查了一次函数的实际应用,结合函数的图象并逐一求出选项的内容判断正误是解题的关键二、填空题9.116【解析】【分析】根据被开方数是非负数,及方程的关系,可得二元一次方程组,根据解方程组,可得x 、y 的值,根据乘方运算,可得答案.【详解】解:x 、y4y =,得2101204x x y -⎧⎪-⎨⎪=⎩, 解得124x y ⎧=⎪⎨⎪=⎩, 411216y x ⎛⎫== ⎪⎝⎭. 故答案为:116. 【点睛】 本题考查了二次根式有意义的条件,注意二次根式的被开方数是非负数.10.A解析:6【解析】【分析】根据菱形的性质得到AC =8,根据菱形的面积等于两条对角线乘积的一半,即可求解.【详解】解:∵四边形ABCD 为菱形;∴AC =2OA =8,12ABCD S AC BD =⋅菱形,∴12482BD=⨯⨯,∴BD=6,故答案为:6【点睛】本题考查了菱形的性质,解题的关键是熟记菱形面积的两种表示法:(1)底乘高,(2)对角线乘积的一半,本题运用的是第二种.11.A解析:55【解析】【分析】设AC=x,可知AB=10-x,再根据勾股定理即可得出结论.【详解】解:设AC=x,∵AC+AB=10,∴AB=10-x.在Rt△ABC中,∠ACB=90°,∴AC2+BC2=AB2,即x2+32=(10-x)2解得:x=4.55,即AC=4.55.故答案为:4.55.【点睛】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.12.A解析:【分析】利用矩形的性质结合条件证明△AOB是等边三角形即可解决问题.【详解】解:∵四边形ABCD是矩形,∴OA=OC=OB=OD=3,∵∠AOB=60°,∴△AOB是等边三角形,∴AB=3,∴BC故答案为:【点睛】本题考查矩形的性质、等边三角形的判定和性质等知识,解题的关键是灵活运用所学知识,发现△AOB 是等边三角形是突破点.13.3【分析】把点(b ,9)代入函数解析式,即可求解.【详解】∵一次函数2y x b =+(b 为常数)的图象经过点(b ,9),∴92b b =+,解得:b=3,故答案是:3.【点睛】本题主要考查一次函数图象上的点的坐标特征,掌握待定系数法,是解题的关键. 14.E解析:9【详解】试题解析:连接EO ,延长EO 交AB 于H .∵DE ∥OC ,CE ∥OD ,∴四边形ODEC 是平行四边形,∵四边形ABCD 是矩形,∴OD =OC ,∴四边形ODEC 是菱形,∴OE ⊥CD ,∵AB ∥CD ,AD ⊥CD ,∴EH ⊥AB ,AD ∥OE ,∵OA ∥DE ,∴四边形ADEO 是平行四边形,∴AD =OE =6,∵OH ∥AD ,OB =OD ,∴BH =AH ,132OH AD ∴==, ∴EH =OH +OE =3+6=9,故答案为:9.点睛:平行四边形的判定:两组对边分别平行的四边形是平行四边形.15.【分析】作点C 关于AB 的对称点F ,关于AO 的对称点G ,连接DF ,EG ,由轴对称的性质,可得DF =DC ,EC =EG ,故当点F ,D ,E ,G 在同一直线上时,△CDE 的周长=CD +DE +CE =DF +DE解析:53(,)44-【分析】作点C 关于AB 的对称点F ,关于AO 的对称点G ,连接DF ,EG ,由轴对称的性质,可得DF =DC ,EC =EG ,故当点F ,D ,E ,G 在同一直线上时,△CDE 的周长=CD +DE +CE =DF +DE +EG =FG ,此时△DEC 周长最小,然后求出F 、G 的坐标从而求出直线FG 的解析式,再求出直线AB 和直线FG 的交点坐标即可得到答案.【详解】解:如图,作点C 关于AB 的对称点F ,关于AO 的对称点G ,连接FG 分别交AB 、OA 于点D 、E ,由轴对称的性质可知,CD =DF ,CE =GE ,BF =BC ,∠FBD =∠CBD ,∴△CDE 的周长=CD +CE +DE =FD +DE +EG ,∴要使三角形CDE 的周长最小,即FD +DE +EG 最小,∴当F 、D 、E 、G 四点共线时,FD +DE +EG 最小,∵直线y =x +2与两坐标轴分别交于A 、B 两点,∴B (-2,0),∴OA =OB ,∴∠ABC =∠ABD =45°,∴∠FBC =90°,∵点C 是OB 的中点,∴C (1-,0),∴G 点坐标为(1,0),1BF BC ==,∴F 点坐标为(-2,1),设直线GF 的解析式为y kx b =+,∴021k b k b +=⎧⎨-+=⎩, ∴1313k b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴直线GF 的解析式为1133y x =-+,联立11332y x y x ⎧=-+⎪⎨⎪=+⎩, 解得5434x y ⎧=-⎪⎪⎨⎪=⎪⎩, ∴D 点坐标为(54-,34) 故答案为:(54-,34). 【点睛】本题主要考查了轴对称-最短路线问题,一次函数与几何综合,解题的关键是利用对称性在找到△CDE 周长的最小时点D 、点E 位置,凡是涉及最短距离的问题,一般要考虑线段的性质定理,多数情况要作点关于某直线的对称点.16.【分析】先根据翻折的性质得出,,然后在中由勾股定理求出,,设,则,,在中,由勾股定理求出列方程求出即可.【详解】解:是沿翻折得到的,,,,四边形是矩形,,,在中,,,设,则, 解析:53【分析】先根据翻折的性质得出AF AD =,FE DE =,然后在Rt ABF ∆中由勾股定理求出4BF =,1FC =,设DE x =,则EF x =,1EC x =-,在Rt EFC ∆中,由勾股定理求出列方程求出x 即可.【详解】解:AFE ∆是ADE ∆沿AE 翻折得到的,AFE ADE ∴∆≅∆,AD AF ∴=,DE FE =,四边形ABCD 是矩形,3DC AB ∴==,5AD BC ==,在Rt ABF ∆中,4BF ,541FC BC BF ∴=-=-=,设DE x =,则3EC x =-,EF x =,在Rt EFC ∆中,222EF EC FC =+,即()22231x x =-+, 解得:53x =, 53DE ∴=, 故答案为:53. 【点睛】本题考查了翻折变换,矩形的性质,勾股定理等知识,根据翻折得△AFE ≌△ADE 是解题的关键.三、解答题17.(1) ;(2)【分析】(1)先把每一个二次根式化为最简,然后再进行二次根式的加减运算即可; (2)先变形为原式= ,然后利用平方差公式计算;【详解】解:(1)﹣+,,;(2)(3解析:(1;(2)【分析】(1)先把每一个二次根式化为最简,然后再进行二次根式的加减运算即可;(2))11 ,然后利用平方差公式计算; 【详解】解:(1,=,=;(2)())11= , ()61=- ,=.【点睛】本题考查了平方差公式、二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.18.(1)会,理由见解;(2)7h【分析】(1)利用勾股定理的逆定理得出△ABC 是直角三角形,进而利用三角形面积得出CD 的长,从而判断出海港C 是否受台风影响;(2)利用勾股定理得出ED 以及EF 的长解析:(1)会,理由见解;(2)7h【分析】(1)利用勾股定理的逆定理得出△ABC 是直角三角形,进而利用三角形面积得出CD 的长,从而判断出海港C 是否受台风影响;(2)利用勾股定理得出ED 以及EF 的长,进而得出台风影响该海港持续的时间.【详解】解:(1)如图所示,过点C 作CD ⊥AB 于D 点,∵AC =300km ,BC =400km ,AB =500km ,∴222AC BC AB +=,∴△ABC 为直角三角形, ∴1122··AC BC AB CD =, ∴300400500CD ⨯=,∴240km CD =,∵以台风中心为圆心周围250km 以内为受影响区域,∴海港C 会受到台风影响;(2)由(1)得CD =240km ,如图所示,当EC =FC =250km 时,即台风经过EF 段时,正好影响到海港C ,此时△ECF 为等腰三角形, ∵70km ED =,∴EF =140km ,∵台风的速度为20km/h ,∴140÷20=7h ,∴台风影响该海港持续的时间有7h.【点睛】本题考查的是勾股定理在实际生活中的运用,解答此类题目的关键是构造出直角三角形,再利用勾股定理解答.19.(1)3;(2)①见解析;②C1(2,﹣1),C2(﹣1,2),C3(﹣2,1),C4(1,﹣2).【解析】【分析】(1)直接利用勾股定理求出AB的长度即可;(2)①根据三角形ABC的面积画解析:(1)32;(2)①见解析;②C1(2,﹣1),C2(﹣1,2),C3(﹣2,1),C4(1,﹣2).【解析】【分析】(1)直接利用勾股定理求出AB的长度即可;(2)①根据三角形ABC的面积92画出对应的三角形即可;②根据点C的位置,写出点C的坐标即可.【详解】解:(1)如图所示在Rt△ACB中,∠P=90°,AP=3,BP=3∴2232AB AP BP=+=(2)①如图所示Rt△ACB中,∠C=90°,AC=3,BC=3∴119=33222ABC S AC BC =⨯⨯=△②C 1(2,﹣1),C 2(﹣1,2),C 3(﹣2,1),C 4(1,﹣2).满足条件的三角形如图所示.C 1(2,﹣1),C 2(﹣1,2),C 3(﹣2,1),C 4(1,﹣2).【点睛】本题主要考查了勾股定理,三角形的面积,点的坐标,解题的关键在于能够熟练掌握相关知识点进行求解.20.(1)见解析;(2)15;(3)见解析【分析】(1)作AG ⊥EF 于G ,如图1所示:则∠AGE=∠AGF=90°,先证明四边形ABCD 是矩形,再由角平分线的性质得出AB=AD ,即可得出四边形ABC解析:(1)见解析;(2)15;(3)见解析【分析】(1)作AG ⊥EF 于G ,如图1所示:则∠AGE =∠AGF =90°,先证明四边形ABCD 是矩形,再由角平分线的性质得出AB =AD ,即可得出四边形ABCD 是正方形;(2)根据全等三角形的判定得△AGF ≌△ADF ,进而推出EF =GE +GF =BE +DF ,设AG =x ,则正方形ABCD 边长BC =CD =x ,在Rt △ECF 中,由勾股定理得AG =6,根据三角形面积公式得S △AEF =15;(3)如图(2),由(1)、(2)得∠EAF =12∠BAD =12×90°=45°,根据相似三角形的判定得△AMN ∽△DMA ,根据相似的性质可得结论.【详解】(1)证明:作AG EF ⊥于G ,如图(1)所示:则90AGE AGF ∠=∠=︒,∵AB CE ,AD CF ⊥,∴90B D C ∠=∠=∠=︒,∴四边形ABCD 是矩形,又∵CEF ∠,CFE ∠外角平分线交于点A ,∴AB AG =,AD AG =,∴AB AD =,∴四边形ABCD 是正方形;(2)解:由(1)知,AB AG =,AD AG =,90B AGE AGF D ∠=∠=∠=∠=︒, 又AE AE =,AF AF =,∴ABE AGE ≅△△,AGF ADF ≅,∴BE GE =,DF GF =,∴EF GE GF BE DF =+=+,设AG x =,则正方形ABCD 边长BC CD x ==,由(2)知,EF BE DF =+,∴325EF BE DF =+=+=,3EC BC BE x =-=-,2FC DC DF x =-=-.∴在Rt ECF △中,由勾股定理得()()223225x x -+-=, 解得:16x =,21x =-(舍去). ∴6AG =, ∴561522AEF EF AG S ⋅⨯===△.(3)证明:如图(2),由(1)、(2)易知,11904522EAF BAD ∠=∠==︒⨯︒,45ADB ∠=︒, ∴EAF ADB ∠=∠,即MAN MDA ∠=∠,在AMN 和DMA △中,MAN MDA AMN DMA∠=∠⎧⎨∠=∠⎩, ∴AMN DMA △△, ∴MN MA MA MD=, ∴2MA MN MD =⋅.【点睛】本题考查了正方形的判定与性质、全等三角形的判定与性质、角平分线的性质、勾股定理、矩形的判定、翻折变换的性质等知识;本题综合性强,有一定难度.21.(1);(2)(3)9【解析】【详解】试题分析:(1)仔细阅读,发现规律:分母有理化,然后仿照规律计算即可求解;(2)根据规律直接写出结果;(3)根据规律写出结果,找出部分互为相反数的特点解析:(123)9【解析】【详解】试题分析:(1)仔细阅读,发现规律:分母有理化,然后仿照规律计算即可求解;(2)根据规律直接写出结果;(3)根据规律写出结果,找出部分互为相反数的特点,然后计算即可.试题解析:(1)原式(2)原式(3)由(2)可知:原式=﹣=9.22.(1)a=8;b=144;(2)y=;(3)12本书,64元【分析】(1)根据买5本书花费40元可以求出书的定价a,根据一次购买10本以上,超过10本部分打8折可以求出b;(2)分购买数量小于解析:(1)a=8;b=144;(2)y=()()80106.41610x x xx x x⎧≤≤⎪⎨+⎪⎩,为整数>,为整数;(3)12本书,64元【分析】(1)根据买5本书花费40元可以求出书的定价a,根据一次购买10本以上,超过10本部分打8折可以求出b;(2)分购买数量小于等于10和大于10两种情况写出购买书数量与付款金额之间的函数关系;(3)把92.8分别代入(2)中解析式,求解即可;小华购买了8本书直接代入y=8x即可.【详解】解:(1)由表中数据可知:a=40÷5=8,b=8×10+8×810×(20−10)=80+64=144,∴a=8,b=144;(2)由(1)可知:a=8,∴每本书的售价为8元,设购买书的数量为x本,付款金额为y元,当0≤x≤10,且x为整数时,y=8x;当x>10,且x为整数时,y=8×10+8×810×(x−10)=6.4x十16;综上所述,购买书数量x(本)与付款金额y(元)之间的函数关系为:y=()() 80106.41610x x xx x x⎧≤≤⎪⎨+⎪⎩,为整数>,为整数;(3)由(2)可知:购买书数量x(本)与付款金额y(元)之间的函数关系为:y=()() 80106.41610x x xx x x⎧≤≤⎪⎨+⎪⎩,为整数>,为整数,把y=92.8代入到y=8x(0≤x≤10,x为整数)中,得92.8=8x,解得:x=11.6(不合题意,舍去);把y=92.8代入到y=6.4x十16(x>10,x为整数)中,得92.8=6.4x+16,解得:x=12,∴小强一次购买书恰好花了92元8角,买了12本书,把x=8代入到y=8x(0≤x≤10,x为整数)中,得y=8×8=64,∴小华购买了8本书,付款金额为64元,综上所述,小强一次买了12本书,小华付款金额为64元.【点睛】本题考查了一次函数和一元一次方程的应用,关键是根据题意列出函数关系式.23.[探究发现]AE+AF=AB;[类比应用]AE+AF=AB;[拓展延伸]或【分析】[探究发现]证明△BDF≌△ADE,可得BF=AE,从而证明AB=AF+AE;[类比应用] 取AB中点G,连接解析:[探究发现]AE+AF=AB;[类比应用]AE+AF=12AB;[拓展延伸]或【分析】[探究发现]证明△BDF≌△ADE,可得BF=AE,从而证明AB=AF+AE;[类比应用] 取AB中点G,连接DG,利用ASA证明△GDF≌△ADE,得到GF=AE,可得AG=12AB=AF+FG=AE+AF;[拓展延伸]分当点E在线段AC上时,当点E在AC延长线上时,两种情况,取AC的中点H,连接DH,同理证明△ADF≌△HDE,得到AF=HE,从而求解.【详解】解:[探究发现]∵AB=AC,∠BAC=90°,∴∠B=∠C=45°,∵D为BC中点,∴AD⊥BC,∠BAD=∠CAD=45°,AD=BD=CD,∴∠ADB=∠ADF+∠BDF=90°,∵∠EDF=∠ADE+∠ADF=90°,∴∠BDF=∠ADE,又∵BD=AD,∠B=∠CAD=45°,∴△BDF≌△ADE(ASA),∴BF=AE,∴AB=AF+BF=AF+AE;[类比应用]AB,理由是:AE+AF=12取AB中点G,连接DG,∵点G是△ADB斜边中点,∴DG=AG=BG=1AB,2∵AB=AC,∠BAC=120°,点D为BC的中点,∴∠BAD=∠CAD=60°,∴∠GDA=∠BAD=60°,即∠GDF+∠FDA=60°,又∵∠FAD+∠ADE=∠FDE=60°,∴∠GDF=∠ADE,∵DG=AG,∠BAD=60°,∴△ADG为等边三角形,∴∠AGD=∠CAD=60°,GD=AD,∴△GDF≌△ADE(ASA),∴GF=AE,∴AG=1AB=AF+FG=AE+AF;2[拓展延伸]当点E在线段AC上时,如图,取AC的中点H,连接DH,当AB=AC=5,CE=1,∠EDF=60°时,AE=4,此时F在BA的延长线上,同(2)可得:△ADF≌△HDE,∴AF=HE,∵AH=CH=12AC=,CE=1,∴AF=HE=CH-CE=-1=;当点E在AC延长线上时,同理可得:AF=HE=CH+CE=+1=.综上:AF的长为或.【点睛】本题考查了等腰三角形的性质,全等三角形的判定和性质,等边三角形的判定和性质,解题的关键是适当添加辅助线,构造全等三角形,从而得到线段之间的关系.24.(1)y=x+4;(2)见解析;(3)存在,点N(﹣,0)或(,0).【解析】【分析】(1)根据题意证明△CHB≌△BOA(AAS),即可求解;(2)求出B、E、D的坐标分别为(-1,0)、解析:(1)y=13x+4;(2)见解析;(3)存在,点N(﹣463,0)或(343,0).【解析】【分析】(1)根据题意证明△CHB≌△BOA(AAS),即可求解;(2)求出B、E、D的坐标分别为(-1,0)、(0,12)、(1,-1),即可求解;(3)求出BC表达式,将点P代入,求出a值,再根据AC表达式求出M点坐标,由S△BMC=12MB×y C=12×10×2=10,S△BPN=12S△BCM=5=12NB×a=38NB可求解.【详解】解:(1)令x=0,则y=4,令y=0,则x=﹣2,则点A、B的坐标分别为:(0,4)、(﹣2,0),过点C作CH⊥x轴于点H,∵∠HCB+∠CBH =90°,∠CBH+∠ABO =90°,∴∠ABO =∠BCH ,∠CHB =∠BOA =90°,BC =BA ,在△CHB 和△BOA 中,===BCH ABO CHB BOA BC BA ∠∠∠∠⎧⎪⎨⎪⎩, ∴△CHB ≌△BOA (AAS ),∴BH =OA =4,CH =OB=2,∴ 点C (﹣6,2),将点A 、C 的坐标代入一次函数表达式:y= m x+ b 得:426b m b =⎧⎨=-+⎩, 解得:134m b ⎧=⎪⎨⎪=⎩, 故直线AC 的表达式为:y =13x+4;(2)同理可得直线CD 的表达式为:y =﹣12x ﹣1①,则点E (0,﹣1),直线AD 的表达式为:y =﹣3x+4②,联立①②并解得:x =2,即点D (2,﹣2),点B 、E 、D 的坐标分别为(﹣2,0)、(0,﹣1)、(2,﹣2),故点E 是BD 的中点,即BE =DE ;(3)将点BC 的坐标代入一次函数表达式并解得:直线BC 的表达式为:y =﹣12x-1,将点P (﹣72,a )代入直线BC 的表达式得:34a =, 直线AC 的表达式为:y =13x+4, 令y=0,则x=-12,则点M (﹣12,0),S △BMC =12MB×y C =12×10×2=10, S △BPN =12S △BCM =5=12NB×a=38NB ,解得:NB=403,故点N(﹣463,0)或(343,0).【点睛】本题考查的是一次函数综合运用,涉及到三角形全等、求函数表达式、面积的计算等,综合性较强,理清题中条件关系,正确求出点的坐标是解题的关键.25.(1)证明见解析;(2)①t值为5或6;②点N运动的时间为6s,,或时,为等腰三角形. 【分析】(1)设BD=2x,AD=3x,CD=4x,则AB=5x,由勾股定理求出AC,即可得出结论;(2解析:(1)证明见解析;(2)①t值为5或6;②点N运动的时间为6s,365s,或5s时,ΔADN为等腰三角形.【分析】(1)设BD=2x,AD=3x,CD=4x,则AB=5x,由勾股定理求出AC,即可得出结论;(2)①由△ABC的面积求出BD、AD、CD、AC;再分当MN∥BC时,AM=AN和当DN∥BC时,AD=AN两种情况得出方程,解方程即可;②分三种情况:AD=AN;DA=DN;和ND=NA,三种情况讨论即可【详解】解:(1)设BD=2x,AD=3x,CD=4x,则AB=5x,在Rt△ACD中,AC5x,∴AB=AC,∴△ABC是等腰三角形;(2)①S△ABC=12×5x×4x=40cm2,而x>0,∴x=2cm,则BD=4cm,AD=6cm,CD=8cm,AC=10cm.当MN∥BC时,AM=AN,即10−t=t,此时t=5,当DN∥BC时,AD=AN,此时t=6,综上所述,若△DMN的边与BC平行时,t值为5或6;②ΔADN能成为等腰三角形,分三种情况:(ⅰ)若AD=AN=6,如图:则t =61=6s ; (ⅱ)若DA =DN ,如图:过点D 作DH AC ⊥于点H ,则AH =NH ,由1122ACD S AD CD AC DH =⋅=⋅,得11681022DH ⨯⨯=⨯⨯, 解得245DH =, 在Rt ADH 中,222224186()55AH AD DH =-=-=, 3625AN AH ∴==, 3615AN t s ∴==; (ⅲ)若ND =NA ,如图:过点N 作NQ AB ⊥于点Q ,则AQ =DQ =3,142NQ CD ==,5AN ∴==,51AN t s ∴==; 综上,点N 运动的时间为6s ,365s ,或5s 时,ΔADN 为等腰三角形. 【点睛】此题主要考查了等腰三角形的性质,平行线的性质,三角形的面积公式,勾股定理,解本题的关键是熟练掌握方程的思想方法和分类讨论思想.。
山东省德州市八年级下学期期末考试数学试题姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)下列函数中自变量取值范围选取错误的是()A . 中x取全体实数B . 中x0C . 中x—1D . 中x≥12. (2分)(2018·毕节模拟) 在平面直角坐标系中,把直线y=2x+4绕着原点O顺时针旋转90°后,所得的直线1一定经过下列各点中的()A . (2,0)B . (4,2)C . (6,﹣1)D . (8,﹣1)3. (2分)如下图五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是()A .B .C .D .4. (2分)(2018·江油模拟) 如图,四边形ABCD是平行四边形,点A(2,0),B(6,2),C(6,6),反比对于下面四个结论:①反比例函数的解析式是y1= ;②一次函数y2=kx+3﹣3k(k≠0)的图象一定经过(6,6)点;③若一次函数y2=kx+3﹣3k的图象经过点C,当x>2 时,y1<y2;④对于一次函数y2=kx+3﹣3k(k≠0),当y随x的增大而增大时,点P横坐标a的取值范围是0<a<3.其中正确的是()A . ①③B . ②③C . ②④D . ③④5. (2分) (2019八下·鄞州期末) 在某人才招聘会上,组办方对应聘者进行了“听、说、读、写”四项技能测试,若人才要求是具有强的“听”力,较强的“说与“读“能力及基本的“写”能力,根据这个要求,听、说、读、写”四项技能测试比较合适的权重设计是A .B .C .D .6. (2分) (2019九上·深圳期末) 如图,在平面直角坐标系中,矩形ABOC的两边在坐标轴上,OB=1,点A 在函数y=﹣(x<0)的图象上,将此矩形向右平移3个单位长度到A1B1O1C1的位置,此时点A1在函数y=(x>0)的图象上,C1O1与此图象交于点P,则点P的纵坐标是()B .C .D .7. (2分) (2017八下·建昌期末) 小亮从家步行到公交车站台,等公交车去学校.图中的折线表示小亮的行程s(km)与所花时间t(min)之间的函数关系.下列说法错误的是()A . 他离家8km共用了30minB . 他等公交车时间为6minC . 他步行的速度是100m/minD . 公交车的速度是350m/min8. (2分)已知a、b、c分别为Rt△ABC(∠C=90°)的三边的长,则关于x的一元二次方程(c+a)x2+2bx+(c-a)=0根的情况是().A . 方程无实数根B . 方程有两个不相等的实数根C . 方程有两个相等的实数根D . 无法判断9. (2分)在△ABC中,∠BAC=90°,AB=3,AC=4.AD平分∠B AC交BC于D,则BD的长为A .B .C .10. (2分)(2020·海南模拟) 如图,在▱ABCD中,E为边AD上的一点,将△DEC沿CE折叠至△D′EC处,若∠B=48°,∠ECD=25°,则∠D′EA的度数为()A . 33°B . 34°C . 35°D . 36°二、填空题 (共8题;共8分)11. (1分) (2020八下·通州月考) 已知点M(1,n)和点N(-2,m)是正比例函数y=﹣x图象上的两点,则m与n较大的是________.12. (1分) (2018九上·大庆期末) 如图,在⊙O中,弦AB=8,M是弦AB上的动点,且OM的最小值为3.则⊙O的半径为________.13. (1分)(2018·攀枝花) 样本数据1,2,3,4,5.则这个样本的方差是________.14. (1分) (2017九上·钦州月考) 已知关于x的方程是此方程的两个实数根,先给出三个结论:① ② ③ ;则正确的结论序号是________15. (1分)如图,点A,B是反比例函数y= (x>0)图象上的两点,过点A,B分别作AC⊥x轴于点C,BD⊥x轴于点D,连接OA,BC,已知点C(2,0),BD=2,S△BCD=3,则S△AOC=________.16. (1分) (2017八下·启东期中) 若一次函数y=kx+b(k≠0)的图象如图所示,点P(3,4)在函数图象上,则关于x的不等式kx+b≤4的解集是________.17. (1分)(2017八上·上城期中) 如图,和都是等腰直角三角形,,连接交与,连接交于点,连接,下列结论:① ;② ;③ ;④ ;⑤ .正确的有________.18. (1分)如图,在平面直角坐标系中,△AA1C1是边长为1的等边三角形,点C1在y轴的正半轴上,以AA2=2为边长画等边△AA2C2;以AA3=4为边长画等边△AA3C3 ,…,按此规律继续画等边三角形,则点An的坐标为________.三、解答题。
2016-2017学年山东省德州市夏津县八年级(下)期末数学试卷一、选择题(每小题4分,共48分)1. 若√3−m为二次根式,则m的取值为()A.m≤3B.m<3C.m≥3D.m>32. 下列各图能表示y是x的函数是()A. B.C. D.3. 菱形和矩形一定都具有的性质是()A.对角线相等B.对角线互相垂直C.对角线互相平分且相等D.对角线互相平分4. 下列根式中最简二次根式是()A.√4xB.√12x C.√2x D.√x2y5. 下列命题中,逆命题是真命题的是()A.直角三角形的两锐角互余B.对顶角相等C.若两直线垂直,则两直线有交点D.若x=1,则x2=16. 如图所示,有一块地ABCD,已知AD=4米,CD=3米,∠ADC=90∘,AB=13米,BC=12米,则这块地的面积为()A.60米2B.48米2C.30米2D.24米27. 某校九年级体育模拟测试中,六名男生引体向上的成绩如下(单位:个):10、6、9、11、8、10,下列关于这组数据描述正确的是()A.中位数是10B.众数是10C.平均数是9.5D.方差是168. 已知点(−2, y1),(−1, y2),(1, y3)都在直线y=−3x+b上,则y1,y2,y3的值的大小关系是()A.y1>y2>y3B.y1<y2<y3C.y3>y1>y2D.y3<y1<y29. △ABC中,AB=15,AC=13,高AD=12,则△ABC的周长为()A.42B.32C.42或32D.37或3310. 一次函数y=mx+n与y=mnx(mn≠0),在同一平面直角坐标系的图象是()A.B.C.D.11. 如图所示,有一张一个角为60∘的直角三角形纸片,沿其一条中位线剪开后,不能拼成的四边形是()A.邻边不等的矩形B.等腰梯形C.有一个角是锐角的菱形D.正方形12. 如图.矩形纸片ABCD中,已知AD=8,折叠纸片使AB边与对角线AC重合,点B落在点F处,折痕为AE,且EF=3.则AB的长为()A.3B.4C.5D.6二、填空题(每小题5分,共25分)13. 若√a2=−a,则a的取值范围是________.14. 正方形ABCD的一条对角线长为4,则它的面积为________.15. 如图是某工程队在“村村通”工程中,修筑的公路长度y(米)与时间x(天)之间的关系图象.根据图象提供的信息,可知该公路的长度是________米.16. 如图,在四边形ABCD中,AB // CD,AD // BC,现在请你添加一个适当的条件:________,使得四边形AECF为平行四边形(图中不再添加点和线).17. 在直角坐标系中,直线y=x+1与y轴交于点A,按如图方式作正方形A1B1C1O、A2B2C2C1、A3B3C1C2…,A1、A2、A3…在直线y=x+1上,点C1、C2、C3…在x轴上,图中阴影部分三角形的面积从左导游依次记为S1、S2、S3、…S n,则S n的值为________(用含n的代数式表示,n为正整数).三、解答题(本题共7小题,满分77分)18. 计算:(1)√113÷√213×√125(2)2b√ab +3a√a3b−(4a√ba+√9ab)(a、b均为正数)19. 如图已知∠AOB,OA=OB,点F在OB边上,四边形AEBF是矩形.请你只用无刻度的直尺在图中画出∠AOB的平分线(请保留画图痕迹).20. 如图,有两棵树,一棵高10米,另一棵高4米,两树相距8米.一只小鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行多少米?21. 某校八年级开展踢毽子比赛活动,每班派5名学生参加,按团体总分多少排列名次,在规定时间每人踢100个以上(含100个)为优秀,下列是成绩最好的甲班和乙班5名学生的比赛数据(单位:个),经统计发现两班总分相等,此时有学生建议,可通过考查数据中的其他信息作为参考,请你回答下列问题:(1)计算甲、乙两班的优秀率.(2)求两班比赛成绩的中位数.(3)计算两个比赛数据的方差.(4)根据以上信息,你认为应该把冠军奖状发给哪一个班级?简述你的理由.22. 已知:如图,在△ABC中,D是BC边上的一点,连接AD,取AD的中点E,过点A作BC的平行线与CE的延长线交于点F,连接DF.(1)求证:AF=DC;(2)若AD=CF,试判断四边形AFDC是什么样的四边形?并证明你的结论.23. 3月份,某品牌衬衣正式上市销售,3月1日的销售量为10件,3月2日的销售量为35件,以后每天的销售量比前一天多25件,直到日销售量达到最大后,销售量开始逐日下降,至此,每天的销售量比前一天少15件,直到3月31日销售量为0.设该品牌衬衣的日销量为p(件),销售日期为n(日),p与n之间的关系如图所示.(1)求3月________日时,日销售量最大;(2)写出p关于n的函数关系式(注明n的取值范围);(3)经研究表明,该品牌衬衣的日销量超过150件的时间为该品牌衬衣的流行期.请问:该品牌衬衣本月在市面的流行期是多少天?24. 阅读下面材料:小明遇到这样一个问题:如图1,在△ABC中,DE // BC分别交AB于D,交AC于E,已知CD⊥BE,CD=2,BE=3,求BC+DE的值.小明发现,过点E作EF // DC,交BC延长线于点F,构造△BEF,经过推理和计算能够使问题得到解决(如图2).(1)请按照上述思路完成小明遇到的这个问题.(2)参考小明思考问题的方法,解决问题:如图3,已知ABCD和矩形ABEF,AC与DF交于点G,AC=BF=DF,求∠DGC的度数.参考答案与试题解析2016-2017学年山东省德州市夏津县八年级(下)期末数学试卷一、选择题(每小题4分,共48分)1.【答案】A【考点】二次根式有意义的条件【解析】根据二次根式的意义,被开方数大于或等于0.【解答】解:根据二次根式的意义,得3−m≥0,解得m≤3.故选A.2.【答案】D【考点】函数的概念【解析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此对各选项分析判断后利用排除法求解.【解答】解:A、对于x的每一个取值,y有时有两个确定的值与之对应,所以y不是x的函数,故A选项错误;B、对于x的每一个取值,y有时有两个确定的值与之对应,所以y不是x的函数,故B选项错误;C、对于x的每一个取值,y有时有两个确定的值与之对应,所以y不是x的函数,故C选项错误;D、对于x的每一个取值,y都有唯一确定的值与之对应关系,所以y是x的函数,故D选项正确.故选:D.3.【答案】D【考点】菱形的性质矩形的性质【解析】根据矩形的对角线的性质(对角线互相平分且相等),菱形的对角线性质(对角线互相垂直平分)可解.【解答】解:菱形的对角线互相垂直且平分,矩形的对角线相等且平分.菱形和矩形一定都具有的性质是对角线互相平分.故选:D.4.【答案】C【考点】最简二次根式【解析】根据最简二次根式的定义和性质进行解答,最简二次根式需满足以下条件:被开方数的因数是整数,因式是整式;被开方数中不含能开得尽方的因数或因式.【解答】解:A项不为最简二次根式,被开方数含有开的尽的因数,故本选项错误,B项不为最简二次根式,被开方数的因数不为整数,故本选项错误,C项为最简二次根式,故本选项正确,D项不为最简二次根式,被开方数中含有能开的尽的因式,故本选项错误,故选择C5.【答案】A【考点】命题与定理【解析】交换原命题的题设与结论得到四个命题的逆命题,然后分别利用直角三角形的判定、对顶角的定义、两直线垂直的定义和平方根的定义对四个逆命题的真假进行判断.【解答】解:A、逆命题为有两角互余的三角形为直角三角形,此逆命题为真命题,所以A选项正确;B、逆命题为相等的角为对顶角,此逆命题为假命题,所以B选项错误;C、逆命题为两直线有交点,则两直线垂直,此逆命题为假命题,所以C选项错误;D、逆命题为若x2=1,则x=1,此逆命题为假命题,所以D选项错误.故选A.6.【答案】D【考点】勾股定理的应用【解析】连接AC,利用勾股定理可以得出三角形ACD和ABC是直角三角形,△ABC的面积减去△ACD的面积就是所求的面积.【解答】解:连接AC,∵∠ADC=90∘,AD=4,CD=3,∴AC2=AD2+CD2=42+32=25,又∵AC>0,∴AC=5,又∵BC=12,AB=13,∴AC2+BC2=52+122=169,又∵AB2=169,∴AC2+BC2=AB2,∴∠ACB=90∘,∴S四边形ABCD=S△ABC−S△ADC=30−6=24米2.故选D.7.【答案】B【考点】算术平均数中位数众数方差【解析】排序后位于中间或中间两数的平均数即为中位数;一组数据中出现次数最多的数据叫做众数;平均数是指在一组数据中所有数据之和再除以数据的个数;一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.【解答】(A)中位数为9+102=9.5,故(A)错误;(B)根据出现次数最多的数据是10可得,众数是10,故(B)正确;(C)平均数为(10+6+9+11+8+10)÷6=9,故(C)错误;(D)方差为16[(10−9)2+(6−9)2+(9−9)2+(11−9)2+(8−9)2+(10−9)2]=83,故(D)错误.8.【答案】A【考点】一次函数图象上点的坐标特点【解析】先根据直线y=−3x+b判断出函数图象的增减性,再根据各点横坐标的大小进行判断即可.【解答】解:∵直线y=−3x+b,k=−3<0,∴y随x的增大而减小,又∵−2<−1<1,∴y1>y2>y3.故选A.9.【答案】C【考点】勾股定理【解析】本题应分两种情况进行讨论:(1)当△ABC为锐角三角形时,在Rt△ABD和Rt△ACD中,运用勾股定理可将BD和CD的长求出,两者相加即为BC的长,从而可将△ABC的周长求出;(2)当△ABC为钝角三角形时,在Rt△ABD和Rt△ACD中,运用勾股定理可将BD和CD的长求出,两者相减即为BC的长,从而可将△ABC的周长求出.【解答】解:此题应分两种情况说明:(1)当△ABC为锐角三角形时,在Rt△ABD中,BD=√AB2−AD2=√152−122=9,在Rt△ACD中,CD=√AC2−AD2=√132−122=5∴BC=5+9=14∴△ABC的周长为:15+13+14=42;(2)当△ABC为钝角三角形时,在Rt△ABD中,BD=√AB2−AD2=√152−122=9,在Rt△ACD中,CD=√AC2−AD2=√132−122=5,∴BC=9−5=4.∴△ABC的周长为:15+13+4=32∴当△ABC为锐角三角形时,△ABC的周长为42;当△ABC为钝角三角形时,△ABC的周长为32.故选C.10.【答案】C【考点】一次函数的图象【解析】由于m、n的符号不确定,故应先讨论m、n的符号,再根据一次函数的性质进行选择.【解答】解:(1)当m>0,n>0时,mn>0,一次函数y=mx+n的图象一、二、三象限,正比例函数y=mnx的图象过一、三象限,无符合项;(2)当m>0,n<0时,mn<0,一次函数y=mx+n的图象一、三、四象限,正比例函数y=mnx的图象过二、四象限,C选项符合;(3)当m<0,n<0时,mn>0,一次函数y=mx+n的图象二、三、四象限,正比例函数y=mnx的图象过一、三象限,无符合项;(4)当m<0,n>0时,mn<0,一次函数y=mx+n的图象一、二、四象限,正比例函数y=mnx的图象过二、四象限,无符合项.故选C.11.【答案】D【考点】三角形综合题【解析】可画出图形,令相等的线段重合,拼出可能出现的图形,然后再根据已知三角形的性质,对拼成的图形进行具体的判定.【解答】(2)为菱形,有两个角为60∘(1)(3)为等腰梯形.故选:D.12.【答案】D【考点】翻折变换(折叠问题)勾股定理【解析】先根据矩形的特点求出BC的长,再由翻折变换的性质得出△CEF是直角三角形,利用勾股定理即可求出CF 的长,再在△ABC中利用勾股定理即可求出AB的长.【解答】解:∵四边形ABCD是矩形,AD=8,∴BC=8,∵△AEF是△AEB翻折而成,∴BE=EF=3,AB=AF,△CEF是直角三角形,∴CE=8−3=5,在Rt△CEF中,CF=√CE2−EF2=√52−32=4,设AB=x,在Rt△ABC中,AC2=AB2+BC2,即(x+4)2=x2+82,解得x=6,故选:D.二、填空题(每小题5分,共25分)13.【答案】a≤0【考点】二次根式的性质与化简【解析】利用二次根式性质及绝对值的代数意义判断即可.【解答】解:∵√a2=|a|=−a,∴a的范围是a≤0,故答案为:a≤014.【答案】8【考点】正方形的性质【解析】正方形对角线长相等,因为正方形又是菱形,所以正方形的面积可以根据S=12ab(a、b是正方形对角线长度)计算.【解答】解:在正方形中,对角线相等,所以正方形ABCD的对角线长均为8,∵正方形又是菱形,菱形的面积计算公式是S=12ab(a、b是正方形对角线长度)∴S=12×4×4=8,故答案为815.【答案】504【考点】函数的图象【解析】本题可设x≥2时,函数解析式为y=kx+b,根据待定系数法即可求出函数解析式,进而即可求出答案.【解答】解:设x≥2时,函数解析式为y=kx+b,∴2k+b=180,4k+b=288,解得k=54,b=72,∴y=54x+72,∴当x=8时,y=504.故填504.16.【答案】BE=DF【考点】平行四边形的判定【解析】添加条件是BE=DF,根据三角形全等的性质和一组对边平行且相等的四边形是平行四边形证明.【解答】解:添加的条件:BE=DF.证明:∵四边形ABCD为平行四边形∴AB=CD,∠ABE=∠CDF又∵BE=DF∴△ABE≅△CDF∴AE=CF,∠AEB=∠CFD∴∠AEF=∠EFC∴AE // FC∴四边形AECF为平行四边形.“答案不唯一”故答案为:BE=DF.17.【答案】22n−3【考点】一次函数图象上点的坐标特点正方形的性质【解析】根据直线解析式先求出OA1=1,得出第一个正方形的边长为1,求得A2B1=A1B1=1,再求出第一个正方形的边长为2,求得A3B2=A2B2=2,第三个正方形的边长为22,求得A4B3=A3B3=22,得出规律,根据三角形的面积公式即可求出S n的值.【解答】解:∵直线y=x+1,当x=0时,y=1,当y=0时,x=−1,∴OA1=1,OD=1,∴∠ODA1=45∘,∴∠A2A1B1=45∘,∴A2B1=A1B1=1,∴S1=12×1×1=12,∵A2B1=A1B1=1,∴A2C1=2=21,∴S2=12×(21)2=21同理得:A3C2=4=22,…,S3=12×(22)2=23∴S n=12×(2n−1)2=22n−3故答案为:22n−3.三、解答题(本题共7小题,满分77分)18.【答案】解:(1)原式=√43×37×75=2√55;(2)原式=2√ab+3√ab−4√ab−3√ab=−2√ab.【考点】二次根式的混合运算【解析】(1)根据二次根式的乘除法则运算;(2)先把二次根式化为最简二次根式,然后内合即可.【解答】解:(1)原式=√43×37×75=2√55;(2)原式=2√ab+3√ab−4√ab−3√ab=−2√ab.19.【答案】解:作图如下:(1)连接AB,EF,交点设为P,(2)如图,连接OP,∵OA=OB,所以△OAB为等腰三角形,根据矩形中对角线互相平分,知P点为AB中点,故根据等腰三角形的“三线合一”性质,OP即为∠AOB的平分线.【考点】作图—复杂作图矩形的性质【解析】由条件OA=OB可联想到连接AB,得到等腰三角形OAB.根据等腰三角形的“三线合一”性质,要画出∠AOB的平分线,只需作底边AB上的中线,考虑到AB是矩形AEBF的对角线,根据矩形的性质,要作出AB的中点,只要连接EF,那么AB与EF的交点C就是AB的中点,从而过点C作射线OC就可得到∠AOB的平分线.【解答】解:作图如下:(1)连接AB,EF,交点设为P,(2)如图,连接OP,∵OA=OB,所以△OAB为等腰三角形,根据矩形中对角线互相平分,知P点为AB中点,故根据等腰三角形的“三线合一”性质,OP即为∠AOB的平分线.20.【答案】解:如图,设大树高为AB=10m,小树高为CD=4m,过C点作CE⊥AB于E,则EBDC是矩形,连接AC,∴EB=4m,EC=8m,AE=AB−EB=10−4=6m,在Rt△AEC中,AC=√AE2+EC2=√62+82=10m,故小鸟至少飞行10m.【考点】勾股定理的应用【解析】根据“两点之间线段最短”可知:小鸟沿着两棵树的树梢进行直线飞行,所行的路程最短,运用勾股定理可将两点之间的距离求出.【解答】解:如图,设大树高为AB=10m,小树高为CD=4m,过C点作CE⊥AB于E,则EBDC是矩形,连接AC,∴EB=4m,EC=8m,AE=AB−EB=10−4=6m,在Rt△AEC中,AC=√AE2+EC2=√62+82=10m,故小鸟至少飞行10m.21.【答案】解:(1)甲班优秀率:3÷5×100%=60%乙班优秀率:2÷5×100%=40%(2)∵甲班5名学生踢毽子的个数从大到小分别是:110、103、100、98、89,∴甲班中位数是100;∵乙班5名学生踢毽子的个数从大到小分别是:119、100、98、97、86,∴乙班中位数是98.(3甲班5名学生踢毽子的个数的平均数是:15×(110+103+100+98+89)=100(个)乙班5名学生踢毽子的个数的平均数是:15×(119+100+98+97+86)=100(个)S甲2=15×[(110−100)2+(103−100)2+(100−100)2+(98−100)2+(89−100)2]=15×[100+9+0+4+121]=46.8S乙2=15×[(119−100)2+(100−100)2+(98−100)2+(97−100)2+(86−100)2]=15×[361+0+4+9+196]=114(4)∵甲班的优秀率、中位数都高于乙班,甲、乙两班平均数相同,甲班方差小,成绩稳定,∴把冠军奖状发给甲班.【考点】方差加权平均数中位数【解析】(1)分别用甲、乙两班的优秀人数除以参加比赛的总人数,求出优秀率各是多少即可.(2)根据中位数的含义和求法,求出两班比赛成绩的中位数各是多少即可.(3)根据方差的含义和求法,求出两个比赛数据的方差各是多少即可.(4)根据以上信息,判断出哪个班的成绩稳定,就应该把冠军奖状发给哪一个班级.【解答】解:(1)甲班优秀率:3÷5×100%=60%乙班优秀率:2÷5×100%=40%(2)∵甲班5名学生踢毽子的个数从大到小分别是:110、103、100、98、89,∴甲班中位数是100;∵乙班5名学生踢毽子的个数从大到小分别是:119、100、98、97、86,∴乙班中位数是98.(3甲班5名学生踢毽子的个数的平均数是:15×(110+103+100+98+89)=100(个)乙班5名学生踢毽子的个数的平均数是:15×(119+100+98+97+86)=100(个)S 甲2=15×[(110−100)2+(103−100)2+(100−100)2+(98−100)2+(89−100)2] =15×[100+9+0+4+121] =46.8 S 乙2=15×[(119−100)2+(100−100)2+(98−100)2+(97−100)2+(86−100)2] =15×[361+0+4+9+196] =114(4)∵ 甲班的优秀率、中位数都高于乙班,甲、乙两班平均数相同,甲班方差小,成绩稳定, ∴ 把冠军奖状发给甲班. 22.【答案】 证明:(1)∵ AF // DC , ∴ ∠AFE =∠DCE ,又∵ ∠AEF =∠DEC (对顶角相等),AE =DE (E 为AD 的中点), ∴ △AEF ≅△DEC(AAS), ∴ AF =DC ; (2)矩形. 由(1),有AF =DC 且AF // DC , ∴ 四边形AFDC 是平行四边形, 又∵ AD =CF ,∴ AFDC 是矩形(对角线相等的平行四边形是矩形). 【考点】矩形的判定与性质 全等三角形的性质 【解析】(1)因为AF // DC ,E 为AD 的中点,即可根据AAS 证明△AEF ≅△DEC ,故有AF =DC ;(2)由(1)知,AF =DC 且AF // DC ,可得四边形AFDC 是平行四边形,又因为AD =CF ,故可根据对角线相等的平行四边形是矩形进行判定. 【解答】 证明:(1)∵ AF // DC , ∴ ∠AFE =∠DCE ,又∵ ∠AEF =∠DEC (对顶角相等),AE =DE (E 为AD 的中点), ∴ △AEF ≅△DEC(AAS), ∴ AF =DC ; (2)矩形. 由(1),有AF =DC 且AF // DC , ∴ 四边形AFDC 是平行四边形, 又∵ AD =CF ,∴ AFDC 是矩形(对角线相等的平行四边形是矩形). 23.【答案】 12(2)由(1)得,当1≤n ≤12时,p =10+25(n −1)=25n −15, 当12≤n ≤31时,p =15(31−n)=−15n +465; (3)当1≤n ≤12时,令25n −15>150,得n >335,∴ 应从7日起算,此段时间流行期为:12−7+1=6(天), 当12≤n ≤31时,令−15n +465>150,解得,n <21, 故此段流行期为:20−12=8(天), ∴ 8+6=14,答:该品牌衬衣本月在市面的流行期是14天. 【考点】一次函数的应用 【解析】(1)根据题意可以列出相应的方程,从而可以解答本题;(2)根据(1)中的结果和函数图象可以分别求得各段对应的函数解析式;(3)根据题意可以求得各段的流行期,从而可以求得该品牌衬衣本月在市面的流行期. 【解答】 解:(1)设3月n 日是最后一天销售量增加的日期, 10+25(n −1)=15(31−n), 解得,n =12,(2)由(1)得,当1≤n ≤12时,p =10+25(n −1)=25n −15, 当12≤n ≤31时,p =15(31−n)=−15n +465; (3)当1≤n ≤12时,令25n −15>150,得n >335,∴ 应从7日起算,此段时间流行期为:12−7+1=6(天), 当12≤n ≤31时,令−15n +465>150,解得,n <21, 故此段流行期为:20−12=8(天), ∴ 8+6=14,答:该品牌衬衣本月在市面的流行期是14天. 24.【答案】 解:(1)∵ DE // BC ,EF // DC , ∴ 四边形DCFE 是平行四边形, ∴ EF =CD =2,CF =DE , ∵ CD ⊥BE , ∴ EF ⊥BE ,∴ BC +DE =BC +CF =BF =√BE 2+EF 2=√13. (2)解决问题:连接AE,CE,如图3.∵四边形ABCD是平行四边形,∴AB // DC.∵四边形ABEF是矩形,∴AB // FE,BF=AE.∴DC // FE.∴四边形DCEF是平行四边形.∴CE // DF.∵AC=BF=DF,∴AC=AE=CE.∴△ACE是等边三角形.∴∠ACE=60∘.∵CE // DF,∴∠DGC=∠ACE=60∘.【考点】矩形的性质平行四边形的性质【解析】(1)由DE // BC,EF // DC,可证得四边形DCFE是平行四边形,即可得EF=CD=3,CF=DE,即可得BC+DE=BF,然后利用勾股定理,求得BC+DE的值;(2)首先连接AE,CE,由四边形ABCD是平行四边形,四边形ABEF是矩形,易证得四边形DCEF是平行四边形,继而证得△ACE是等边三角形,则可求得答案.【解答】解:(1)∵DE // BC,EF // DC,∴四边形DCFE是平行四边形,∴EF=CD=2,CF=DE,∵CD⊥BE,∴EF⊥BE,∴BC+DE=BC+CF=BF=√BE2+EF2=√13.(2)解决问题:连接AE,CE,如图3.∵四边形ABCD是平行四边形,∴AB // DC.∵四边形ABEF是矩形,∴AB // FE,BF=AE.∴DC // FE.∴四边形DCEF是平行四边形.∴CE // DF.∵AC=BF=DF,∴AC=AE=CE.∴△ACE是等边三角形.∴∠ACE=60∘.∵CE // DF,∴∠DGC=∠ACE=60∘.。
2017-2018学年八年级(下)期末模拟数学试卷一、选择题(共8小题,每小题3分,满分24分)1.下列图形中是中心对称图形但不是轴对称图形的是()A.B.C.D.2.五边形的内角和为()A.360°B.540°C.720°D.900°3.如图,平行四边形ABCD中,E,F是对角线BD上的两点,如果添加一个条件使△ABE≌△CDF,则添加的条件是()A.AE=CF B.BE=FD C.BF=DE D.∠1=∠24.如图,将△ABC沿着水平方向向右平移后得到△DEF,若BC=3,CE=2,则平移的距离为()A.1 B.2 C.3 D.45.设“○”,“□”,“△”分别表示三种不同的物体,用天平比较它们质量的大小,两次情况如图所示,那么每个“○”,“□”,“△”这样的物体,按质量由小到大的顺序排列为()A.○□△B.○△□C.□○△D.△□○6.从图1到图2的拼图过程中,所反映的关系式是()A.x2+5x+6=(x+2)(x+3)B.x2+5x﹣6=(x+6)(x﹣1)C.x2﹣5x+6=(x﹣2)(x﹣3)D.(x+2)(x+3)=x2+5x+67.如图,平行四边形ABCD的对角线交于点O,且AB≠AD,过O作OE⊥BD交BD于点E.若△CDE的周长为10,则平行四边形ABCD的周长为()A.10 B.16 C.18 D.208.如图,已知函数y=x+的图象与x轴交于点A,与y轴交于点B,点P是x轴上一点,若△PAB为等腰三角形,则点P的坐标不可能是()A.(﹣3﹣2,0)B.(3,0) C.(﹣1,0)D.(2,0)二、填空题(共8小题,每小题3分,满分24分)9.当x 时,分式值为0.10.如图,在△ABC中,∠C=90°,AD是△ABC的角平分线,DE⊥AB于点E,AD=BD.则∠B等于.11.某公司准备用10000元购进一批空调和风扇.已知空调每台2500元,风扇每台300元,该公司已购进空调3台,那么该公司最多还可以购进风扇______台.12.关于x的分式方程=有增根,则m的值是.13.如图,函数y=2x和y=ax+4的图象和交于点A(m,3),则不等式2x≥ax+4的解集为.14.如图,在△ABC中,AC=BC=2,∠C=90°,AD是△ABC的角平分线,DE⊥AB,垂足为E,AD的垂直平分线交AB于点E,则△DEF的面积为______.15.如图,△ABC中,AB=AC,∠BAC=56°,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF (E在BC上,F在AC上)折叠,点C与点O恰好重合,则∠OEC为度.16.如图①是一块瓷砖的图案,用这种瓷砖来铺设地面,如果铺成一个2×2的正方形图案(如图②),其中完整的圆共有5个,如果铺成一个3×3的正方形图案(如图③),其中完整的圆共有13个,如果铺成一个4×4的正方形图案(如图④),其中完整的圆共有25个.按照这个规律,若这样铺成一个n×n的正方形图案,则其中完整的圆共有个.三、作图题:用圆规、直尺作图,不写作法,但要保留作图痕迹。
2016-2017学年八年级(下)期末模拟数学试卷一、选择题(共8小题,每小题3分,满分24分)1.下列图形中是中心对称图形但不是轴对称图形的是()A. B.C.D.2.五边形的内角和为()A.360°B.540°C.720°D.900°3.如图,平行四边形ABCD中,E,F是对角线BD上的两点,如果添加一个条件使△ABE≌△CDF,则添加的条件是()A.AE=CF B.BE=FD C.BF=DE D.∠1=∠24.如图,将△ABC沿着水平方向向右平移后得到△DEF,若BC=3,CE=2,则平移的距离为()A.1 B.2 C.3 D.45.设“○”,“□”,“△”分别表示三种不同的物体,用天平比较它们质量的大小,两次情况如图所示,那么每个“○”,“□”,“△”这样的物体,按质量由小到大的顺序排列为()A.○□△B.○△□C.□○△D.△□○6.从图1到图2的拼图过程中,所反映的关系式是()A.2+5+6=(+2)(+3)B.2+5﹣6=(+6)(﹣1)C.2﹣5+6=(﹣2)(﹣3)D.(+2)(+3)=2+5+67.如图,平行四边形ABCD的对角线交于点O,且AB≠AD,过O作OE⊥BD交BD 于点E.若△CDE的周长为10,则平行四边形ABCD的周长为()A.10 B.16 C.18 D.208.如图,已知函数y=+的图象与轴交于点A,与y轴交于点B,点P是轴上一点,若△PAB为等腰三角形,则点P的坐标不可能是()A.(﹣3﹣2,0)B.(3,0)C.(﹣1,0)D.(2,0)二、填空题(共8小题,每小题3分,满分24分)9.当时,分式值为0.10.如图,在△ABC中,∠C=90°,AD是△ABC的角平分线,DE⊥AB于点E,AD=BD.则∠B等于.11.某公司准备用10000元购进一批空调和风扇.已知空调每台2500元,风扇每台300元,该公司已购进空调3台,那么该公司最多还可以购进风扇______台.12.关于的分式方程=有增根,则m的值是.13.如图,函数y=2和y=a+4的图象和交于点A(m,3),则不等式2≥a+4的解集为.14.如图,在△ABC中,AC=BC=2,∠C=90°,AD是△ABC的角平分线,DE⊥AB,垂足为E,AD的垂直平分线交AB于点E,则△DEF的面积为______.15.如图,△ABC中,AB=AC,∠BAC=56°,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,则∠OEC 为度.16.如图①是一块瓷砖的图案,用这种瓷砖铺设地面,如果铺成一个2×2的正方形图案(如图②),其中完整的圆共有5个,如果铺成一个3×3的正方形图案(如图③),其中完整的圆共有13个,如果铺成一个4×4的正方形图案(如图④),其中完整的圆共有25个.按照这个规律,若这样铺成一个n×n的正方形图案,则其中完整的圆共有个.三、作图题:用圆规、直尺作图,不写作法,但要保留作图痕迹。
山东省德州市八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2018八下·花都期末) 如果有意义,那么实数x的取值范围是()A . x≥2B . x≤2C . x>2D . x<22. (2分)(2017·冠县模拟) 下列运算正确的是()A . 3 =3B . (2x2)3=2x5C . 2a•5b=10abD . ÷ =23. (2分)有一组数据:11、9、13、x、15,它们的平均数是16,则这组数据的中位数是()A . 11B . 13C . 15D . 174. (2分)若点、在直线上,且,则该直线所经过的象限是()A . 第一、二、三象限B . 第一、二、四象限C . 第二、三、四象限D . 第一、三、四象限5. (2分)如图在方格中作以AB为一边的Rt△ABC,要求点C也在格点上,这样的Rt△能作出()个A . 2个B . 3个C . 4个D . 6个6. (2分) (2019八下·鹿邑期中) 如图,过矩形的对角线的中点作,交边于点,交边于点,分别连接、,若,,则的长为()A .B . 4C .D . 67. (2分) (2018九上·深圳期中) 如图,已知点E、F、G.H分别是菱形ABCD各边的中点,则四边形EFGH 是()A . 正方形B . 矩形C . 菱形D . 平行四边形8. (2分) (2017八下·苏州期中) 如图,在正方形OABC中,点B的坐标是(4,4),点E、F分别在边BC、BA上,OE=2 .若∠EOF=45°,则F点的纵坐标是()A .B . 1C .D . ﹣19. (2分)已知A,B两地相距4千米,上午8:00,甲从A地出发步行到B地,上午8:20乙从B地出发骑自行车到A地,甲,乙两人离A地的距离(千米)与甲所用的时间(分)之间的关系如图所示,由图中的信息可知,乙到达A地的时间为()A . 上午8:30B . 上午8:35C . 上午8:40D . 上午8:4510. (2分)如图,王大伯家屋后有一块长12m、宽8m的长方形空地,他在以较长边BC为直径的半圆内种菜,他家养的一只羊平时拴在A处的一棵树上,为了不让羊吃到菜,拴羊的绳长最长不超过()A . 3mB . 4mC . 5mD . 6m二、填空题 (共5题;共6分)11. (1分)(2018·邯郸模拟) 计算: ________。
2016-2017学年山东省德州市八年级(下)期末数学试卷一、选择题(每小题3分,共36分)1.若有意义,则m能取的最小整数值是()A.m=0 B.m=1 C.m=2 D.m=32.下列各组数中,以它们为边长的线段不能构成直角三角形的是()A.1,,B.3,4,5 C.5,12,13 D.2,2,33.下列二次根式中属于最简二次根式的是()A.B.C. D.4.函数y=2x﹣5的图象经过()A.第一、三、四象限 B.第一、二、四象限C.第二、三、四象限 D.第一、二、三象限5.如图,矩形ABCD中,对角线AC,BD交于点O.若∠AOB=60°,BD=8,则AB的长为()A.4 B.C.3 D.56.如图,正方形ABCD中,AE垂直于BE,且AE=3,BE=4,则阴影部分的面积是()A.16 B.18 C.19 D.217.某市一周的日最高气温如图所示,则该市这周的日最高气温的众数是()A .25B .26C .27D .288.已知P 1(﹣3,y 1),P 2(2,y 2)是一次函数y=﹣x ﹣1的图象上的两个点,则y 1,y 2的大小关系是( ) A .y 1=y 2 B .y 1<y 2 C .y 1>y 2D .不能确定9. 2022年将在北京﹣张家口举办冬季奥运会,很多学校开设了相关的课程.如表记录了某校4名同学短道速滑选拔赛成绩的平均数与方差s 2:应该选择( )A .队员1B .队员2C .队员3D .队员410.如图,在平行四边形ABCD 中,∠BAD 的平分线交BC 于点E ,∠ABC 的平分线交AD 于点F ,若BF=12,AB=10,则AE 的长为( )A .13B .14C .15D .1611.如图,菱形ABCD 的一边中点M 到对角线交点O 的距离为5cm ,则菱形ABCD 的周长为( )A.5cm B.10cm C.20cm D.40cm12.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论①k<0;②a>0;③当x<3时,y1<y2中,正确的个数是()A.0 B.1 C.2 D.3二、填空题(每小题4分,共20分)13.已知一组数据x1,x2,x3,x4,x5的平均数是2,那么另一组数据3x1﹣2,3x2﹣2,3x3﹣2,3x4﹣2,3x5﹣2的平均数是.14.函数中,自变量x的取值范围是.15.计算= .16.矩形纸片ABCD的边长AB=8,AD=4,将矩形纸片沿EF折叠,使点A与点C 重合,折叠后在某一面着色(如图),则着色部分的面积为.17.如图,直线y=kx+b(k≠0)与x轴交于点(﹣4,0),则关于x的方程kx+b=0的解为x= .三、解答题(本大题共7个小题,写出必要解题步骤,共64分)18.当x=时,求x2﹣x+1的值.19.一艘轮船以16海里/时的速度离开港口(如图),向北偏东40°方向航行,另一艘轮船在同时以12海里/时的速度向北偏西一定的角度的航向行驶,已知它们离港口一个半小时后相距30海里(即BA=30),问另一艘轮船的航行的方向是北偏西多少度?20.已知:如图,点E,F分别为▱ABCD的边BC,AD上的点,且∠1=∠2.求证:AE=CF.21.阅读对人成长的影响是巨大的,一本好书往往能改变人的一生,每年的4月23日被联合国教科文组织确定为“世界读书日”.某校本学年开展了读书活动,在这次活动中,八年级(1)班40名学生读书册数的情况如表:(1)该班学生读书册数的平均数;(2)该班学生读书册数的中位数.22.世界上大部分国家都使用摄氏温度(℃),但美国、英国等国家的天气预报使用华氏温度(℉).两种计量之间有如表对应:(1)求该一次函数的表达式;(2)当华氏温度﹣4℉时,求其所对应的摄氏温度.23.如图,矩形ABCD的对角线AC、BD交于点O,且DE∥AC,CE∥BD.(1)求证:四边形OCED是菱形;(2)若∠BAC=30°,AC=4,求菱形OCED的面积.24.已知:甲乙两车分别从相距300千米的A、B两地同时出发相向而行,其中甲到达B地后立即返回,如图是它们离各自出发地的距离y(千米)与行驶时间x(小时)之间的函数图象.(千米)与行驶时间x(小时)之间的函数关(1)求甲车离出发地的距离y甲系式,并写出自变量的取值范围;(2)它们出发小时时,离各自出发地的距离相等,求乙车离出发地的距离y(千米)与行驶时间x(小时)之间的函数关系式,并写出自变量的取值范乙围;(3)在(2)的条件下,求它们在行驶的过程中相遇的时间.2016-2017学年山东省德州市八年级(下)期末数学试卷参考答案与试题解析一、选择题(每小题3分,共36分)1.若有意义,则m能取的最小整数值是()A.m=0 B.m=1 C.m=2 D.m=3【分析】根据二次根式的性质,被开方数大于等于0,即可求解.【解答】解:由有意义,则满足3m﹣1≥0,解得m≥,即m≥时,二次根式有意义.则m能取的最小整数值是m=1.故选B.【点评】主要考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式;性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.2.下列各组数中,以它们为边长的线段不能构成直角三角形的是()A.1,,B.3,4,5 C.5,12,13 D.2,2,3【分析】欲求证是否为直角三角形,利用勾股定理的逆定理即可.这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、12+()2=3=()2,故是直角三角形,故错误;B、42+32=25=52,故是直角三角形,故错误;C、52+122=169=132,故是直角三角形,故错误;D、22+22=8≠32,故不是直角三角形,故正确.故选D.【点评】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.3.下列二次根式中属于最简二次根式的是()A.B.C. D.【分析】B、D选项的被开方数中含有未开尽方的因数或因式;C选项的被开方数中含有分母;因此这三个选项都不是最简二次根式.【解答】解:因为:B、=4;C、=;D、=2;所以这三项都不是最简二次根式.故选A.【点评】在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数等于或大于2,也不是最简二次根式.4.函数y=2x﹣5的图象经过()A.第一、三、四象限 B.第一、二、四象限C.第二、三、四象限 D.第一、二、三象限【分析】根据一次函数的性质解答.【解答】解:在y=2x﹣5中,∵k=2>0,b=﹣5<0,∴函数过第一、三、四象限,故选A.【点评】本题考查了一次函数的性质,能根据k和b的值确定函数所过象限是解题的关键.5.如图,矩形ABCD中,对角线AC,BD交于点O.若∠AOB=60°,BD=8,则AB的长为()A .4B .C .3D .5【分析】先由矩形的性质得出OA=OB ,再证明△AOB 是等边三角形,得出AB=OB=4即可.【解答】解:∵四边形ABCD 是矩形,∴OA=AC ,OB=BD=4,AC=BD , ∴OA=OB , ∵∠AOB=60°,∴△AOB 是等边三角形, ∴AB=OB=4; 故选:A .【点评】本题考查了矩形的性质、等边三角形的判定与性质;熟练掌握矩形的性质,证明三角形是等边三角形是解决问题的关键.6.如图,正方形ABCD 中,AE 垂直于BE ,且AE=3,BE=4,则阴影部分的面积是( )A .16B .18C .19D .21【分析】由已知得△ABE 为直角三角形,用勾股定理求正方形的边长AB ,用S阴影部分=S 正方形ABCD ﹣S △ABE 求面积.【解答】解:∵AE 垂直于BE ,且AE=3,BE=4, ∴在Rt △ABE 中,AB 2=AE 2+BE 2=25, ∴S 阴影部分=S 正方形ABCD ﹣S △ABE=AB 2﹣×AE ×BE=25﹣×3×4 =19. 故选C .【点评】本题考查了勾股定理的运用,正方形的性质.关键是判断△ABE 为直角三角形,运用勾股定理及面积公式求解.7.某市一周的日最高气温如图所示,则该市这周的日最高气温的众数是( )A .25B .26C .27D .28【分析】一组数据中出现次数最多的数据叫做众数,依此求解即可. 【解答】解:由图形可知,25出现了3次,次数最多,所以众数是25. 故选A .【点评】本题考查了众数的概念,求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.8.已知P 1(﹣3,y 1),P 2(2,y 2)是一次函数y=﹣x ﹣1的图象上的两个点,则y 1,y 2的大小关系是( ) A .y 1=y 2 B .y 1<y 2 C .y 1>y 2D .不能确定【分析】根据P 1(﹣3,y 1),P 2(2,y 2)是一次函数y=﹣x ﹣1的图象上的两个点,由﹣3<2,结合一次函数y=﹣x ﹣1在定义域内是单调递减函数,判断出y 1,y 2的大小关系即可.【解答】解:∵P 1(﹣3,y 1),P 2(2,y 2)是一次函数y=﹣x ﹣1的图象上的两个点,且﹣3<2, ∴y 1>y 2. 故选:C .【点评】此题主要考查了一次函数图象上点的坐标特征,要熟练掌握.9. 2022年将在北京﹣张家口举办冬季奥运会,很多学校开设了相关的课程.如表记录了某校4名同学短道速滑选拔赛成绩的平均数与方差s2:应该选择()A.队员1 B.队员2 C.队员3 D.队员4【分析】据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【解答】解:因为队员1和2的方差最小,但队员2平均数最小,所以成绩好,所以队员2成绩好又发挥稳定.故选B.【点评】本题考查方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.10.如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,∠ABC的平分线交AD于点F,若BF=12,AB=10,则AE的长为()A.13 B.14 C.15 D.16【分析】先证明四边形ABEF是平行四边形,再证明邻边相等即可得出四边形ABEF是菱形,得出AE⊥BF,OA=OE,OB=OF=BF=6,由勾股定理求出OA,即可得出AE的长.【解答】解:如图所示:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠AEB,∵∠BAD的平分线交BC于点E,∴∠DAE=∠BAE,∴∠BAE=∠BEA,∴AB=BE,同理可得AB=AF,∴AF=BE,∴四边形ABEF是平行四边形,∵AB=AF,∴四边形ABEF是菱形,∴AE⊥BF,OA=OE,OB=OF=BF=6,∴OA===8,∴AE=2OA=16;故选:D.【点评】本题考查平行四边形的性质与判定、等腰三角形的判定、菱形的判定和性质、勾股定理等知识;熟练掌握平行四边形的性质,证明四边形ABEF是菱形是解决问题的关键.11.如图,菱形ABCD的一边中点M到对角线交点O的距离为5cm,则菱形ABCD 的周长为()A.5cm B.10cm C.20cm D.40cm【分析】根据菱形的性质得出AB=BC=CD=AD,AO=OC,根据三角形的中位线求出BC,即可得出答案.【解答】解:∵四边形ABCD是菱形,∴AB=BC=CD=AD,AO=OC,∵AM=BM,∴BC=2MO=2×5cm=10cm,即AB=BC=CD=AD=10cm,即菱形ABCD的周长为40cm,故选D.【点评】本题考查了菱形的性质和三角形的中位线定理,能根据菱形的性质得出AO=OC是解此题的关键.12.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论①k<0;②a>0;③当x<3时,y1<y2中,正确的个数是()A.0 B.1 C.2 D.3【分析】根据y1=kx+b和y2=x+a的图象可知:k<0,a<0,所以当x<3时,相应的x的值,y1图象均高于y2的图象.【解答】解:∵y1=kx+b的函数值随x的增大而减小,∴k<0;故①正确∵y2=x+a的图象与y轴交于负半轴,∴a<0;当x<3时,相应的x的值,y1图象均高于y2的图象,∴y1>y2,故②③错误.故选:B.【点评】本题考查了两条直线相交问题,难点在于根据函数图象的走势和与y 轴的交点来判断各个函数k,b的值.二、填空题(每小题4分,共20分)13.已知一组数据x 1,x 2,x 3,x 4,x 5的平均数是2,那么另一组数据3x 1﹣2,3x 2﹣2,3x 3﹣2,3x 4﹣2,3x 5﹣2的平均数是 .【分析】平均数的计算方法是求出所有数据的和,然后除以数据的总个数.先求数据x 1,x 2,x 3,x 4,x 5的和,然后再用平均数的定义求新数据的平均数. 【解答】解:一组数据x 1,x 2,x 3,x 4,x 5的平均数是2,有(x 1+x 2+x 3+x 4+x 5)=2,那么另一组数据3x 1﹣2,3x 2﹣2,3x 3﹣2,3x 4﹣2,3x 5﹣2的平均数是(3x 1﹣2+3x 2﹣2+3x 3﹣2+3x 4﹣2+3x 5﹣2)=4. 故答案为4.【点评】本题考查的是样本平均数的求法及运用,即平均数公式:.14.函数中,自变量x 的取值范围是 x ≥3 .【分析】根据二次根式有意义的条件是a ≥0,即可求解.【解答】解:根据题意得:x ﹣3≥0, 解得:x ≥3. 故答案是:x ≥3.【点评】本题考查了函数自变量的取值范围的求法,求函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数; (2)当函数表达式是分式时,考虑分式的分母不能为0; (3)当函数表达式是二次根式时,被开方数非负.15.计算=.【分析】根据二次根式的加减法运算法则,先将各个二次根式化简为最简二次根式,然后将被开方数相同的二次根式合并.【解答】解:原式==3.【点评】二次根式的加减法运算一般可以分三步进行:①将每一个二次根式化成最简二次根式;②找出其中的同类二次根式;③合并同类二次根式.16.矩形纸片ABCD的边长AB=8,AD=4,将矩形纸片沿EF折叠,使点A与点C 重合,折叠后在某一面着色(如图),则着色部分的面积为22 .【分析】根据折叠的性质得到CG=AD=4,GF=DF=CD﹣CF,∠G=90°,根据勾股定理求出FC,根据三角形的面积公式计算即可.【解答】解:由折叠的性质可得:CG=AD=4,GF=DF=CD﹣CF,∠G=90°,则△CFG为直角三角形,在Rt△CFG中,FC2=CG2+FG2,即FC2=42+(8﹣FC)2,解得:FC=5,∴△CEF的面积=×FC×BC=10,△BCE的面积=△CGF的面积=×FG×GC=6,则着色部分的面积为:10+6+6=22,故答案为:22.【点评】本题考查的是翻转变换的性质、勾股定理的应用,掌握翻转变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.17.如图,直线y=kx+b(k≠0)与x轴交于点(﹣4,0),则关于x的方程kx+b=0的解为x= ﹣4 .【分析】方程kx+b=0的解其实就是当y=0时一次函数y=kx+b与x轴的交点横坐标.【解答】解:由图知:直线y=kx+b与x轴交于点(﹣4,0),即当x=﹣4时,y=kx+b=0;因此关于x的方程kx+b=0的解为:x=﹣4.故答案为:﹣4【点评】本题主要考查了一次函数与一次方程的关系,关键是根据方程kx+b=0的解其实就是当y=0时一次函数y=kx+b与x轴的交点横坐标解答.三、解答题(本大题共7个小题,写出必要解题步骤,共64分)18.(6分)当x=时,求x2﹣x+1的值.【分析】先根据x=,整理成x=+1,再把要求的式子进行配方,然后把x的值代入,即可得出答案.【解答】解:∵x=∴x=+1,∴x2﹣x+1=(x﹣)2+=(+1﹣)2+=3.【点评】本题考查的是二次根式的化简求值,在进行此类运算时,一般先把二次根式化为最简二次根式的形式后再运算.19.(8分)一艘轮船以16海里/时的速度离开港口(如图),向北偏东40°方向航行,另一艘轮船在同时以12海里/时的速度向北偏西一定的角度的航向行驶,已知它们离港口一个半小时后相距30海里(即BA=30),问另一艘轮船的航行的方向是北偏西多少度?【分析】先根据题意得出OA及OB的长,再根据勾股定理的逆定理判断出△OAB 的形状,进而可得出结论.【解答】解:由题意可知,OA=16+16×=24(海里),OB=12+12×=18(海里),AB=30海里,∵242+182=302,即OA2+OB2=AB2,∴△OAB是直角三角形,∵∠AOD=40°,∴∠BOD=90°﹣40°=50°,即另一艘轮船的航行的方向是北偏西50度.【点评】本题考查的是勾股定理的应用,根据题意判断出△AOB是直角三角形是解答此题的关键.20.(10分)已知:如图,点E,F分别为▱ABCD的边BC,AD上的点,且∠1=∠2.求证:AE=CF.【分析】先由平行四边形的对边平行得出AD∥BC,再根据平行线的性质得到∠DAE=∠1,而∠1=∠2,于是∠DAE=∠2,根据平行线的判定得到AE∥CF,由两组对边分别平行的四边形是平行四边形得到四边形AECF是平行四边形,从而根据平行四边形的对边相等得到AE=CF.【解答】证明:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠1,∵∠1=∠2,∴∠DAE=∠2,∴AE∥CF,∵AF∥EC,∴四边形AECF是平行四边形,∴AE=CF.【点评】本题考查了平行四边形的判定与性质,平行线的判定与性质,难度适中.证明出AE∥CF是解题的关键.21.(10分)阅读对人成长的影响是巨大的,一本好书往往能改变人的一生,每年的4月23日被联合国教科文组织确定为“世界读书日”.某校本学年开展了读书活动,在这次活动中,八年级(1)班40名学生读书册数的情况如表:(1)该班学生读书册数的平均数;(2)该班学生读书册数的中位数.【分析】(1)根据平均数=,求出该班同学读书册数的平均数;(2)将图表中的数据按照从小到大的顺序排列,再根据中位数的概念求解即可.【解答】解:(1)该班学生读书册数的平均数为:=6.3(册),答:该班学生读书册数的平均数为6.3册.(2)将该班学生读书册数按照从小到大的顺序排列,由图表可知第20名和第21名学生的读书册数分别是6册和7册,故该班学生读书册数的中位数为: =6.5(册).答:该班学生读书册数的中位数为6.5册.【点评】本题考查了中位数和平均数的知识,解答本题的关键在于熟练掌握求解平均数的公式和中位数的概念:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.22.(10分)世界上大部分国家都使用摄氏温度(℃),但美国、英国等国家的天气预报使用华氏温度(℉).两种计量之间有如表对应:(1)求该一次函数的表达式;(2)当华氏温度﹣4℉时,求其所对应的摄氏温度.【分析】(1)设y=kx+b ,利用图中的两个点,建立方程组,解之即可; (2)令y=﹣4,求出x 的值,再比较即可.【解答】解:(1)设一次函数表达式为y=kx+b (k ≠0). 由题意,得解得∴一次函数的表达式为y=1.8x+32.(2)当y=﹣4时,代入得﹣4=1.8x+32,解得x=﹣20. ∴华氏温度﹣4℉所对应的摄氏温度是﹣20℃.【点评】本题考查一次函数的应用,只需仔细分析表中的数据,利用待定系数法即可解决问题.23.(10分)如图,矩形ABCD的对角线AC、BD交于点O,且DE∥AC,CE∥BD.(1)求证:四边形OCED是菱形;(2)若∠BAC=30°,AC=4,求菱形OCED的面积.【分析】(1)根据平行四边形的判定得出四边形OCED是平行四边形,根据矩形的性质求出OC=OD,根据菱形的判定得出即可.(2)解直角三角形求出BC=2.AB=DC=2,连接OE,交CD于点F,根据菱形的性质得出F为CD中点,求出OF=BC=1,求出OE=2OF=2,求出菱形的面积即可.【解答】(1)证明:∵CE∥OD,DE∥OC,∴四边形OCED是平行四边形,∵矩形ABCD,∴AC=BD,OC=AC,OD=BD,∴OC=OD,∴四边形OCED是菱形;(2)解:在矩形ABCD中,∠ABC=90°,∠BAC=30°,AC=4,∴BC=2,∴AB=DC=2,连接OE,交CD于点F,∵四边形ABCD为菱形,∴F为CD中点,∵O为BD中点,∴OF=BC=1,∴OE=2OF=2,=×OE×CD=×2×2=2.∴S菱形OCED【点评】本题考查了矩形的性质和菱形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键,注意:菱形的面积等于对角线积的一半.24.(10分)已知:甲乙两车分别从相距300千米的A、B两地同时出发相向而行,其中甲到达B地后立即返回,如图是它们离各自出发地的距离y(千米)与行驶时间x(小时)之间的函数图象.(千米)与行驶时间x(小时)之间的函数关(1)求甲车离出发地的距离y甲系式,并写出自变量的取值范围;(2)它们出发小时时,离各自出发地的距离相等,求乙车离出发地的距离y(千米)与行驶时间x(小时)之间的函数关系式,并写出自变量的取值范乙围;(3)在(2)的条件下,求它们在行驶的过程中相遇的时间.【分析】(1)由图知,该函数关系在不同的时间里表现成不同的关系,需分段表达.当行驶时间小于3时是正比例函数;当行使时间大于3小时小于小时是一次函数.可根据待定系数法列方程,求函数关系式.(2)4.5小时大于3小时,代入一次函数关系式,计算出乙车在用了小时行使的距离.从图象可看出求乙车离出发地的距离y(千米)与行驶时间x(小时)之间是正比例函数关系,用待定系数法可求解.(3)两者相向而行,相遇时甲、乙两车行使的距离之和为300千米,列出方程解答,由题意有两次相遇.【解答】解:(1)当0≤x≤3时,是正比例函数,设为y=kx,x=3时,y=300,代入解得k=100,所以y=100x;当3<x≤时,是一次函数,设为y=kx+b,代入两点(3,300)、(,0),得解得,所以y=540﹣80x.综合以上得甲车离出发地的距离y与行驶时间x之间的函数关系式为:y=.(2)当x=时,y甲=540﹣80×=180;乙车过点(,180),y乙=40x.(0≤x≤)(3)由题意有两次相遇.①当0≤x≤3,100x+40x=300,解得x=;②当3<x≤时,(540﹣80x)+40x=300,解得x=6.综上所述,两车第一次相遇时间为第小时,第二次相遇时间为第6小时.【点评】本题主要考查用待定系数法求一次函数关系式,并会用一次函数研究实际问题,具备在直角坐标系中的读图能力.此题中需注意的是相向而行时相遇的问题.21。
八年级数学试题 第 1 页 (共 8 页)2016-2017学年度第二学期期末检测八年级数学试题(满分:150分,考试时间:120分钟)一、选择题:(本题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将正确答案的代号填在答题卷对应方框内.1.下列二次根式中,是最简二次根式的是( ) A .15B .9C .8D .51 2.某校初三已经进行了五次月考测试,若想了解某学生的数学成绩是否稳定,老师需要知道 他5次数学成绩的( ) A.平均数B .方差C .中位数D .众数3.若一个三角形的三边长分别为x ,8,6,则使此三角形是直角三角形的x 的值是( ) A. 8B. 10C.72D.7210或4.下列判断正确的是( )A.对角线互相垂直且相等的四边形是正方形 B .对角线互相垂直的四边形是菱形 C.对角线互相平分的四边形是平行四边形 D .对角线相等的四边形是矩形 5.下列运算正确的是( ) A.363332=⋅B.332255=-C.532=+D.3)3(2=-6.若一次函数1)2(-+=x k y 中y 随x 的增大而减小,则k 的取值范围是( ) A . 2->kB . 2-≤kC. 2-<kD. 2-≥k7.潼南区在一次空气污染指数抽查中,收集到10天的数据如下:60,80,69,55,80,85, 80, 90,76,69.该组数据的中位数和众数分别是( )A.76和80B.80和80C.78和80D.78和69 8.如图,在四边形ABCD 中,对角线AC ,BD 相交于点E , ο90=∠CBD ,4=BC ,3==ED BE ,10=AC ,则四边形 ABCD 的面积为( ) A .24B .20C .12D .69.小明想知道学校旗杆的高度,他发现旗杆上的绳子垂到地面还多2米,当他把绳子的下端拉题图)(8八年级数学试题 第 2 页 (共 8 页)开6米后,发现下端刚好接触地面,则旗杆的高度是( ) A.6米B .8米C .10米D .12米10.如图,在菱形ABCD 中,ο70=∠BCD ,BC 的垂直平分线交对角线 AC 于点F ,垂足为E ,连接DF ,则ADF ∠的大小为( )A .ο75B .ο70C .ο65D .ο6011.如图:下列图形都是由面积为1的正方形按一定的规律组成,其中,第(1)个图形中面积 为1的正方形有2个,第(2)个图形中面积为1的正方形有4个,第(3)个图形中面积为1 的正方形有7个,Λ,按此规律,则第(10)个图形中面积为1的正方形的个数为( ) A.54 B .55C .56D .57 ……12.一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地,两车同时出发,快车到达 乙地后,快车停止运动,慢车继续以原速匀速驶往甲地,直至慢车到达甲地为止,设慢车行 驶的时间为)(h t ,两车之间的距离为)(km s ,图中的折线表示s 与t 之间的函数关系.根据图 象提供的信息下列说法错误的是( )A. 甲、乙两地之间的距离为km 900B. 行驶h 4两车相遇C.快车共行驶了h 6D.行驶h 8两车相距km 560二、填空题:(本大题6个小题,每小题4分,共24分)请将正确答案填在答题卷对应横线上.13.若代数式x 27-有意义,则x 的取值范围是 .14.若直线a x y +-=和直线b x y +=的交点坐标为(m ,7),则a b += .15.某单位欲招聘职工一名,对A 、B 两名候选人进行了面试和笔试两项素质测试.其中A 的面试成绩为90,笔试成绩为85;B 的面试成绩为95,笔试成绩为78.根据实际需要,该单位将面试、笔试测试的得分按23:的比例计算两人的总成绩,则______将被录用(填“A ”或“B ”).16.木工师傅做了一张桌面,要求为长方形,现量得桌面的长为60cm ,宽为32cm ,对角线为 68cm ,这个桌面 (填“合格”或“不合格”). 17.如图,P 是矩形ABCD 的对角线AC 的中点,E 是AD 的中点.题图)(170 )(h t 412900)(km s ABCD题图)(12(2)(1)(3)ABEDF)题图10(八年级数学试题 第 3 页 (共 8 页)若9=AB ,12=AD ,则四边形ABPE 的周长为 .18.已知整数a ,使得关于x 的分式方程xxx ax -=+--3333有整数解,且关于x 的一次函数 10)1(-+-=a x a y 的图象不经过第二象限,则满足条件的整数a 的值有 ________个.三、解答题:(本大题2个小题,每小题8分,共16分)解答时每小题必须给出必要的演算过程或推理步骤.19.计算:213721122+÷--)(20.如图,四边形ABCD 是平行四边形,对角线BD AC ,相交 于点O ,且21∠=∠.求证:四边形ABCD 是矩形.四、解答题:(本大题5个小题,每小题10分,共50分)解答时每小题必须给出必要的演算过程或推理步骤.21.先化简,再计算:,244412222+-÷++--+-a a a a a a a a )(其中13-=a .22.如图,直线:l 221+=x y 与y 轴交于点A ,与x 轴于点B .(1)求AOB ∆的面积;(2)若直线1l 经过点A ,且与x 轴相交于点C ,并将ABO ∆ 的面积分成相等的两部分,求直线1l 的解析式.23.某中学开展“唱红歌”比赛活动,八年级(1)班、(2)班根据初赛成绩,各选出5名 选手参加决赛,两个班各选出的5名选手的决赛成绩如图所示.(1)根据统计图中信息完成表格;(2)结合两班决赛成绩的平均数和中位数,分析哪个班级的决赛成绩较好; (3)计算两个班决赛成绩的方差并判断哪一个班选手成绩较为稳定.班级 平均数(分) 中位数(分) 众数(分) 八(1) 85 八(2) 85 100A OBxyl题图)(220708090100分数选手编号)八(1)八(212345题图)(20八年级数学试题 第 4 页 (共 8 页)(参考资料:()[]222212)()(1x x x x x x ns n -++-+-=Λ) 24.为绿化校园,某学校计划购进A 、B 两种树苗,若购买A 树苗10棵,B 树苗20棵,需要 2300元,若购买A 树苗20棵,B 树苗10棵,需要2500元, (1)求A 、B 两种树苗单价各是多少?(2)学校计划购买A 、B 两种树苗共21棵,且购买B 种树苗的数量不超过A 种树苗的一半, 设购买B 种树苗x 棵,购买两种树苗所需费用为y 元,请给出一种费用最省的方案,并求出该方案所需费用.25.在学习了勾股定理之后,甲乙丙三位同学在方格图(正方形的边长都为1)中比赛找“整 数三角形”,什么叫“整数三角形”呢?他们三人规定:边长和面积都是整数的三角形才 能叫“整数三角形”.甲同学很快找到了如图1的“整数三角形”,一会儿后乙同学也找到 了周长为24的“整数三角形”. 丙同学受到甲、乙两同学的启发找到了两个不同的等腰 “整数三角形”.请完成:(1)以点A 为一个顶点,在图2中作出乙同学找到的周长为24的“整数三角形”,并在每 边周边标注其边长;(2)在图3中作出两个不同的等腰“整数三角形”,并在每边周边标注其边长; (3)你还能找到一个等边“整数三角形”吗?若能找出,请写出它的边长;若不能,请说明理由.五、解答题:(本大题1个小题,共12分)解答时每小题必须给出必要的演算过程或推理步骤.26.如图,在菱形ABCD 中,AC AB =,E 是对角线AC 上任意一点,F 是线段BC 延长线上一点,且AE CF =,连接EF BE ,.(1)如图1,当点E 是线段AC 的中点,且4=AB 时,求BE 的长; (2)如图2,当点E 不是线段AC 的中点时,求证:EF BE =; (3)如图3,当点E 是线段AC 延长线上的任意一点时,(2)中的结论是否成立?若成立, 请给予证明;若不成立,请说明理由.图1图2 图3八年级数学试题 第 5 页 (共 8 页)2016-2017学年度第二学期期末测试八年级数学参考答案一、选择题(本大题共12个小题,每小题4分,共48分)二、填空题(本大题共6个小题,每小题4分,共24分)13.27≤x 14. 42-=x y 15. B 16 . 合格 17. 27 18. 6 三、解答题:(本大题共2个小题,每小题7分,共14分)19.解:2262262+--=原式……………………………6分 22-=………………………8分 20.证明:在▱ABCD 中,AO=CO ,BO=DO , …………………………2分∵∠1=∠2,∴BO=CO ,…………………………4分 ∴AO=BO=CO=DO , ∴AC=BD ,………………6分∴▱ABCD 为矩形 (对角线相等的平行四边形是矩形) …………8分四、解答题:(本大题共4个小题,每小题10分,共40分) 21.解:原式=24)2(1)2(22+-÷⎥⎦⎤⎢⎣⎡+--+-a a a a a a a =42)2()1()2()2)(2(22-+⨯⎥⎦⎤⎢⎣⎡+--++-a a a a a a a a a a 42)2(4222-+⨯++--=a a a a a a a八年级数学试题 第 6 页 (共 8 页))2(1+=a a …………………………………7分13-=a Θ,原式=21)213)(13(1=+-- …………………………………10分 22.解:(1)两点与坐标轴交于直线B A l ,Θ)0,4(),2,0(-∴B A …………………………………2分 44221=⨯⨯=∴∆AOB S …………………………………4分 (2)分,的面积分成相等的两部并将经过点ABO A l ∆,1Θ )的中点(经过0,21-∴BO l ………………………6分 设直线b kx y l +=:1,…………………………………7分 将)(0,2-与点A 代入直线方程,得 ∴⎩⎨⎧==+-202b b k 解得⎩⎨⎧==21b k …………………………………9分∴直线1l 的解析式为2+=x y …………………………………10分23.(1) ………………3分(2)八(1)班成绩好些.因为八(1)班的中位数高,所以八(1)班成绩好些.(回答合理即可给分 ………………6分(3)八(1)班成绩的方差八(2)班成绩的方差2221s s <Θ,所以八年级(1)班的成绩更稳定.………………10分24.解:(1)设A,B 两种树苗的单价分别为元元b a ,,由题意得:⎩⎨⎧=+=+2500102023002010b a b a ………………2分班级 平均数(分) 中位数(分) 众数(分) 八(1) 85 85 85 八(2)8580100八年级数学试题 第 7 页 (共 8 页)解得⎩⎨⎧==7090b a ………………4分∴A,B 的单价分别为90元,70元.(2)18902070)21(90+-=+-=x x x y ………………6分由题意221xx -≤,70≤<∴x ………………8分 020<-Θ∴.的增大而减小随x y有最小值时,当y x 7=∴,1750=最小y 元,所以当购买A 种14棵,B 种7棵时,费用最少,为1750元.………………10分25.解:(1)如下图所示:……………2分 (2)如下图所示:…………………6分(3)不能.设一个等边三角形的边长为a ,则该三角形高为3a ,则其面积为23a ,若a 为整数,则23a 一定不为整数,所以不能.…………10分 26.解:(1)∵四边形ABCD 是菱形,AC AB =,∴△ABC 是等边三角形,∴4=AC ,又E 是线段AC 的中点,221,==⊥∴AC AE AC BE3222=-=∴AE AB BE ……………………………4分 (2)作EG ∥BC 交AB 于G , ∵△ABC 是等边三角形,∴△AGE 是等边三角形, ∴BG CE =,∵EG ∥BC ,ABC 60BGE 120∠=︒∴∠=︒,,图3图2八年级数学试题 第 8 页 (共 8 页)∵ACB 60ECF 120BGE ECF ∠=︒∴∠=︒∴∠=∠,,, ∴△BGE ≌△ECF EB EF ∴=,;………………………………8分 (3)成立.作EH ∥BC 交AB 的延长线于H ,∵△ABC 是等边三角形, ∴△AHE 是等边三角形, ∴BH CE =,HE AE = 又∵CF AE =, ∴CF HE = 在△BHE 和△ECF 中,CF HE ECF BHC CE BH ==∠=∠=,60,ο,∴△BHE ≌△ECF ,∴EB EF =.………………………………………………12分。
2016-2017学年山东省德州市庆云县八年级(下)期末考试数学试卷一、选择题(每题3分,共36分)1.下列式子中,属于最简二次根式的是()A.B.C.D.2.下列各组数据中能作为直角三角形的三边长的是()A.,,B.1,1,C.4,5,6 D.1,,2 3.矩形、菱形、正方形都具有的性质是()A.对角线相等B.对角线互相平分C.对角线互相垂直D.对角线平分对角4.下列各曲线表示的y与x的关系中,y不是x的函数的是()5.已知,一次函数y=kx+b的图象如图,下列结论正确的是()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<06.下列计算正确的是()A.+=B.﹣3=1 C.÷=3 D.3×2=67.一组数据4,5,7,7,8,6的中位数和众数分别是()A.7,7 B.7,6.5 C.6.5,7 D.5.5,78.下列命题中是真命题的由()个.①顺次连接任意四边形各边中点得到的四边形是平行四边形;②三内角之比为3:4:5的三角形是直角三角形;③一组对边平行,另一组对边相等的四边形是平行四边形;④对角线互相垂直平分的四边形是正方形;⑤三边a、b、c满足关系式a2﹣b2=c2的三角形是直角三角形.A.0 B.1 C.2 D.39.如果P(2,m),A(1,1),B(4,0)三点在同一直线上,则m的值为()A.2 B.﹣C.D.110.如图,平行四边形ABCD中,∠ABC=45°,E、F分别在CD和BC的延长线上,AE∥BD,EF⊥BC,AB=1,则EF的长是()A.1.5 B.C.D.211.如图所示的一块地,已知∠ADC=90°,AD=12m,CD=9m,AB=25m,BC=20m,则这块地的面积为()平方米.A.96 B.204 C.196 D.30412.如图,在矩形ABCD中,动点P从点A开始沿A→B→C→D的路径匀速运动到点D为止,在这个过程中,下列图象可以大致表示△APD的面积S随点P的运动时间t的变化关系的是()二、填空题(每题4分,共20分)13.将直线y=2x向下平移2个单位,所得函数的图象过第象限.14.计算:﹣(﹣)=.15.平行四边形ABCD中,∠ABC的平分线将AD边分成的两部分的长分别为2和3,则平行四边形ABCD的周长是.16.如图,在每个小正方形的边长为I的网格中,点A,B,C,D均在格点上,点E在线段BC上,F是线段DB的中点,且BE=DF,则AF的长等于,AE的长等于.17.如图设四边形ABCD是边长为1的正方形,以对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,此时正方形AEGH的边长为,如此下去,则第n个正方形的边长为.三、解答题(共64分)18.(6分)已知x=2﹣,求代数式(7+4)x2+(2+)x+的值.19.(8分)在学校组织的科学素养竞赛中,每班参加比赛的人数相同,成绩分为A,B,C,D四个等级,其中相应等级的得分依次记为90分,80分,70分,60分,学校将八年级一班和二班的成绩整理并绘制成如下的统计图:请你根据以上提供的信息解答下列问题:(1)此次竞赛中二班成绩在70分及其以上的人数有人;(2)补全下表中空缺的三个统计量:平均数(分)中位数(分)众数(分)一班77.6 80二班90(3)请根据上述图表对这次竞赛成绩进行分析,写出两个结论.20.(7分)如图,已知AB∥DE,AB=DE,AF=DC,求证:四边形BCEF是平行四边形.21.(9分)如图,某港口P位于东西方向的海岸线上“远航”号、“海天”号轮船同时离开港口,各自沿同定方向航行,“远航”号每小时航行16n mile,“海天”号每小时航行12n mile,它们离开港口一个半小时后分别位于点Q,R处,且相距30n mile(1)求PQ,PR的长度;(2)如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?22.(10分)如图,矩形ABCD的长为8,宽为6,现将矩形沿对角线BD折叠,C点到达C′处,C′B 交AD于E.(1)判断△EBD的形状,并说明理由;(2)求DE的长.23.(12分)“五一”期间,甲、乙两家商店以同样价格销售相同的商品,两家优惠方案分别为:甲店一次性购物中超过200元后的价格部分打七折;乙店一次性购物中超过500元后的价格部分打五折,设商品原价为x元(x≥0),购物应付金额为y元.(1)求在甲商店购物时y与x之间的函数关系;(2)两种购物方式对应的函数图象如图所示,求交点C的坐标;(3)根据图象,请直接写出“五一”期间选择哪家商店购物更优惠.24.(12分)(1)如图1,在平面直角坐标系中,四边形OBCD是正方形,且D(0,2),点E 是线段OB延长线上一点,M是线段OB上一动点(不包括点O、B),作MN⊥DM,垂足为M,且MN=DM.设OM=a,请你利用基本活动经验直接写出点N的坐标(用含a的代数式表示);(2)如果(1)的条件去掉“且MN=DM”,加上“交∠CBE的平分线与点N”,如图2,求证:MD=MN.如何突破这种定势,获得问题的解决,请你写出你的证明过程.(3)如图3,请你继续探索:连接DN交BC于点F,连接FM,下列两个结论:①FM的长度不变;②MN平分∠FMB,请你指出正确的结论,并给出证明.2016-2017学年山东省德州市庆云县八年级(下)期末数学试卷参考答案一、选择题(每题3分,共36分)1.(2017春•庆云县期末)下列式子中,属于最简二次根式的是()A.B.C.D.【考点】74:最简二次根式.【分析】根据最简二次根式的定义(①被开方数不含有能开得尽方的因式或因数,②被开方数不含有分母,满足以上两个条件的二次根式叫最简二次根式)逐个判断即可.【解答】解:A、=2,不是最简二次根式,故本选项错误;B、=,不是最简二次根式,故本选项错误;C、=,不是最简二次根式,故本选项错误;D、是最简二次根式,故本选项正确;故选D.【点评】本题考查了最简二次根式的定义的应用,能熟记最简二次根式的定义是解此题的关键,注意:最简二次根式满足以下两个条件:①被开方数不含有能开得尽方的因式或因数,②被开方数不含有分母.2.(2017春•庆云县期末)下列各组数据中能作为直角三角形的三边长的是()A.,,B.1,1,C.4,5,6 D.1,,2【考点】KS:勾股定理的逆定理.【分析】根据勾股定理的逆定理对各选项进行逐一分析即可.【解答】解:A、∵()2+()2≠()2,∴此组数据不能作为直角三角形的三边长,故本选项错误;B、∵12+12=2≠()2,∴此组数据不能作为直角三角形的三边长,故本选项错误;C、∵42+52=41≠62,∴此组数据不能作为直角三角形的三边长,故本选项错误;D、∵12+()2=4=22,∴此组数据能作为直角三角形的三边长,故本选项正确.故选D.【点评】本题考查的是勾股定理的逆定理,熟知如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形是解答此题的关键.3.(2017春•路北区期末)矩形、菱形、正方形都具有的性质是()A.对角线相等B.对角线互相平分C.对角线互相垂直D.对角线平分对角【考点】L1:多边形.【分析】利用特殊四边形的性质进而得出符合题意的答案.【解答】解:矩形、菱形、正方形都具有的性质是对角线互相平分.故选:B.【点评】此题主要考查了多边形,正确掌握多边形的性质是解题关键.4.(2017春•庆云县期末)下列各曲线表示的y与x的关系中,y不是x的函数的是()A.B.C.D.【考点】E2:函数的概念.【分析】根据函数的意义即可求出答案.函数的意义反映在图象上简单的判断方法是:做垂直x轴的直线在左右平移的过程中与函数图象只会有一个交点.【解答】解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,所以只有选项C不满足条件.故选C.【点评】本题主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x 的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.5.(2008•湘西州)已知,一次函数y=kx+b的图象如图,下列结论正确的是()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<0【考点】F7:一次函数图象与系数的关系.【专题】16 :压轴题.【分析】根据图象在坐标平面内的位置关系确定k,b的取值范围,从而求解.【解答】解:如图所示,一次函数y=kx+b的图象,y随x的增大而增大,所以k>0,直线与y轴负半轴相交,所以b<0.故选B.【点评】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限;k<0时,直线必经过二、四象限;b>0时,直线与y轴正半轴相交;b=0时,直线过原点;b<0时,直线与y轴负半轴相交.6.(2017春•庆云县期末)下列计算正确的是()A.+=B.﹣3=1 C.÷=3 D.3×2=6【考点】79:二次根式的混合运算.【专题】11 :计算题.【分析】根据二次根式的加减法对A、B进行判断;根据二次根式的除法法则对C进行判断;根据二次根式的乘法法则对D进行判断.【解答】解:A、与不能合并,所以A选项错误;B、原式=﹣2,所以B选项错误;C、原式==3,所以C选项正确;D、原式=6×2=12,所以D选项错误.故选C.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.7.(2017春•庆云县期末)一组数据4,5,7,7,8,6的中位数和众数分别是()A.7,7 B.7,6.5 C.6.5,7 D.5.5,7【考点】W5:众数;W4:中位数.【分析】根据众数和中位数的概念求解.【解答】解:这组数据按照从小到大的顺序排列为:据4,5,6,7,7,8,则中位数为=6.5;∵7出现了2次,出现的次数最多,∴众数是7;故选C.【点评】本题考查了众数和中位数的知识,一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数,如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.8.(2017春•庆云县期末)下列命题中是真命题的由()个.①顺次连接任意四边形各边中点得到的四边形是平行四边形;②三内角之比为3:4:5的三角形是直角三角形;③一组对边平行,另一组对边相等的四边形是平行四边形;④对角线互相垂直平分的四边形是正方形;⑤三边a、b、c满足关系式a2﹣b2=c2的三角形是直角三角形.A.0 B.1 C.2 D.3【考点】O1:命题与定理.【分析】根据中点四边形的性质、平行四边形的性质、直角三角形的判定、正方形的判定一一判断即可.【解答】解:①顺次连接任意四边形各边中点得到的四边形是平行四边形,正确.②三内角之比为3:4:5的三角形是直角三角形,错误,是锐角三角形.③一组对边平行,另一组对边相等的四边形是平行四边形,错误,比如等腰梯形满足条件,不是平行四边形.④对角线互相垂直平分的四边形是正方形,错误.对角线互相垂直平分的四边形是菱形.⑤三边a、b、c满足关系式a2﹣b2=c2的三角形是直角三角形.正确.故真命题有①⑤.故选C.【点评】本题考查命题与定理、平行四边形的判定、正方形的判定、直角三角形的判定等知识,解题的关键是熟练掌握基本概念,属于中考基础题.9.(2017春•庆云县期末)如果P(2,m),A(1,1),B(4,0)三点在同一直线上,则m的值为()A.2 B.﹣C.D.1【考点】F8:一次函数图象上点的坐标特征.【分析】先设直线的解析式为y=kx+b(k≠0),再把A(1,1),B(4,0)代入求出k的值,进而得出直线AB的解析式,把点P(2,m)代入求出m的值即可.【解答】解:设直线的解析式为y=kx+b(k≠0),∵A(1,1),B(4,0),∴,解得,∴直线AB的解析式为y=﹣x+,∵P(2,m)在直线上,∴m=(﹣)×2+=.故选C.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.10.(2017春•庆云县期末)如图,平行四边形ABCD中,∠ABC=45°,E、F分别在CD和BC的延长线上,AE∥BD,EF⊥BC,AB=1,则EF的长是()A.1.5 B.C.D.2【考点】L5:平行四边形的性质.【分析】根据平行四边形性质推出AB=CD,AB∥CD,得出平行四边形ABDE,推出DE=DC=AB,求出CE的长,进而根据直角三角形性质求出EF的长.【解答】解:∵四边形ABCD是平行四边形,∴AB∥DC,AB=CD,∵AE∥BD,∴四边形ABDE是平行四边形,∴AB=DE=CD,即D为CE中点,∵EF⊥BC,∴∠EFC=90°,∵AB∥CD,∴∠DCF=∠ABC=45°,∵AB=1,∴CE=2,∴EF=CE=,故选B.【点评】本题考查了平行四边形的性质和判定,平行线性质,勾股定理,解题的关键是求出CE=2AB,此题综合性比较强,是一道比较好的题目.11.(2017春•庆云县期末)如图所示的一块地,已知∠ADC=90°,AD=12m,CD=9m,AB=25m,BC=20m,则这块地的面积为()平方米.A.96 B.204 C.196 D.304【考点】KU:勾股定理的应用.【分析】连接AC,先利用勾股定理求出AC,再根据勾股定理的逆定理判定△ABC是直角三角形,那么△ABC的面积减去△ACD的面积就是所求的面积.【解答】解:如图,连接A C.在△ACD中,∵AD=12m,CD=9m,∠ADC=90°,∴AC=15m,又∵AC2+BC2=152+202=252=AB2,∴△ABC是直角三角形,∴这块地的面积=△ABC的面积﹣△ACD的面积=×15×20﹣×9×12=96(平方米).故选A.【点评】本题考查了勾股定理、勾股定理的逆定理的应用,得到△ABC是直角三角形是解题的关键.同时考查了直角三角形的面积公式.12.(2017春•庆云县期末)如图,在矩形ABCD中,动点P从点A开始沿A→B→C→D的路径匀速运动到点D为止,在这个过程中,下列图象可以大致表示△APD的面积S随点P的运动时间t的变化关系的是()A.B.C.D.【考点】E7:动点问题的函数图象.【分析】设点P的运动速度为v,然后分点P在AB、BC、CD上三种情况根据三角形的面积公式列式表示出S与t的函数关系式,然后选择答案即可.【解答】解:设点P的运动速度为v,点P在AB上时,S=AD•AP=vt,点P在BC上时,S=AD•AB,S是定值,点P在CD上时,S=(AB+BC+CD﹣vt)=(AB+BC+CD)﹣vt,所以,随着时间的增大,S先匀速变大至矩形的面积的一半,然后一段时间保持不变,再匀速变小至0,纵观各选项,只有D选项图象符合.故选D.【点评】本题考查了动点问题的函数图象,根据点P的位置的不同,分三段讨论求解是解题的关键.二、填空题(每题4分,共20分)13.(2017春•庆云县期末)将直线y=2x向下平移2个单位,所得函数的图象过第一、三、四象限.【考点】F9:一次函数图象与几何变换.【分析】根据平移规律“上加、下减”,即可得到平移后的直线解析式,据此可得直线经过的象限.【解答】解:由题意得,平移后的解析式为:y=2x﹣2,∵k>0,b<0,∴直线y=2x﹣2经过第一、三、四象限.故答案为:一、三、四.【点评】本题考查图形的平移变换和函数解析式之间的关系.解决问题的关键是掌握平移规律“左加、右减,上加、下减”.14.(2017春•庆云县期末)计算:﹣(﹣)=.【考点】78:二次根式的加减法.【分析】利用二次根式加减的法则运算即可.【解答】解:原式=3﹣(2)=,故答案为:.【点评】本题主要考查了二次根式的加减法,先化简再合并是解答此题的关键.15.(2017春•庆云县期末)平行四边形ABCD中,∠ABC的平分线将AD边分成的两部分的长分别为2和3,则平行四边形ABCD的周长是14或16.【考点】L5:平行四边形的性质.【分析】根据平行四边形的对边相等且平行,可得AD=BC,AB=CD,AD∥BC,即可得∠AEB=∠CBE,又因为BE是∠ABC的平分线得到AB=AE,∠ABC的平分线分对边AD为2和3两部分,所以AE 可能等于2或等于3,然后即可得出答案.【解答】解:∵四边形ABCD是平行四边形,∴AD=BC,AB=CD,AD∥BC,∴∠AEB=∠CBE,∵BE是∠ABC的平分线,∴∠ABE=∠CBE,∴∠ABE=∠AEB,∴AB=AE,∵∠ABC的平分线分对边AD为2和3两部分,如果AE=2,则四边形周长为14;如果AE=3,则AB=AC=3,AD=BC=5,∴▱ABCD的周长为16;∴▱ABCD的周长为14或16.故答案为:14或16.【点评】此题考查了平行四边形的性质:平行四边形的对边相等且平行.注意当有平行线和角平分线出现时,会有等腰三角形出现.解题时还要注意分类讨论思想的应用.16.(2017春•庆云县期末)如图,在每个小正方形的边长为I的网格中,点A,B,C,D均在格点上,点E在线段BC上,F是线段DB的中点,且BE=DF,则AF的长等于 2.5,AE的长等于.【考点】KQ:勾股定理.【专题】24 :网格型.【分析】根据勾股定理得出DB=5,进而得出AF=2.5,由勾股定理得出AE==,再解答即可.【解答】解:由勾股定理可得:DB==5,∵BE=DF=2.5,∴AF=BD=2.5,由勾股定理可得:AE==.故答案为:2.5,.【点评】此题考查了勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.17.(2017春•庆云县期末)如图设四边形ABCD是边长为1的正方形,以对角线AC为边作第二个正方形ACEF,再以对角线AE为边作第三个正方形AEGH,此时正方形AEGH的边长为2,如此下去,则第n个正方形的边长为()n﹣1.【考点】LE:正方形的性质.【专题】2A:规律型.【分析】根据正方形的对角线等于边长的倍依次求解,再根据指数的变化规律求出第n个正方形的边长.【解答】解:∵正方形ABCD的边长为1,∴第2个正方形ACEF的边长AC=,第3个正方形AEGH的边长AE=AC=()2=2,…,第n个正方形的边长=()n﹣1.故答案为:2;()n﹣1.【点评】本题考查了正方形的性质,图形的变化规律,主要利用了正方形的对角线等于边长的倍,需熟记.三、解答题(共64分)18.(6分)(2017春•庆云县期末)已知x=2﹣,求代数式(7+4)x2+(2+)x+的值.【考点】7A:二次根式的化简求值.【分析】首先计算x2的值,然后代入所求的式子利用平方差公式计算,最后合并同类二次根式即可.【解答】解:x2=(2﹣)2=7﹣4,则原式=(7+4)(7﹣4)+(2+)(2﹣)+=49﹣48+1+=2+.【点评】本题考查了二次根式的化简求值,正确理解完全平方公式和平方差公式的结构是关键.19.(8分)(2017•太原一模)在学校组织的科学素养竞赛中,每班参加比赛的人数相同,成绩分为A,B,C,D四个等级,其中相应等级的得分依次记为90分,80分,70分,60分,学校将八年级一班和二班的成绩整理并绘制成如下的统计图:请你根据以上提供的信息解答下列问题:(1)此次竞赛中二班成绩在70分及其以上的人数有21人;(2)补全下表中空缺的三个统计量:平均数(分)中位数(分)众数(分)一班77.6 80 80二班77.67090(3)请根据上述图表对这次竞赛成绩进行分析,写出两个结论.【考点】W5:众数;VA:统计表;W2:加权平均数;W4:中位数.【分析】(1)根据条形统计图得到参赛人数,然后根据每个级别所占比例求出成绩在70分以上的人数;(2)由上题中求得的总人数分别求出各个成绩段的人数,然后可以求平均数、中位数、众数;(3)根据其成绩,作出合理的分析即可.【解答】解:(1)一班参赛人数为:6+12+2+5=25(人),∵两班参赛人数相同,∴二班成绩在70分以上(包括70分)的人数为25×84%=21人;(2)平均数:90×44%+80×4%+70×36%+60×16%=77.6(分);中位数:70(分);众数:80(分).填表如下:平均数(分)中位数(分)众数(分)一班77.6 80 80二班77.6 70 90(3)①平均数相同的情况下,二班的成绩更好一些.②请一班的同学加强基础知识训练,争取更好的成绩.故答案为:21;80,77.6,70.【点评】本题考查了各种统计图之间的相互转化的知识,在解决本题时关键的地方是根据题目提供的信息得到相应的解决下一题的信息,考查了学生们加工信息的能力.20.(7分)(2017春•庆云县期末)如图,已知AB∥DE,AB=DE,AF=DC,求证:四边形BCEF 是平行四边形.【考点】L6:平行四边形的判定.【专题】14 :证明题.【分析】可连接AE、DB、BE,BE交AD于点O,由线段之间的关系可得OF=OC,OB=OE,可证明其为平行四边形.【解答】证明:连接AE、DB、BE,BE交AD于点O,∵AB DE,∴四边形ABDE是平行四边形,∴OB=OE,OA=OD,∵AF=DC,∴OF=OC,∴四边形BCEF是平行四边形.【点评】本题考查了平行四边形的判定,熟练掌握判定定理是解题的关键.平行四边形的五种判定方法与平行四边形的性质相呼应,每种方法都对应着一种性质,在应用时应注意它们的区别与联系.21.(9分)(2017春•庆云县期末)如图,某港口P位于东西方向的海岸线上“远航”号、“海天”号轮船同时离开港口,各自沿同定方向航行,“远航”号每小时航行16n mile,“海天”号每小时航行12n mile,它们离开港口一个半小时后分别位于点Q,R处,且相距30n mile(1)求PQ,PR的长度;(2)如果知道“远航”号沿东北方向航行,能知道“海天”号沿哪个方向航行吗?【考点】KU:勾股定理的应用.【分析】(1)根据路程=速度×时间分别求得PQ、PR的长;(2)再进一步根据勾股定理的逆定理可以证明三角形PQR是直角三角形,从而求解.【解答】解:(1)PQ的长度16×1.5=24 n mile,PR的长度12×1.5=18 n mile;(2)∵RQ2=PR2+PQ2,∴∠RPQ=90°,∵“远航”号沿东北方向航行,∴“海天”号沿西北方向(或北偏西45°)航行.【点评】此题考查了勾股定理的应用,解题的重点主要是能够根据勾股定理的逆定理发现直角三角形,关键是从实际问题中抽象出直角三角形,难度不大.22.(10分)(2017春•庆云县期末)如图,矩形ABCD的长为8,宽为6,现将矩形沿对角线BD 折叠,C点到达C′处,C′B交AD于E.(1)判断△EBD的形状,并说明理由;(2)求DE的长.【考点】PB:翻折变换(折叠问题).【分析】(1)因为折叠前后∠DBC=∠DBC1,且平行,内错角相等,所以∠DCB=∠DAB,所以根据角之间的等量代换可得∠C1BD=∠EDB,根据等边对等角可知DE=BE;(2)设DE=x,则AE=AD﹣DE=8﹣x,在Rt△ABE中,根据勾股定理得:BE2=AB2+AE2,然后代入各值求解即可.【解答】(1)证明:∵△BDC1是由△BDC沿直线BD折叠得到的,∴∠C1BD=∠CBD,∵四边形ABCD是矩形,∴AD∥BC,∴∠CBD=∠EDB,∴∠C1BD=∠EDB,∴BE=DE,∴△EBD是等腰三角形;(2)解:设DE=x,则AE=AD﹣DE=8﹣x,∵∠A=90°,BE=DE=x,在Rt△ABE中,BE2=AB2+AE2,∴x2=62+(8﹣x)2,∴x=,即DE=.【点评】本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后对应线段、角相等.23.(12分)(2017•西华县二模)“五一”期间,甲、乙两家商店以同样价格销售相同的商品,两家优惠方案分别为:甲店一次性购物中超过200元后的价格部分打七折;乙店一次性购物中超过500元后的价格部分打五折,设商品原价为x元(x≥0),购物应付金额为y元.(1)求在甲商店购物时y与x之间的函数关系;(2)两种购物方式对应的函数图象如图所示,求交点C的坐标;(3)根据图象,请直接写出“五一”期间选择哪家商店购物更优惠.【考点】FH:一次函数的应用.【分析】(1)根据题意分当0≤x≤200时,当x>200时两种情形分别求出y1即可.(2)求出直线BC,列方程组即可解决问题.(3)利用图象即可解决问题.【解答】解:(1)当0≤x≤200时,y1=x,当x>200时,y1=0.7(x﹣200)+200=0.7x+60.(2)直线BC解析式为y=0.5(x﹣500)+500=0.5X+250,由解得,∴点C坐标(950,725).(3)由图象可知,0≤x≤200或x=950时,选择甲、乙两家费用一样.200<x<950时,选择甲费用优惠,x>950时,选择乙费用优惠.【点评】本题考查一次函数的应用,方程组等知识,解题的关键是学会构建一次函数,知道利用方程组求两个函数图象交点坐标,学会利用图象比较函数值大小,属于中考常考题型.24.(12分)(2017春•庆云县期末)(1)如图1,在平面直角坐标系中,四边形OBCD是正方形,且D(0,2),点E是线段OB延长线上一点,M是线段OB上一动点(不包括点O、B),作MN⊥DM,垂足为M,且MN=DM.设OM=a,请你利用基本活动经验直接写出点N的坐标N(2+a,a)(用含a的代数式表示);(2)如果(1)的条件去掉“且MN=DM”,加上“交∠CBE的平分线与点N”,如图2,求证:MD=MN.如何突破这种定势,获得问题的解决,请你写出你的证明过程.(3)如图3,请你继续探索:连接DN交BC于点F,连接FM,下列两个结论:①FM的长度不变;②MN平分∠FMB,请你指出正确的结论,并给出证明.【考点】LO:四边形综合题.【分析】(1)如图1中,作NE⊥OB于E,只要证明△DMO△MNE即可解决问题.(2)如图2中,在OD上取OH=OM,连接HM,只要证明△DHM≌△MBN即可.(3)结论:MN平分∠FMB成立.如图3中,在BO延长线上取OA=CF,过M作MP⊥DN于P,因为∠NMB+∠CDF=45°,所以只要证明∠FMN+∠CDF=45°即可解决问题.【解答】(1)解:如图1中,作NE⊥OB于E,∵∠DMN=90°,∴∠DMO+∠NME=90°,∠NME+∠MNE=90°,∴∠DMO=∠MNE,在△DMO和△MNE中,,∴△DMO△MNE,∴ME=DO=2,NE=OM=a,∴OE=OM+ME=2+a,∴点N坐标(2+a,a),故答案为N(2+a,a).(2)证明:如图2中,在OD上取OH=OM,连接HM,∵OD=OB,OH=OM,∴HD=MB,∠OHM=∠OMH,∴∠DHM=180°﹣45°=135°,∵NB平分∠CBE,∴∠NBE=45°,∴∠NBM=180°﹣45°=135°,∴∠DHM=∠NBM,∵∠DMN=90°,∴∠DMO+∠NMB=90°,∵∠HDM+∠DMO=90°,∴∠HDM=∠NMB,在△DHM和△MBN中,,∴△DHM≌△MBN(ASA),∴DM=MN.(3)结论:MN平分∠FMB成立.证明:如图3中,在BO延长线上取OA=CF,在△AOD和△FCD中,,∴△DOA≌△DCF,∴AD=DF,∠ADO=∠CDF,∵∠MDN=45°,∴∠CDF+∠ODM=45°,∴∠ADO+∠ODM=45°,∴∠ADM=∠FDM,在△DMA和△DMF中,,∴△DMA≌△DMF,∴∠DFM=∠DAM=∠DFC,过M作MP⊥DN于P,则∠FMP=∠CDF,由(2)可知∠NMF+∠FMP=∠PMN=45°,∴∠NMB=∠MDH,∠MDO+∠CDF=45°,∴∠NMB=∠NMF,即MN平分∠FM B.【点评】本题考查四边形综合题、全等三角形的判定和性质、等腰直角三角形的判定和性质等知识,解题的关键是学会添加辅助线,构造全等三角形,记住一些基本图形,可以使得我们在观察新问题的时候很迅速地联想,属于中考压轴题.。
2016——2017学年度第二学期八年数学试题答案一、选择题:(每题2分,共16分)1、D2、B3、A4、D5、C6、B7、C8、A9、C 10、D 二、填空题:(每题2分,共16分) 11、3 12、4 13、96 14、2.3 15、y =-2x-2 16、 17、25 18、①②④ 三、解答题:(本题50分) 19、 原式= (6分)20、解:(1)∵四边形ABCD 是矩形,∴∠ABC=90°又∠ACB=30°, ∴AC=2AB ,设AB=x ,则在Rt △ABC 中, 有 ,解得,∴AB=,AC= (4分)(2)四边形BOCE 是菱形,理由是:∵BE ∥AC ,CE ∥BD ,∴四边形BOCE 是平行四边形, 又∵四边形ABCD 是矩形,AO=CO ,BO=DO ,AC=BD , ∴BO=CO ,∴平行四边形BOCE 是菱形 (8分) 21、解:(1)过点P 作PA ⊥x 轴于点A ,在Rt △PAM 中,PA=12,AM=14-9=5,则PM= (4分)(2)作图正确 (6分) 点N 坐标(23,12) (8分) 22、(1)a=5;m=6;p=8;q=7.5 (每个2分,共8分)(2)答案不唯一,正确即可;例如,八年级平均分高;中位数高; 方差小,成绩比较稳定等等 (10分)23、(1) (2分) (4分) (2)当时,有解得 (6分)当时,有 (8分)∵x 为正整数,∴当贡献奖奖状的个数小于等于25个时,选B 公司比较合算;当贡献奖奖状的个数多于25个时,选A 公司比较合算 (10分)四、解答题:(本题18分)24、解:(1) (1分)(2)①填表正确, (3分) 图像正确 (5分)② (1,2);1;2;减小;增大 (8分)(错一空扣一分)③ 设长方形的长为x ,周长为y ,由长方形面积为1,则它的宽为, 根据题意,,由②得,当x=1时,周长最小,最小值为4, ∴长方形的长和宽都为1时,周长为最小 (10分)3323210-222)2(3x x =+3=x 3321351222=+986.13504)102(8.41+=+++=x x x y 543.155.4)102(4.52+=++=x x x y 21y y >543.15986.13+>+x x 171525<x 21y y <171525>x 0≠x x 1)1(2xx y +=25、解:(1)证出 (3分) ∴∠EAF=45° (4分)(2)写出结论 (5分) 证出 (7分) (9分)(3)画出图形 (10分) 直接代入(2)式求值:MN=9 (12分)ADF AGF AGE ABE ∆≅∆∆≅∆,AHN AMN ∆≡∆222MN BM DN =+。
德州市八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分)若x,y为实数,且,则的值为A . 1B .C . 2D .2. (2分) (2015八上·龙华期末) 某人骑自行车从甲地到乙地,到达乙地他马上返回甲地.如图反映的是他离甲地的距离s(km)及他骑车的时间t(h)之间的关系,则下列说法正确的是()A . 甲、乙两地之间的距离为60kmB . 他从甲地到乙地的平均速度为30km/hC . 当他离甲地15km时,他骑车的时间为1hD . 若他从乙地返回甲地的平均速度为10km/h,则点A表示的数字为53. (2分) (2019八下·平潭期末) 把一元二次方程x2﹣6x+1=0配方成(x+m)2=n的形式,正确的是()A . (x+3)2=10B . (x﹣3)2=10C . (x+3)2=8D . (x﹣3)2=84. (2分) (2018八上·岳池期末) 多边形的每个内角都等于140°,从此多边形的一个顶点出发可作的对角线共有()A . 6条B . 7条C . 8条D . 9条5. (2分)不能判定四边形ABCD为平行四边形的条件是()A . AB=CD,AD=BCB . AB=CD,AB∥CDC . AB=CD,AD∥BCD . AD=BC,AD∥BC6. (2分)(2019·昆明模拟) 如图,在矩形ABCD中,AD=2,tan∠ABD=2,点E,F在AD,BC上,则菱形AECF的面积为()A . 1.25B . 5C .D . 27. (2分)在方差的计算公式s2=[(x1-20)2+(x2-20)2+…+(x10-20)2]中,数字10和20分别表示的意义可以是()A . 数据的个数和平均数B . 平均数和数据的个数C . 数据的个数和方差D . 数据组的方差和平均数8. (2分)(2017·广州模拟) 如图,在平行四边形ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,AB=7,EF=3,则BC长为()A . 9B . 10C . 11D . 129. (2分)如图,在中,的平分线交于点交的延长线于点于点,若,则的周长为()A .B .C .D .10. (2分) (2020八下·江岸期中) 如图,中,,点在边上,且满足,为线段的中点,若,,则()A .B .C .D . 6二、填空题 (共6题;共6分)11. (1分) (2019八下·北京期末) 有两名学员小林和小明练习飞镖,第一轮10枚飞镖掷完后两人命中的环数如图所示,已知新手的成绩不太稳定,那么根据图中的信息,估计小林和小明两人中新手是________;这名选手的10次成绩的极差是________.12. (1分) (2017九上·东莞开学考) 如图,在周长为20cm的▱ABCD中,AB≠AD,AC,BD相交于点O,OE⊥BD 交AD于E,则△ABE的周长为________cm.13. (1分) (2018九上·汨罗期中) 已知关于x的一元一次方程x2+3x+1-m=0 ,请你自选一个m的值,使方程没有实数根m=________.14. (1分)(2019·合肥模拟) 如图,直线y=x与双曲线y= 交于点A ,将直线y=-x向右平移使之经过点A ,且与x轴交于点B ,则点B的坐标为________.15. (1分)(2020八上·石景山期末) 对于任意不相等的两个实数a、b,定义运算如下:,如,那么812的运算结果为________.16. (1分) (2020八下·来宾期末) 如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点(点P与点B,C不重合),PE⊥AB于E,PF⊥AC于F,则EF的最小值为________。
2016-2017学年八年级(下)期末模拟数学试卷
一、选择题(共8小题,每小题3分,满分24分)
1.下列图形中是中心对称图形但不是轴对称图形的是()
A.B.C.D.
2.五边形的内角和为()
A.360°B.540°C.720°D.900°
3.如图,平行四边形ABCD中,E,F是对角线BD上的两点,如果添加一个条件使△ABE≌△CDF,则添加的条件是()
A.AE=CF B.BE=FD C.BF=DE D.∠1=∠2
4.如图,将△ABC沿着水平方向向右平移后得到△DEF,若BC=3,CE=2,则平移的距离为()
A.1 B.2 C.3 D.4
5.设“○”,“□”,“△”分别表示三种不同的物体,用天平比较它们质量的大小,两次情况如图所示,那么每个“○”,“□”,“△”这样的物体,按质量由小到大的顺序排列为()
A.○□△B.○△□C.□○△D.△□○
6.从图1到图2的拼图过程中,所反映的关系式是()
A.x2+5x+6=(x+2)(x+3)B.x2+5x﹣6=(x+6)(x﹣1)
C.x2﹣5x+6=(x﹣2)(x﹣3)D.(x+2)(x+3)=x2+5x+6
7.如图,平行四边形ABCD的对角线交于点O,且AB≠AD,过O作OE⊥BD交BD于点E.若△CDE 的周长为10,则平行四边形ABCD的周长为()
A.10 B.16 C.18 D.20
8.如图,已知函数y=x+的图象与x轴交于点A,与y轴交于点B,点P是x轴上一点,若△PAB 为等腰三角形,则点P的坐标不可能是()
A.(﹣3﹣2,0) B.(3,0) C.(﹣1,0)D.(2,0)
二、填空题(共8小题,每小题3分,满分24分)
9.当x时,分式值为0.
10.如图,在△ABC中,∠C=90°,AD是△ABC的角平分线,DE⊥AB于点E,AD=BD.则∠B等于.
11.某公司准备用10000元购进一批空调和风扇.已知空调每台2500元,风扇每台300元,该公司已购进空调3台,那么该公司最多还可以购进风扇______台.
12.关于x的分式方程=有增根,则m的值是.
13.如图,函数y=2x和y=ax+4的图象和交于点A(m,3),则不等式2x≥ax+4的解集为.
14.如图,在△ABC中,AC=BC=2,∠C=90°,AD是△ABC的角平分线,DE⊥AB,垂足为E,AD的垂直平分线交AB于点E,则△DEF的面积为______.
15.如图,△ABC中,AB=AC,∠BAC=56°,∠BAC的平分线与AB的垂直平分线交于点O,将∠C沿EF(E在BC上,F在AC上)折叠,点C与点O恰好重合,则∠OEC为度.
16.如图①是一块瓷砖的图案,用这种瓷砖来铺设地面,如果铺成一个2×2的正方形图案(如图②),其中完整的圆共有5个,如果铺成一个3×3的正方形图案(如图③),其中完整的圆共有13个,如果铺成一个4×4的正方形图案(如图④),其中完整的圆共有25个.按照这个规律,若这样铺成一个n×n 的正方形图案,则其中完整的圆共有个.
三、作图题:用圆规、直尺作图,不写作法,但要保留作图痕迹。
17.(4分)已知:线段a、c.
求作:直角△ABC,使BC=a,AB=c,∠A=∠β=90°.
四、解答题(共7小题,满分68分)
18.(14分)(1)分解因式:﹣3a3+12a2b﹣12ab2;
(2)分解因式:9(m+n)2﹣(m﹣n)2;
(3)化简:(﹣1)+;
(4)化简:﹣x+1.
19.先化简,再求值:(1﹣)÷,其中x=2+.
20.(8分如图,平面直角坐标系中,已知A(0,2),B(2,2),C(1,1).
(1)将△ABC先向左平移2个单位长度,再向下平移1个单位长度,得到△A1B1C1,请画出△A1B1C1,点C1的坐标为______;
(2)将△ABC绕点O按顺时针方向旋转180°后得到△A2B2C2,点C2的坐标为______;
(3)若将△ABC绕点P按顺时针方向旋转90°后得到△A3B3C3,则点P的坐标是______.
21.(8分)如图,在▱ABCD中,连接对角线BD,BE平分∠ABD交AD于点E,DF平分∠BDC交BC 于点F.
(1)求证:△AEB≌△CFD;
(2)若BD=BA,试判断四边形DEBF的形状,并加以证明.
22.(8分)山地自行车越来越受到中学生的喜爱,各种品牌相继投放市场,某车行经营的A型车去年销售总额为5万元,今年每辆销售价比去年降低400元,若卖出的数量相同,销售总额将比去年减少20%.(1)今年A型车每辆售价多少元?(用列方程的方法解答)
(2)该车行计划新进一批A型车和新款B型车共60辆,且B型车的进货数量不超过A型车数量的两倍,应如何进货才能使这批车获利最多?
A,B两种型号车的进货和销售价格如下表:
C,过点C的直线y=﹣x+b与x轴交于点B.
(1)b的值为______;
(2)若点D的坐标为(0,﹣1),将△BCD沿直线BC对折后,点D落到第一象限的点E处,求证:四边形ABEC是平行四边形;
(3)在直线BC上是否存在点P,使得以P、A、D、B为顶点的四边形是平行四边形?如果存在,请求出点P的坐标;如果不存在,请说明理由.
2015-2016学年山东省青岛市黄岛区八年级(下)期末数学试卷
参考答案与试题解析
一、选择题(共8小题,每小题3分,满分24分)
1.D
2.A
3.A
4.A
5.D
6.B
7.D
8.C
二、填空题(共8小题,每小题3分,满分24分)
9.:=﹣1
10.:30°.
11.:5.
12.:﹣3
13.x≥1.5
14.6cm.
15.:112.
16.:n2+(n﹣1)2.
三、作图题:用圆规、直尺作图,不写作法,但要保留作图痕迹。
17.
解:如图,△ABC为所作.
四、解答题(共7小题,满分68分)
18.
解:(1)原式=﹣3a(a2﹣4ab+4b2)=﹣3a(a﹣2b)2;
(2)原式=[3(m+n)+(m﹣n)][3(m+n)﹣(m﹣n)]=(4m+2n)(2m+4n)=4(2m+n)(m+2n);(3)原式=+===﹣;
(4)原式=﹣=﹣=.
19.
20.
解:(1)设乙工程队每天能完成绿化的面积是x(m2),根据题意得
﹣=4
解得:x=50
经检验:x=50是原方程的解
所以甲工程队每天能完成绿化的面积是50×2=100(m2)
答:甲、乙两工程队每天能完成绿化的面积分别是100m2、50m2.
21.
(1)证明:∵四边形ABCD是平行四边形,
∴AD∥BC,CD∥BA,∠A=∠C,AB=CD,
∴∠ABD=∠BDC(两直线平行,内错角相等).
又∵BE平分∠ABD,DF平分∠BDC,
∴∠ABE=∠DBE=∠ABD,∠CDF=∠BDF=∠BDC,
∴∠DBE=∠FDB=∠DBE=∠BDF(等量代换),
在△AEB和△CFD中,,
∴△AEB≌△CFD(ASA);
(2)解:四边形DEBF是矩形;理由如下:
由(1)知:∠DBE=∠BDF,
∴BE∥DF,
∵DE∥BF,
∴四边形EBFD是平行四边形.
∵BD=BA,BE是∠ABD的平分线,
∴BE⊥AD,
∴∠DEB=90°,
∴四边形DEBF是矩形(有一内角为直角的平行四边形是矩形).
22.
解:(1)设今年A型车每辆售价x元,则去年售价每辆为(x+400)元,由题意,得
,
解得:x=1600.
经检验,x=1600是原方程的根.
答:今年A型车每辆售价1600元;
(2)设今年新进A型车a辆,则B型车(60﹣a)辆,获利y元,由题意,得
y=(1600﹣1100)a+(2000﹣1400)(60﹣a),
y=﹣100a+36000.
∵B型车的进货数量不超过A型车数量的两倍,
∴60﹣a≤2a,
∴a≥20.
∵y=﹣100a+36000.
∴k=﹣100<0,
∴y随a的增大而减小.
=34000元.
∴a=20时,y
最大
∴B型车的数量为:60﹣20=40辆.
∴当新进A型车20辆,B型车40辆时,这批车获利最大.
23.
解:(1)如图①中,四边形PFQC是平行四边形.
理由:∵AB=AC,
∴∠B=∠ACB,
∵PF∥AQ,
∴∠PFB=∠ACB=∠B,∠DPF=∠DQC,
∴PB=PF=CQ,
在△DPF和△DQC中,
,
∴△DPF≌△DQC,
∴DP=DQ,DF=DC,
∴四边形PFQC是平行四边形.
(2)如图②中,过点P作PF∥AC交BC于F,
∵△PBF为等腰三角形,
∴PB=PF,
∵PE⊥BF
∴BE=EF,
由(1)可知FD=DC,
∴ED=EF+FD=BF+FC=(BF+FC)=BC=3,∴ED为定值,。