四边形知识点总结大全(学生用)
- 格式:doc
- 大小:113.76 KB
- 文档页数:7
平行四边形、矩形、菱形、正方形知识点总结1.平行四边形、矩形、菱形、正方形的性质:平行四边形矩形菱形正方形图形性质边对边平行且相等对边平行且相等对边平行,四边相等对边平行,四边相等角对角相等,邻角互补四个角都是直角对角相等四个角都是直角对角线互相平分互相平分且相等互相垂直平分,且每条对角线平分一组对角互相垂直平分且相等,每条对角线平分一组对角对称性只是中心对称图形既是轴对称图形,又是中心对称图形面积ah=S ab=S2121S dd=(注:d1,d2为菱形两条对角线的长度。
)2S a=2. 判定方法小结:(1) 平行四边形:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形。
(2)矩形:有一个角是直角的平行四边形叫做矩形。
①有一个角是直角的平行四边形是矩形;②对角线相等的平行四边形是矩形;③有三个角是直角的四边形是矩形;④对角线相等且互相平分的四边形是矩形。
(3) 菱形:有一组邻边相等的平行四边形叫做菱形.①有一组邻边相等的平行四边形是菱形;②对角线互相垂直的平行四边形是菱形;③四边都相等的四边形是菱形;④对角线互相垂直平分的四边形是菱形(4) 正方形:有一组邻边相等且有一个角是直角的平行四边形叫做正方形。
①有一组邻边相等且有一个角是直角的平行四边形是正方形;②对角线互相垂直且相等的平行四边形是正方形;③有一组邻边相等的矩形是正方形;④对角线互相垂直的矩形是正方形;⑤有一个角是直角的菱形是正方形;⑥对角线相等的菱形是正方形;⑦对角线互相垂直平分且相等的四边形是正方形。
平行四边形、矩形、菱形、正方形知识点总结一.正确理解定义(1)定义:两组对边分别平行的四边形是平行四边形.平行四边形的定义揭示了图形的最本质的属性,它既是平行四边形的一条性质,又是一个判定方法.(2)表示方法:用“ABCD记作,读作“平行四边形ABCD”.2.熟练掌握性质平行四边形的有关性质和判定都是从边、角、对角线三个方面的特征进行简述的.(1)角:平行四边形的邻角互补,对角相等;(2)边:平行四边形两组对边分别平行且相等;(3)对角线:平行四边形的对角线互相平分;(4)面积:①;②平行四边形的对角线将四边形分成4个面积相等的三角形.底高ah=⨯S=3.平行四边形的判别方法①定义:两组对边分别平行的四边形是平行四边形②方法1:两组对角分别相等的四边形是平行四边形③方法2:两组对边分别相等的四边形是平行四边形④方法3:对角线互相平分的四边形是平行四边形⑤方法4:一组平行且相等的四边形是平行四边形二、.几种特殊四边形的有关概念(1)矩形:有一个角是直角的平行四边形是矩形,它是研究矩形的基础,它既可以看作是矩形的性质,也可以看作是矩形的判定方法,对于这个定义,要注意把握:①平行四边形;②一个角是直角,两者缺一不可.(2)菱形:有一组邻边相等的平行四边形是菱形,它是研究菱形的基础,它既可以看作是菱形的性质,也可以看作是菱形的判定方法,对于这个定义,要注意把握:①平行四边形;②一组邻边相等,两者缺一不可.(3)正方形:有一组邻边相等且有一个直角的平行四边形叫做正方形,它是最特殊的平行四边形,它既是平行四边形,还是菱形,也是矩形,它兼有这三者的特征,是一种非常完美的图形.(4)梯形:一组对边平行而另一组对边不平行的四边形叫做梯形,对于这个定义,要注意把握:①一组对边平行;②一组对边不平行,同时要注意和平行四边形定义的区别,还要注意腰、底、高等概念以及梯形的分类等问题.(5)等腰梯形:是一种特殊的梯形,它是两腰相等的梯形,特殊梯形还有直角梯形.2.几种特殊四边形的有关性质(1)矩形:①边:对边平行且相等;②角:对角相等、邻角互补;③对角线:对角线互相平分且相等;④对称性:轴对称图形(对边中点连线所在直线,2条).(2)菱形:①边:四条边都相等;②角:对角相等、邻角互补;③对角线:对角线互相垂直平分且每条对角线平分每组对角;④对称性:轴对称图形(对角线所在直线,2条).(3)正方形:①边:四条边都相等;②角:四角相等;③对角线:对角线互相垂直平分且相等,对角线与边的夹角为450;④对称性:轴对称图形(4条).(4)等腰梯形:①边:上下底平行但不相等,两腰相等;②角:同一底边上的两个角相等;对角互补③对角线:对角线相等;④对称性:轴对称图形(上下底中点所在直线).3.几种特殊四边形的判定方法(1)矩形的判定:满足下列条件之一的四边形是矩形①有一个角是直角的平行四边形;②对角线相等的平行四边形;③四个角都相等(2)菱形的判定:满足下列条件之一的四边形是矩形①有一组邻边相等的平行四边形;②对角线互相垂直的平行四边形;③四条边都相等.(3)正方形的判定:满足下列条件之一的四边形是正方形.①有一组邻边相等且有一个直角的平行四边形②有一组邻边相等的矩形;③对角线互相垂直的矩形.④有一个角是直角的菱形⑤对角线相等的菱形;(4)等腰梯形的判定:满足下列条件之一的梯形是等腰梯形①同一底两个底角相等的梯形;②对角线相等的梯形.4.几种特殊四边形的常用说理方法与解题思路分析(1)识别矩形的常用方法①先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的任意一个角为直角.②先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的对角线相等.③说明四边形ABCD的三个角是直角.(2)识别菱形的常用方法①先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的任一组邻边相等.②先说明四边形ABCD为平行四边形,再说明对角线互相垂直.③说明四边形ABCD的四条相等.(3)识别正方形的常用方法①先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的一个角为直角且有一组邻边相等.②先说明四边形ABCD为平行四边形,再说明对角线互相垂直且相等.③先说明四边形ABCD为矩形,再说明矩形的一组邻边相等.④先说明四边形ABCD为菱形,再说明菱形ABCD的一个角为直角.(4)识别等腰梯形的常用方法①先说明四边形ABCD为梯形,再说明两腰相等.②先说明四边形ABCD为梯形,再说明同一底上的两个内角相等.③先说明四边形ABCD为梯形,再说明对角线相等.5.几种特殊四边形的面积问题①设矩形ABCD的两邻边长分别为a,b,则S矩形=ab.②设菱形ABCD的一边长为a,高为h,则S菱形=ah;若菱形的两对角线的长分别为a,b,则S菱形=.12ab③设正方形ABCD的一边长为a,则S正方形=;若正方形的对角线的长为a,则S正方形=.2a212a④设梯形ABCD的上底为a,下底为b,高为h,则S梯形=.1()2a b h平行四边形矩形菱形正方形图形性质1.对边且;2.对角;邻角;3.对角线;1.对边且;2.对角且四个角都是;3.对角线;1.对边且四条边都;2.对角;3.对角线且每条对角线;1.对边且四条边都;2.对角且四个角都是;3.对角线且每条对角线;面积。
平行四边形的知识点整理(一)引言概述:平行四边形是一种特殊的四边形,具有一些独特的性质和特点。
了解这些知识点有助于我们在几何学中更好地理解和运用。
本文将对平行四边形的知识进行整理和总结,以帮助读者更好地掌握相关内容。
正文:一、平行四边形的定义和特点:1. 平行四边形的定义2. 平行四边形的性质和特点3. 平行四边形的内角和外角性质4. 平行四边形的对角线性质5. 平行四边形的边长和内角关系二、平行四边形的分类:1. 平行四边形的分类方法2. 等边平行四边形的性质和特点3. 矩形和正方形的性质和特点4. 菱形的性质和特点5. 平行四边形的其他特殊分类三、平行四边形的面积和周长计算:1. 平行四边形的面积计算方法2. 平行四边形的周长计算方法3. 面积和周长的相关性质和公式4. 平行四边形的面积和周长实例计算5. 平行四边形的面积和周长在实际问题中的应用四、平行四边形的相关定理和推论:1. 平行四边形的对称性定理2. 平行四边形的角平分线与边平分线定理3. 对角线互相平分的平行四边形定理4. 平行四边形的中位线定理5. 平行四边形的相关推论和应用五、平行四边形的解题方法和技巧:1. 解直角平行四边形的问题的方法和步骤2. 解面积和周长问题的技巧和注意事项3. 解平行四边形的性质问题的思路和方法4. 运用平行四边形求证和构造题的解题技巧5. 平行四边形相关问题的典型例题和解答总结:平行四边形是几何学中的重要内容,了解平行四边形的定义、性质和特点,掌握其分类、面积和周长计算方法,熟悉其相关定理和推论,并具备解题技巧和应用能力,对我们的几何学学习和问题解决能力都有很大的帮助。
通过学习本文所总结的平行四边形的知识点,相信读者会在几何学中取得更好的成绩,对未来的学习和发展起到积极的促进作用。
平行四边形知识点总结及分类练习题一、知识点总结平行四边形是几何学中一个重要的概念,其性质和判定方法对于理解几何学中的其他问题有着至关重要的作用。
以下是对平行四边形知识点的总结:1、定义:平行四边形是一个四边形,其中相对的两边平行且相等。
可以用符号“▭”表示。
2、性质:1)对边平行:平行四边形的对边平行且相等。
2)对角相等:平行四边形的对角相等,邻角互补。
3)平行四边形的面积等于其底乘高。
3.判定方法:1)两组对边分别平行的四边形是平行四边形。
2)两组对边分别相等的四边形是平行四边形。
3)一组对边平行且相等的四边形是平行四边形。
4)对角线互相平分的四边形是平行四边形。
5)邻角互补的四边形是平行四边形。
4.特殊平行四边形:矩形、菱形和正方形都是特殊的平行四边形,它们分别具有以下性质:1)矩形:对角线相等,四个角都是直角。
2)菱形:对角线垂直且平分,四边相等。
3)正方形:对角线垂直且相等,四个角都是直角。
二、分类练习题1、选择题:1)下列哪个条件可以判定一个四边形为平行四边形?A.一组对边相等,一组对角相等B.一组对边平行,另一组对边相等C.一组对角相等,另一组对边平行D.一组对角相等,一组邻角互补答案:(C)一组对角相等,另一组对边平行。
因为一组对角相等,另一组对边平行的四边形可以由一组对边平行,另一组对边相等的四边形经过平移得到,因此选项C正确。
其他选项都不满足平行四边形的定义或判定方法。
2)下列哪个条件可以判定一个四边形为矩形?A.三个内角都是直角B.对角线相等且互相平分C.对角线互相垂直且平分D.一组对边平行且相等,一组邻角互补答案:(B)对角线相等且互相平分的四边形是矩形。
因为矩形的定义是对角线相等的平行四边形,而对角线相等且互相平分的四边形是平行四边形,因此选项B正确。
其他选项分别是矩形的定义或判定方法的一部分,但不足以单独判定一个四边形为矩形。
特殊平行四边形知识点总结及题型一、平行四边形的性质:1、平行四边形的对边平行且相等;2、平行四边形的对角相等;3、平行四边形的对角线互相平分。
初中数学四边形知识点归纳四边形(四边形具有不稳定性)1定理四边形的内角和等于360°2四边形的外角和等于360°3多边形内角和定理 n边形的内角的和等于(n-2)×180°4推论任意多边的外角和等于360°5平行四边形性质定理1 平行四边形的对角相等6平行四边形性质定理2 平行四边形的对边相等7推论夹在两条平行线间的平行线段相等8平行四边形性质定理3 平行四边形的对角线相互平分9平行四边形判定定理1 两组对角分别相等的四边形是平行四边形10平行四边形判定定理2 两组对边分别相等的四边形是平行四边形11平行四边形判定定理3 对角线相互平分的四边形是平行四边形12平行四边形判定定理4 一组对边平行相等的四边形是平行四边形13矩形性质定理1 矩形的四个角都是直角14矩形性质定理2 矩形的对角线相等15矩形判定定理1 有三个角是直角的四边形是矩形16矩形判定定理2 对角线相等的平行四边形是矩形17菱形性质定理1 菱形的四条边都相等18菱形性质定理2 菱形的对角线相互垂直,并且每一条对角线平分一组对角19菱形面积=对角线乘积的一半,即s=(a×b)÷220菱形判定定理1 四边都相等的四边形是菱形216菱形判定定理2 对角线相互垂直的平行四边形是菱形22正方形性质定理1 正方形的四个角都是直角,四条边都相等23正方形性质定理2正方形的两条对角线相等,并且相互垂直平分,每条对角线平分一组对角24定理1 关于中心对称的两个图形是全等的25定理2 关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分26逆定理假如两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称27等腰梯形性质定理等腰梯形在同一底上的两个角相等28等腰梯形的两条对角线相等29等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形30对角线相等的梯形是等腰梯形31平行线等分线段定理假如一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等32 推论1 经过梯形一腰的中点与底平行的直线,必平分另一腰33推论2 经过三角形一边的中点与另一边平行的直线,必平分第三边34 三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半36 梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半 l=(a+b)÷2 s=l×h37 (1)比例的基本性质假如a:b=c:d,那么ad=bc 假如ad=bc,那么a:b=c:d38 (2)合比性质假如a/b=c/d,那么(a±b)/b=(c±d)/d39 (3)等比性质假如a/b=c/d=…=m/n(b+d+…+n≠0),那么 (a+c+…+m)/(b+d+…+n)=a/b40平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例41 推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例42 定理假如一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边43平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例44 定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相像45 相像三角形判定定理1 两角对应相等,两三角形相像(asa)46 直角三角形被斜边上的高分成的两个直角三角形和原三角形相像47 判定定理2 两边对应成比例且夹角相等,两三角形相像(sas)48 判定定理3 三边对应成比例,两三角形相像(sss)49 定理假如一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相像50 性质定理1 相像三角形对应高的比,对应中线的比与对应角平分线的比都等于相像比51 性质定理2 相像三角形周长的比等于相像比52 性质定理3 相像三角形面积的比等于相像比的平方53任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值54任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值大家看过中学数学知识点归纳之四边形,大家要熟记多边形内角和定理为n边形的内角的和等于(n-2)×180°。
平行四边形的性质与运算知识点总结平行四边形是几何形状中的一种特殊形式,具有一些独特的性质和运算特点。
本文将对平行四边形的性质和相关的运算知识点进行总结。
一、平行四边形的定义和性质1. 定义:平行四边形是具有两对对边分别平行的四边形。
2. 性质:a) 对边平行性质:平行四边形的对边是平行的,即如果一对对边平行,则另一对对边也必定平行。
b) 对角线性质:平行四边形的对角线相交于一点,且对角线互相平分。
c) 对边长度性质:平行四边形的对边长度相等。
d) 内角和性质:平行四边形的内角和为180度。
e) 对顶角性质:平行四边形的对顶角相等,即相邻的内角互补。
二、平行四边形的运算知识点1. 周长计算:平行四边形的周长等于各边长度的和。
如果已知平行四边形的一边长度和对角线长度,可以通过相应的运算公式计算周长。
2. 面积计算:平行四边形的面积可以通过底边长度和高的乘积来计算。
即面积 = 底边长度 ×高,其中高是垂直于底边且与底边的长度相等。
3. 直角条件:当平行四边形的对边相等时,可以推断出该平行四边形是矩形,即具有四个直角。
4. 平方差公式:平行四边形的平方差公式表示了平行四边形各边长度平方的差等于对角线长度平方的差。
如若平行四边形的一对对边平行,其对角线长度分别为d1和d2,对边长度分别为a和b,则有 a^2 -b^2 = d1^2 - d2^2。
5. 平行四边形的判定:判定一个四边形是否是平行四边形的一种方法是通过判定其对边是否平行。
若对边平行,则可以得出该四边形为平行四边形。
综上所述,平行四边形具有对边平行、对角线互相平分、对边长度相等、内角和为180度、对顶角相等等性质。
在运算方面,可以通过周长计算、面积计算、直角条件、平方差公式等方式进行运算和判定。
平行四边形是几何学中常见的形状,对于解决几何问题具有重要的意义。
此外,学习平行四边形的性质和运算,还可以扩展到其他几何形状的学习中,提高几何推理和问题解决的能力。
第十八章 平行四边形 知识点总结第十八章 平行四边形知识点总结1.四边形的内角和与外角和定理:( 1)四边形的内角和等于 360°;( 2)四边形的外角和等于 360° .AD2.多边形的内角和与外角和定理:( 1) n 边形的内角和等于 (n-2)180 °;( 2)任意多边形的外角和等于360° .BCA 4D312 BC3.平行四边形的性质:(1)两组对边分别平行;DC(2)两组对边分别相等;因为 ABCD 是平行四边形 (3)两组对角分别相等;(4)对角线互相均分; (5)邻角互补 .4. 平行四边形的判断:(1)两组对边分别平行OABD C( )两组对边分别相等2O( )两组对角分别相等 ABCD 是平行四边形 .3( )一组对边平行且相等AB4( )对角线互相均分55. 矩形的性质:DC(1)拥有平行四边形的所 有通性 ;O因为 ABCD 是矩形 (2)四个角都是直角 ; (3)对角线相等 .A BDCA B6. 矩形的判断:(1)平行四边形一个直角DC(2)三个角都是直角四边形 ABCD 是矩形 .O(3)对角线相等的平行四 边形A BDCA B7.菱形的性质:D因为 ABCD是菱形(1)拥有平行四边形的所有通性;OC (2)四个边都相等;A(3)对角线垂直且均分对角 .B8.菱形的判断:D (1)平行四边形一组邻边等(2)四个边都相等四边形四边形ABCD是菱形 .AO C (3)对角线垂直的平行四边形9.正方形的性质:B因为 ABCD是正方形(1)拥有平行四边形的所有通性;(2)四个边都相等,四个角都是直角;(3)对角线相等垂直且平分对角 .D C D COA B( 1)AB( 2)( 3)10.正方形的判断:(1)平行四边形一组邻边等一个直角(2)菱形一个直角四边形ABCD是正方形.(3)矩形一组邻边等D(3)C∵ABCD是矩形又∵ AD=AB∴四边形ABCD是正方形AB11.三角形中位线定理:三角形的中位线平行第三边,并且等于它的一半.AD E B C几种特别四边形的有关性质(1)矩形:①边:对边平行且相等;②角:四个角都是直角;③对角线:对角线互相均分且相等;④对称性:轴对称图形(对边中点连线所在直线, 2 条).(2)菱形:①边:对边平行,且四条边都相等;②角:对角相等、邻角互补;③对角线:对角线互相垂直均分且每条对角线均分每组对角;④对称性:轴对称图形(对角线所在直线, 2 条).(3)正方形:①边:四条边都相等;②角:四角相等;③对角线:对角线互相垂直均分且相等,对角线与边的夹角为45 ;几种特别四边形的判断方法(1)矩形的判断:满足以下条件之一的四边形是矩形①有一个角是直角的平行四边形;②对角线相等的平行四边形;③四个角都相等(2)菱形的判断:满足以下条件之一的四边形是矩形①有一组邻边相等的平行四边形;②对角线互相垂直的平行四边形;③四条边都相等.(3)正方形的判断:满足以下条件之一的四边形是正方形.① 有一组邻边相等且有一个直角的平行四边形② 有一组邻边相等的矩形;③ 对角线互相垂直的矩形.④ 有一个角是直角的菱形⑤ 对角线相等的菱形;几种特别四边形的面积问题① 设矩形ABCD的两邻边长分别为a,b ,则S 矩形 =ab .② 设菱形ABCD的一边长为a ,高为h ,则S 菱形 =ah ;若菱形的两对角线的长分别为a,b ,则S 菱形 =1 ab .2③ 设正方形ABCD的一边长为a ,则S 正方形= a 2 ;若正方形的对角线的长为a ,则S 正方形= 1 a 2 .2④ 设梯形ABCD的上底为a ,下底为b ,高为 h ,则S梯形 = 1(a b)h .2。
四边形
一 基本概念:四边形,四边形的内角,四边形的外角,多边形,平行线间的距离,平行四
边形,矩形,菱形,正方形,中心对称,中心对称图形,梯形,等腰梯形,直角梯形,三角形中位线,梯形中位线. 二 定理:中心对称的有关定理
※1.关于中心对称的两个图形是全等形.
※2.关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分.
※3.如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于
这一点对称. 三 公式:
1.S 菱形 =2
1
ab=ch.(a 、b 为菱形的对角线 ,c 为菱形的边长 ,h 为c 边上的高) 2.S 平行四边形 =ah. a 为平行四边形的边,h 为a 上的高) 3.S 梯形 =2
1
(a+b )h=Lh.(a 、b 为梯形的底,h 为梯形的高,L 为梯形的中位线) 四 常识:
※1.若n 是多边形的边数,则对角线条数公式是:2
)3n (n -. 2.规则图形折叠一般“出一对全等,一对相似”. 3.如图:平行四边形、矩形、菱形、正方形的从属关系.
4.常见图形中,仅是轴对称图形的有:角、等腰三角形、等边三角形、正奇边形、等腰梯形 …… ;仅是中心对称图形的有:平行四边形 …… ;是双对称图形的有:线段、矩形、菱形、正方形、正偶边形、圆 …… .注意:线段有两条对称轴.
平行四边形矩形
菱形正
方
形
※5.梯形中常见的辅助线:
※。
第五单元总结智慧小锦囊四边形的认识认识长方形 长方形有4条边和4个角,对边相等,4个角都是直角 认识正方形正方形的4条边相等,4个角都是直角认识平行四边形 1.平行四边形两组对边分别相等 2.平行四边形是四边形的一种,具有不稳定性易错集锦易错点1:四边形认识错误。
误区点拨:(1)四边形的认识,有时对于边是曲线或凹进去的多边形认识错误。
(2)由四条线段围成的封闭图形就是四边形。
边一定是直的,围成的图形是封闭的,只要符合这两点,即使图形有的边凹进去,也是四边形。
易错点2:在长方形中剪去一个最大的正方形,正方形的边长的确定。
误区点拨:(1)在长方形中剪去一个最大的正方形,把长方形的长当成正方形的边长。
(2)在长方形中剪去一个最大的正方形,要保证最大,正方形的边长必须最大,同时又要满足四条边都相等,所以要用长方形的宽作为正方形的边长。
第五单元四边形的认识教材分析:本单元内容是在学生初步认识了长方形和正方形和三角形的基础上学习的。
教材选择了许多与学生生活息息相关的题材作为素材,注重学生已有的生活经验,将视野从课堂拓宽到生活的空间,引导他们去观察生活,从现实世界中发现有关空间与图形的问题。
根据学生的年龄特点及认知规律,教材对四边形的概念没有下严格的定义,因此让学生感知四边形的特征是目标之一,更重要的是要在学生掌握四边形特征的基础上发展学生的空间观念。
主要单元内容包括探索长方形、正方形的特征,初步认识四边形和平行四边形,用七巧板拼图。
教学目标1.经历探索长方形、正方形特征的过程,能用自己的语言描述长方形、正方形的特征。
2.初步认识四边形,能辨认平行四边形,能在方格纸上画长方形、正方形和平行四边形。
3.了解七巧板,能用七巧板拼图。
在拼图和图案设计的过程中感受图形的美妙,感受我国人民的智慧、激发学生的民族自豪感。
4.在猜测、验证、交流等数学活动中获得良好的情感体验,激发探索和创新的欲望,培养初步的空间观念。
教学重点:长方形、正方形特征。
人教版八年级数学下册第18章平行四边形知识要点总结第18章平行四边形复习平行四边形知识点一、平行四边形定义:二、平行四边形的性质边:1.两组对边互相平行且相等;符号语言:角:2.两组对角分别相等;符号语言:对角线:3.对角线互相平分。
符号语言:对称性:中心对称图形但不一定是轴对称图形平行线之间的距离:平行线间的距离都相等符号语言:∵AE∥BF且AB⊥BF,CD⊥BF,EF⊥BF∴AB=CD=EF三、平行四边形的判定边:1. 两组对边分别平行.....的四边形是平行四边形;符号语言:2. 两组对边分别相等......的四边形是平行四边形;符号语言:3. 一组对边平行且相等......的四边形是平行四边形;符号语言:角:4. 两组对角分别相等......的四边形是平行四边形;符号语言:对角线:5.对角线互相平分的四边形是平行四边形;符号语言:四、平行四边形的面积公式S□ABCD=ah(a是边,h是这个边的高);五、与三角形有关的知识点1.三角形中位线定义:连接三角形两边中点的线段..叫做三角形的中位线。
2.三角形的中位线定理:三角形的中位线平行于第三边,并且等于第三边的一半符号语言:3.取值范围:利用三角形的性质:两边之和大于第三边;两边之差小于第三边 如:已知□ABCD 两对角线的长分别为6和8,则较短边长x 的取值范围为1<x<7.4.直角三角形性质定理(1)直角三角形斜边上的中线等于斜边的一半.符号语言:∵在Rt △ABC 中,且AD =CD∴ BD=AD=CD(2)直角三角形中,30°角所对应的直角边等于斜边的一半.符号语言:∵在Rt △ABC 中,且∠A=30°∴BC=12AC 或 2BC=AC特殊的平行四边形知识点—矩形一、矩形的定义:二、矩形的性质1.矩形具有平行四边形的所有性质;2.矩形的四个角都是直角; 符号语言:3.矩形的对角线平分且相等。
符号语言:三、矩形判定1.有一个角是直角的平行四边形.....叫做矩形。
四边形知识点总结第一部分、特殊四边形的性质与判定1.四边形的基础知识:①.过多边形的一个顶点可画(n-3)条对角线.②.多边形的对角线条数公式是:2)3n (n -条.③.n 边形内角和是(n-2)*180° ④.任意多边形的外角和是360° 2.平行四边形的性质:因为ABCD 平行四边形⇒⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧.54321点对称中心是对角线的交)中心对称图形,()对角线互相平分;()两组对角分别相等;()两组对边分别相等;()两组对边分别平行;(平行四边形的判定:是平行四边形)对角线互相平分()一组对边平行且相等()两组对角分别相等()两组对边分别相等()两组对边分别平行(ABCD ⇒⎪⎪⎪⎭⎪⎪⎪⎬⎫543213.矩形的性质:因为ABCD 是矩形⇒⎪⎪⎪⎩⎪⎪⎪⎨⎧.4.3;2;1有两条对称轴形,)中心对称和轴对称图()对角线相等()四个角都是直角(有性质)具有平行四边形的所( 矩形的判定:⎪⎪⎭⎪⎪⎬⎫+四边形)对角线平分且相等的(边形)对角线相等的平行四(边形)三个角都是直角的四(一个直角)平行四边形(4321⇒ABCD 是矩形.4.菱形的性质:因为ABCD 是菱形⇒⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧.)5(24321亦可)(对角线垂直的四边形算面积可用对角线乘积的一半条对称轴有形)中心对称和轴对称图(角)对角线垂直且平分对()四条边都相等;(有性质;)具有平行四边形的所( 菱形的判定:⎪⎪⎭⎪⎪⎬⎫+四边形)对角线平分且垂直的(边形)对角线垂直的平行四(形)四条边都相等的四边(一组邻边相等)平行四边形(4321⇒ABCD 是菱形.5.正方形的性质:因为ABCD 是正方形⇒⎪⎩⎪⎨⎧.321分对角)对角线相等垂直且平(角都是直角;)四条边都相等,四个(有性质;)具有平行四边形的所(正方形的判定:⎪⎪⎭⎪⎪⎬⎫++++对角线互相垂直矩形一组邻边相等矩形一个直角)菱形(对角线相等)菱形()4()3(21⇒ABCD 是正方形.6.等腰梯形的性质:因为ABCD 是等腰梯形⇒⎪⎩⎪⎨⎧.321)对角线相等(;)同一底上的底角相等(两底平行,两腰相等;)( 等腰梯形的判定:⎪⎭⎪⎬⎫+++对角线相等)梯形(底角相等)梯形(两腰相等)梯形(321⇒ABCD 是等腰梯形7.三角形中位线定理:三角形的中位线平行第三边,并且等于它的一半. 注:被中位线分成的三角形的周长是原三角形的1/2 被中位线分成的三角形的面积是原三角形的1/48.梯形中位线定理:梯形的中位线平行于两底,并且等于两底和的一半. 注:梯形的面积等于中位线乘高.第二部分、常用的辅助线技巧1.平行四边形与特殊的平行四边形常见的辅助线:①.平行四边形:(1)连对角线或平移对角线 (2)过顶点作对边的垂线构造直角三角形 ②.菱形:(1)作菱形的高;(2)连结菱形的对角线.注意:当菱形有一个内角为60°或有一条高垂直平分底边时连接对角线即可得到等边三角形。
平行四边形、矩形、菱形、正方形知识点总结一.正确理解定义(1)定义:两组对边分别平行的四边形是平行四边形.平行四边形的定义揭示了图形的最本质的属性,它既是平行四边形的一条性质,又是一个判定方法.(2”表示平行四边形,例如:平行四边形记作ABCD,读作“平行四边形ABCD”.2.熟练掌握性质平行四边形的有关性质和判定都是从边、角、对角线三个方面的特征进行简述的.(1)角:平行四边形的邻角互补,对角相等;(2)边:平行四边形两组对边分别平行且相等;(3)对角线:平行四边形的对角线互相平分;(4)面积:①S=底高ah;②平行四边形的对角线将四边形=⨯分成4个面积相等的三角形.3.平行四边形的判别方法①定义:两组对边分别平行的四边形是平行四边形②方法1:两组对角分别相等的四边形是平行四边形③方法2:两组对边分别相等的四边形是平行四边形④方法3:对角线互相平分的四边形是平行四边形⑤方法4:一组平行且相等的四边形是平行四边形二、.几种特殊四边形的有关概念(1)矩形:有一个角是直角的平行四边形是矩形,它是研究矩形的基础,它既可以看作是矩形的性质,也可以看作是矩形的判定方法,对于这个定义,要注意把握:①平行四边形;②一个角是直角,两者缺一不可.(2)菱形:有一组邻边相等的平行四边形是菱形,它是研究菱形的基础,它既可以看作是菱形的性质,也可以看作是菱形的判定方法,对于这个定义,要注意把握:①平行四边形;②一组邻边相等,两者缺一不可.(3)正方形:有一组邻边相等且有一个直角的平行四边形叫做正方形,它是最特殊的平行四边形,它既是平行四边形,还是菱形,也是矩形,它兼有这三者的特征,是一种非常完美的图形.(4)梯形:一组对边平行而另一组对边不平行的四边形叫做梯形,对于这个定义,要注意把握:①一组对边平行;②一组对边不平行,同时要注意和平行四边形定义的区别,还要注意腰、底、高等概念以及梯形的分类等问题.(5)等腰梯形:是一种特殊的梯形,它是两腰相等的梯形,特殊梯形还有直角梯形.2.几种特殊四边形的有关性质(1)矩形:①边:对边平行且相等;②角:对角相等、邻角互补;③对角线:对角线互相平分且相等;④对称性:轴对称图形(对边中点连线所在直线,2条).(2)菱形:①边:四条边都相等;②角:对角相等、邻角互补;③对角线:对角线互相垂直平分且每条对角线平分每组对角;④对称性:轴对称图形(对角线所在直线,2条).(3)正方形:①边:四条边都相等;②角:四角相等;③对角线:对角线互相垂直平分且相等,对角线与边的夹角为450;④对称性:轴对称图形(4条).3.几种特殊四边形的判定方法(1)矩形的判定:满足下列条件之一的四边形是矩形①有一个角是直角的平行四边形;②对角线相等的平行四边形;③四个角都相等(2)菱形的判定:满足下列条件之一的四边形是矩形①有一组邻边相等的平行四边形;②对角线互相垂直的平行四边形;③四条边都相等.(3)正方形的判定:满足下列条件之一的四边形是正方形.①有一组邻边相等且有一个直角的平行四边形②有一组邻边相等的矩形;③对角线互相垂直的矩形.④有一个角是直角的菱形⑤对角线相等的菱形;(4)等腰梯形的判定:满足下列条件之一的梯形是等腰梯形①同一底两个底角相等的梯形;②对角线相等的梯形.4.几种特殊四边形的常用说理方法与解题思路分析(1)识别矩形的常用方法①先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的任意一个角为直角.②先说明四边形ABCD为平行四边形,再说明平行四边形ABCD的对角线相等.③ 说明四边形ABCD 的三个角是直角. (2)识别菱形的常用方法① 先说明四边形ABCD 为平行四边形,再说明平行四边形ABCD 的任一组邻边相等.② 先说明四边形ABCD 为平行四边形,再说明对角线互相垂直. ③ 说明四边形ABCD 的四条相等. (3)识别正方形的常用方法① 先说明四边形ABCD 为平行四边形,再说明平行四边形ABCD 的一个角为直角且有一组邻边相等.② 先说明四边形ABCD 为平行四边形,再说明对角线互相垂直且相等. ③ 先说明四边形ABCD 为矩形,再说明矩形的一组邻边相等. ④ 先说明四边形ABCD 为菱形,再说明菱形ABCD 的一个角为直角. (4)识别等腰梯形的常用方法① 先说明四边形ABCD 为梯形,再说明两腰相等.② 先说明四边形ABCD 为梯形,再说明同一底上的两个内角相等. ③ 先说明四边形ABCD 为梯形,再说明对角线相等. 5.几种特殊四边形的面积问题① 设矩形ABCD 的两邻边长分别为a,b ,则S 矩形=ab .② 设菱形ABCD 的一边长为a ,高为h ,则S 菱形=ah ;若菱形的两对角线的长分别为a,b ,则S 菱形=12ab .③ 设正方形ABCD 的一边长为a ,则S 正方形=2a ;若正方形的对角线的长为a ,则S 正方形=212a .④ 设梯形ABCD 的上底为a ,下底为b ,高为h ,则S 梯形=1()2a b h . 平行四边形 矩形 菱形 正方形图形性质1.对边 且 ;2.对角 ; 邻角 ;3.对角线 ;1.对边 且; 2.对角 且四个角都是; 3.对角线 ;1. 对边 且四条边都 ;2.对角 ;3.对角线 且每条对角线;1.对边 且四条边都 ;2.对角 且四个角都是 ;3.对角线 且每条对角线 ;面积。
四边形知识点总结大全(学生用)四边形知识点总结大全1四边形的内角和与外角和定理:(1)四边形的内角和等于360°;( 2)四边形的外角和等于360°2 ?多边形的内角和与外角和定理:(1) n边形的内角和等于(n-2)180 ° ;( 2)任意多边形的外角和等于(1)两组对边分别平行;(2)两组对边分别相等;(3)两组对角分别相等;(4)对角线互相平分;(5)邻角互补.(1)两组对边分别平行(2)两组对边分别相等4.平行四边形的判定:(3)两组对角分别相等(4)一组对边平行且相等(5)对角线互相平分 A B5.矩形的性质:因为ABCD是矩形(1)具有平行四边形的所(2)四个角都是直角;(3)对角线相等.6.矩形的判定: (1)平行四边形一个直角(2)三个角都是直角(3)对角线相等的平行四边形四边形ABCD是矩形.7 ?菱形的性质:(1)具有平行四边形的所有通性;因为ABCD是菱形⑵四个边都相等;(3)对角线垂直且平分对角.D (1)平行四边形一组邻边等8?菱形的判定:(2)四个边都相等(3)对角线垂直的平行四边形四边形四边形C(1)具有平行四边形的所有通性;9?正方形的性质:因为ABCD 是正方形(2)四条边都相等,四个角都是直角; (3)对角线相等垂直且平分对角.(1)梯形12?等腰梯形的判定:(2)梯形(3)梯形如:(3)T ABCD是梯形且AD// BC 又T AC=BD 二ABCD四边形是等腰梯形14?三角形中位线定理:三角形的中位线平行第三边,并且等于它的一半.(1)(2)⑶如:一个直角四边形ABCD是正方形11.等腰梯形的性质:因为ABCD是等腰梯形(1)两底平行,两腰相等;(2)同一底上的底角相等(3)对角线相等.两腰相等底角相等四边形对角线相等23. S 梯形=1(a+b ) h=Lh. (a 、b 为梯形的底,22 ?规则图形折叠一般“出一对全等,一对相似”3 ?如图:平行四边形、矩形、菱形、正方形的从属关系4?常见图形中,仅是轴对称图形的有:角、等腰三角形、等边三角形、正奇边形、等腰梯形……;仅是中心对称图形的有:平行四边形……;是双对称图形的有:线段、矩形、菱形、正方形、正偶边形、圆……?注意:线段有两条对称轴?、梯形常见的辅助线1. 延长两腰交于一点作用:使梯形问题转化为三角形问题。
平行四边形四年级知识点总结平行四边形四年级知识1平行四边形的性质:平行四边形的对边平行且相等;平行四边形的对角相等;平行四边形的两条对角线互相平分;平行四边形是中心对称图形,对称中心是两条对角线的交点; 平行四边形的判定:两组对边分别相等的四边形是平行四边形;两组对边分别平行的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形;两组对角分别相等的四边形是平行四边形;两条对角线互相平分的四边形是平行四边形;矩形矩形特有的性质:矩形的四个角都是直角;矩形的对角线相等;(外垂直内相等)矩形的判定:有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形;有三个角是直角的四边形是矩形;菱形菱形特有的性质:四条边都相等;对角线互相垂直;(外相等内垂直)每条对角线平分一组对角;菱形的判定:一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形;四边相等的四边形是菱形;正方形正方形特有的性质:四条边都相等;四个角都是90°;对角线相等且互相垂直平分;每条对角线平分一组对角。
正方形的判定:四边相等,有三个角是直角的四边形是正方形; 一组邻边相等的矩形是正方形;对角线互相垂直的矩形是正方形;有一个角是直角的菱形是正方形;对角线相等的菱形是正方形;平行四边形四年级知识21.定义:两组对边分别平行的四边形叫平行四边形2.平行四边形的性质(1)平行四边形的对边平行且相等;(2)平行四边形的邻角互补,对角相等;(3)平行四边形的对角线互相平分;3.平行四边形的判定平行四边形是几何中一个重要内容,如何根据平行四边形的性质,判定一个四边形是平行四边形是个重点,下面就对平行四边形的五种判定方法,进行划分:第一类:与四边形的对边有关(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;第二类:与四边形的对角有关(4)两组对角分别相等的四边形是平行四边形;第三类:与四边形的对角线有关(5)对角线互相平分的四边形是平行四边形常见考法(1)利用平行四边形的性质,求角度、线段长、周长;(2)求平行四边形某边的取值范围;(3)考查一些综合计算问题;(4)利用平行四边形性质证明角相等、线段相等和直线平行;(5)利用判定定理证明四边形是平行四边形。
四边形知识点总结大全行四边形,矩形,菱形,正方形,中心对称,中心对称图形,梯形,等腰梯形,直角梯形,三角形中位线,梯形中位线.二 定理:中心对称的有关定理※1.关于中心对称的两个图形是全等形.※2.关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分. ※3.如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称. 三 公式:1.S 菱形 =21ab=ch.(a 、b 为菱形的对角线 ,c 为菱形的边长 ,h 为c 边上的高)2.S 平行四边形 =ah. a 为平行四边形的边,h 为a 上的高)3.S 梯形 =21(a+b )h=Lh.(a 、b 为梯形的底,h 为梯形的高,L 为梯形的中位线)四 常识:※1.若n 是多边形的边数,则对角线条数公式是:2)3n (n . 2.规则图形折叠一般“出一对全等,一对相似”. 3.如图:平行四边形、矩形、菱形、正方形的从属关系.4.常见图形中,仅是轴对称图形的有:角、等腰三角形、等边三角形、正奇边形、等腰梯形 …… ;仅是中心对称图形的有:平行四边形 …… ;是双对称图形的有:线段、矩形、菱形、正方形、正偶边形、圆 …… .注意:线段有两条对称轴. ※5.梯形中常见的辅助线:平行四边形矩形菱形正方形正方形、矩形、菱形和平行四边形四者知识点串联汇总平行四边形、菱形、矩形、正方形的有关概念平行四边形、菱形、矩形、正方形的有关性质平行四边形、菱形、矩形、正方形的判别方法两组对边分别相等的四边形是平行四边形两组对角分别相等的四边形是平行四边形对角线互相平分的四边形是平行四边形菱形一组邻边相等的平行四边形是菱形四条边都相等的四边形是菱形对角线互相垂直的平行四边形是菱形矩形一个内角是直角的平行四边形是矩形对角线相等的平行四边形是矩形正方形一组邻边相等的矩形是正方形对角线互相垂直的矩形是正方形有一个角是直角的菱形是正方形对角线相等的菱形是正方形二、梯形常见的辅助线1.延长两腰交于一点作用:使梯形问题转化为三角形问题。
小学四边形全套知识点总结一、四边形的基本性质1.1 四边形的定义四边形是由四条边和四个顶点组成的封闭图形。
1.2 四边形的内角和四边形的内角和等于360度。
这是四边形的一个重要性质,可以通过各个角的计算相加来得出。
1.3 四边形的对角线四边形有两条对角线,对角线是连接四边形两个相对顶点的线段。
在矩形和菱形中,对角线相等;在平行四边形中,对角线相互平分。
1.4 四边形的对角线交点四边形的对角线交点可以将四边形分割成两个三角形,这是计算四边形面积的重要方法。
二、四边形的分类2.1 矩形矩形是一种特殊的四边形,它有四条边都相等,且所有内角都为90度。
矩形的对角线相等,相邻边互相垂直。
2.2 菱形菱形也是一种特殊的四边形,它有四条边都相等,且对角线相等。
菱形的相邻角相等,且相邻边互相垂直。
2.3 平行四边形平行四边形有两组平行的边,对角线互相平分。
它的相邻边互相平行,对角线互相等长。
2.4 不规则四边形不规则四边形是指除了以上三种特殊四边形以外的任意四边形,它的边和角没有特殊的关系。
三、四边形的周长和面积计算3.1 四边形的周长四边形的周长等于所有边长的和。
计算周长时,需要将四条边的长度相加。
3.2 四边形的面积计算四边形的面积可以通过以下公式:矩形的面积 = 长 × 宽菱形的面积 = 对角线1 × 对角线2 ÷ 2平行四边形的面积 = 底 × 高不规则四边形的面积可以通过将四边形分割成多个三角形,分别计算三角形的面积,然后相加得到四边形的面积。
3.3 特殊四边形的面积计算对于矩形和菱形,可以直接通过公式计算面积。
而对于平行四边形和不规则四边形,需要通过特定的方法或分割成三角形来计算面积。
四、四边形知识点的应用4.1 实际问题中的应用四边形的周长和面积计算在生活中有许多应用,比如房屋的围墙长度计算、地板的铺设面积计算等都需要用到四边形的相关知识。
4.2 综合练习通过综合练习,学生可以更好地掌握四边形的知识点,提高计算能力和解决问题的能力。
三年级数学四边形知识点大全三年级数学四边形知识点【正方形】概念:四条边都相等四个角都是直角的四边形是正方形。
特点:有4个直角,4条边相等。
(正方形既是长方形,也是菱形)周长:正方形的周长=边长×4【长方形】概念:有一个角是直角的平行四边形叫做长方形。
特点:长方形有两条长,两条宽,四个直角,对边相等。
周长:长方形的周长=(长+宽)×2【平行四边形】概念:两组对边互相平行的四边形,它的对边平行且相等,对角相等。
(正方形长方形数属于特殊的平行四边形)特点:①对边相等对角相等。
②平行四边形容易变形。
周长:平行四边形的周长=两条边的边长相加×2【梯形】概念:有一组对边平行,另一组对边不平行的四边形。
特点:只有一组对边平行。
周长:上底+下底+两腰长度【等腰梯形】概念:两条腰相等的梯形,它的两个底角相等,是轴对称图形,有一条对称轴。
特点:有一组对边平行且两腰等长。
周长:上底+下底+两腰长度【菱形】概念:一组邻边相等的平行四边行是菱形。
特点:①四条边都相等②对角线互相垂直平分③一条对角线分别平分一组对角周长:两条不同的边长相加×2【每个四边形都有哪些联系】1正方形既是长方形,也是菱形。
2正方形长方形数属于特殊的平行四边形。
3正方形还是特殊的长方形。
三年级数学四边形教案一教学内容1.四边形平行四边形的认识2.周长的概念,长方形正方形的周长计算3.长度的估计二教学目标1.使学生认识四边形的特征,初步认识平行四边形,会用不同的方式表示平行四边形。
2.使学生了解周长的概念,会计算长方形正方形的周长。
3.通过对长度和周长的估计,培养学生的长度观念。
三编排特点1.从日常生活中引入几何概念,使学生在熟悉的情境中学习几何知识。
利用校园的情境认识四边形和平行四边形。
利用学生熟悉的事物(树叶教科书小国旗钟面)来认识和计算周长。
2.利用活动巩固对几何概念的认识。
教材中设计了各种形式的活动:涂色分类拉一拉平行四边形在钉子板上围平行四边形在方格纸上画平行四边形用长方形纸剪平行四边形用七巧板拼图实际测量一个物体的周长,等等。
平行四边形初步知识点总结归纳
概述
平行四边形是一个特殊的四边形,其特点是所有的边两两平行。
本文将对平行四边形的性质、构造、特殊情况以及解题方法进行总
结归纳。
性质
1. 对角线互相平分,并且长度相等。
2. 相邻角互补(和为180度)。
3. 对角线分割平行四边形成的小三角形,面积相等。
4. 对角线对平行四边形进行分割,得到的四个三角形面积之和
等于平行四边形的面积。
构造
1. 已知一边和一个角度:可以利用平行四边形的相邻角互补性质,在该边的一侧构造一个与给定边平行的线段,然后利用已知角
度构造出相应的角度来确定平行四边形的形状。
2. 已知两边:可以利用平行四边形的对角线互相平分性质,在一个边的一侧构造一个与给定边平行的线段,然后利用已知两边的长度构造出相应的线段来确定平行四边形的形状。
特殊情况
1. 矩形:矩形是一种具有特殊性质的平行四边形,其特点是所有的角都是直角(90度)。
2. 正方形:正方形是一种具有特殊性质的平行四边形,其特点是所有的边都相等且所有的角都是直角(90度)。
解题方法
1. 利用平行四边形的性质进行推导和证明。
2. 利用已知条件构造辅助线或辅助平行四边形,然后利用性质或相似三角形来解决问题。
以上是对平行四边形初步知识点的总结归纳,希望对研究和理解平行四边形有所帮助。
平行四边形全章知识点总结1.定义:2.性质:(1)相对边相等:平行四边形的相对边长度相等。
(2)相对角相等:平行四边形的相对角度相等。
(3)对角线互相平分:平行四边形的对角线互相平分。
(4)内角和为180度:平行四边形的所有内角的和等于180度。
3.定理:(1)同位角定理:平行线与直线相交时,同位角是相等的。
(2)内错角定理:平行线与直线相交时,内错角是相等的。
(3)平行线定理:如果一个直线与两条平行线相交,那么这两条平行线上对应的角度相等。
(4)平行四边形角度定理:如果一个四边形是平行四边形,那么它的相邻内角补角。
4.证明:(1)证明相对边相等:可以通过利用平行线的性质来证明两对边相等。
(2)证明相对角相等:可以通过同位角定理和内错角定理来证明相对角相等。
(3)证明对角线互相平分:可以通过使用平行线的性质和内错角定理来证明对角线互相平分。
(4)证明内角和为180度:可以通过使用内错角定理和平行线定理来证明内角和为180度。
5.应用:(1)计算平行四边形的面积:平行四边形的面积可以通过底边的长度乘以高来计算。
(2)判断平行四边形:根据边的长度和角度的相等性质,可以判断一个四边形是否为平行四边形。
(3)应用于几何问题:平行四边形常常出现在几何问题中,例如解决面积、长度和角度等问题时。
通过对平行四边形的定义、性质、定理、证明和应用的总结,我们可以更好地理解和应用平行四边形的知识。
掌握平行四边形的相关知识,不仅能够提高我们解决几何问题的能力,还可以在实际生活中应用该知识,并且能够帮助我们理解和应用其他几何形状的知识。
因此,对平行四边形的学习和理解是我们几何学习的重要一步。
四边形知识点总结大全
1.S 菱形 =2
1
ab=ch.(a 、b 为菱形的对角线 ,c 为菱形的边长 ,h 为c 边上的高)
2.S 平行四边形 =ah. a 为平行四边形的边,h 为a 上的高)
3.S 梯形 =2
1
(a+b )h=Lh.(a 、b 为梯形的底,h 为梯形的高,L 为梯形的中位线)
四 常识:
※1.若n 是多边形的边数,则对角线条数公式是:2
)
3n (n . 2.规则图形折叠一般“出一对全等,一对相似”. 3.如图:平行四边形、矩形、菱形、正方形的从属关系.
4.常见图形中,仅是轴对称图形的有:角、等腰三角形、等边三角形、正奇边形、等腰梯形 …… ;仅是中心对称图形的有:平行四边形 …… ;是双对称图形的有:线段、矩形、菱形、正方形、正偶边形、圆 …… .注意:线段有两条对称轴. ※5.梯形中常见的辅助线:
A
B E F
D
E
C A
B D
C
A
B
D
C
A
B
D
C
中点
中点
E
F
F A B
D C
A B
D
C
A B
D
C
A B
D C
中点
中点
G F
E
E
E
E
二、梯形常见的辅助线 1.延长两腰交于一点
作用:使梯形问题转化为三角形问题。
若是等腰梯形则得到等腰三角形。
平行四边形
矩形
菱形
正方形
2.平移一腰
作用:使梯形问题转化为平行四边形及三角形问题。
3.作高
作用:使梯形问题转化为直角三角形及矩形问题。
4.平移一条对角线
作用:(1)得到平行四边形ACED ,使CE=AD ,BE 等于上、下底的和 (2)S 梯形ABCD =S △DBE
5.当有一腰中点时,连结一个顶点与一腰中点并延长交一个底的延长线。
作用:可得△ADE ≌△FCE ,所以使S 梯形ABCD =S △ABF 。
例题
例1:如图1,平行四边形ABCD中,AE⊥BD,CF⊥BD,垂足分别为E、F. 求证:∠BAE =∠DCF.
证明:∵四边形ABCD是平行四边形,
∴∠ABE =∠CDF,AB= CD.
又∵AE⊥BD,CF⊥BD,
∴∠AEB =∠CFD = 90°,
∴△ABE≌△CDF.
∴∠BAE =∠DCF.
例2:如图2,矩形ABCD中,AC与BD交于O点,BE⊥AC于E,CF⊥BD于F.
求证:BE = CF.
证明:∵四边形ABCD是矩形,
∴OB = OC.
又∵BE⊥AC,CF⊥BD,∴∠BEO =∠CFO = 90º.
∵∠BOE =∠COF.
∴△BOE≌△COF. ∴BE = CF.
评注:本题主要考查矩形的对角线的性质以及全等三角形的判定.
例3如图6,E、F
的AD、BC
边上的点,且AE = CF.
(1)求证:△ABE≌△CDF;
(2)若M、N分别是BE、DF的中点,连结MF、EN,试判断四边形MFNE是怎样的四边形,并证明你的结论.
(1)证明:∵四边形ABCD是平行四边形,
∴AB = CD,∠A =∠C.
∵AE = CF,∴△ABE≌△CDF.
(2)解析:四边形MFNE是平行四边形. (图1)
C
A D
B C
E
F
(图3)
M
N
O
A
B C
D
E F
(图2)
∵△ABE ≌△CDF ,∴∠AEB =∠CFD ,BE = DF. 又∵M 、N 分别是BE 、DF 的中点,∴ME = FN. ∵四边形ABCD 是平行四边形,∴∠AEB =∠FBE. ∴∠CFD =∠FBE. ∴EB ∥DF ,即ME ∥FN. ∴四边形MFNE 是平行四边形.
评注:本题是一道猜想型问题. 先猜想结论,再证明其结论.
例4如图4
的对角线AC 的垂直平分线与边AD ,BC 分别相交于点E ,F.
求证:四边形AFCE 是菱形.
证明:∵四边形ABCD 是平行四边形,
∴AD ∥BC. ∴∠EAC =∠FCA. ∵EF 是AC 的垂直平分线,
∴OA = OC ,∠EOA =∠FOC
,EA = EC. ∴△EOA ≌△FOC . ∴AE = CE. ∴四边形AFCE 是平行四边形. 又∵EA = EC , ∴四边形AFCE 是菱形.
例5如图5,四边形ABCD 是矩形,O 是它的中心,E 、F 是对角线AC 上的点.
(1)如果 ,则△DEC ≌△BFA (请你填上一个能使结论成立的一个条件);
(2)证明你的结论.
解析:本题是一道条件开放型问题,答案不唯一.
(1)①AE=CF ;②OE = OF ;③DE ⊥AC ,BF ⊥AC ;④DE ∥BF 等. (2)①证明:∵四边形ABCD 是矩形, ∴AB = CD ,AB ∥ CD. ∴∠DCE =∠BAF.
B
图5 C
∵AE=CF ,∴AC -AE = AC -CF ,即AF = CE. ∴△DEC ≌△BFA.
例6如图6,已知在梯形ABCD 中,AD ∥BC ,AB = DC ,对角线AC 和BD 相交于点O ,E 是BC 边上一个动点(点E 不与B 、C 两点重合),EF ∥BD 交AC 于点F ,EG ∥AC 交BD 于点C.
(1)求证:四边形EFOG 的周长等于2OB ;
(2)请你将上述题目的条件“梯形ABCD 中,AD ∥BC ,AB = DC”改为另一种四边形,其他条件不变,使得结论,“四边形EFOG 的周长等于2OB”仍成立,并将改编后的题目画出图形,写出已知、求证、不必证明.
解析:(1)证明:∵在梯形ABCD 中,AD ∥BC ,AB = DC , ∴梯形ABCD 是等腰梯形. ∴∠ABC =∠DCB. 又∵BC = CB ,AB = DC ,
∴△ABC ≌△DCB. ∴∠ACB =∠DBC. 又∵EG ∥AC ,∠ACB =∠GEB. ∴∠DBC=∠GEB. ∴EG = BG. ∵EG ∥OC ,EF ∥OG , ∴四边形EGOF 是平行四边形. ∴OE = OF ,EF = OG.
∴四边形EGOF 的周长 = 2(OG +GE )= 2(OG +GB )= 2OB.
(2)如图7,已知在矩形ABCD 中,对角线AC 和BD 相交于点O ,E 是BC 边上一个动点(点E 不与B 、C 两点重合),EF ∥BD 交AC 于点F ,EG ∥AC 交BD 于点C.
求证:四边形EFOG 的周长等于2OB
注意:若将矩形改为正方形,原结论成立吗?
B
A。