人教A版必修5 第一章 解三角形 课件1.2 解三角形应用举例(1)
- 格式:ppt
- 大小:1.02 MB
- 文档页数:14
《海伦——秦九韶公式》教案【教学内容】人教A版普通高中课程标准试验教科书必修5 第一章“阅读与思考”海伦与秦九韶.【教学对象】高一学生.【教材分析】本节内容选自高中数学必修五的第一章,是阅读与思考部分的内容,在《高中数学新课程标准》中并没有做要求,教材中只占用一篇幅叙述了海伦公式与秦九韶公式(“三斜求积”公式)的记载历史,并未给出证明和应用.本节内容之前学生已经学习了解三角形,从而这节课是三角形面积公式的延续与拓展.本节课的主要设计对象为数学学习程度较好的学生——在完成《高中数学新课程标准》中要求的学习之后仍有余力的学生,意在引领学生了解数学文化史,同时启发学生运用所学知识由“三斜求积”公推导海伦公式,并让学生从中体会数学之美.【学情分析】高一学生在进入本节课的学习之前,需要熟悉前面已学过的三角形面积公式,余弦定理的推论,同角三角函数的平方关系以及平方差公式和完全平方公式.【教学目标】∙知识与技能:(1)会推导秦九韶公式与海伦公式,并理解海伦公式的本质;(2)理解秦九韶公式与海伦公式的本质相同.(3)会用海伦公式解决简单的涉及到三角形三边与面积之间关系的问题.∙过程与方法:(1)经历推导秦九韶公式与海伦公式的全过程,培养学生严谨的的数学逻辑思维;(2)提高学生会应用海伦公式解决涉及到三角形三边与面积之间关系问题的能力.∙情感态度与价值观:(1)体会公式书写的简洁美;(2)体会数学以不变应万变的魅力.【教学重点】秦九韶公式与海伦公式的推导及其应用.【教学难点】秦九韶公式与海伦公式的本质.【教学方法】引导探究、实力应用.【教学过程】(一)旧知回顾1.三角形的面积公式:(1)ah S ABC 21=∆(h 为边a 上的高); (2)==∆C ab S ABC sin 21 = . 2.余弦定理的推论:bca cb A 2cos 222-+=;=B cos ;=C cos . 3.同角三角函数的平方关系:+α2sin 1=.[师生活动]通过提问,让学生回答出本节课涉及到的已经学习过的公式.(二)新课引入【引例】问沙田一段,有三斜,其小斜一十三里,中斜一十四里,大斜一十五里。
A 级 基础巩固一、选择题1.已知A 、B 两地的距离为10 km ,B 、C 两地的距离为20 km ,现测得∠ABC =120°,则A 、C 两地的距离为( D )A .10 kmB . 3 kmC .10 5 kmD .107 km[解析] 在△ABC 中,AB =10,BC =20,∠ABC =120°,则由余弦定理,得 AC 2=AB 2+BC 2-2AB ·BC cos ∠ABC =100+400-2×10×20cos120° =100+400-2×10×20×(-12)=700,∴AC =107,即A 、C 两地的距离为107 km .2.如图,在河岸AC 测量河的宽度BC ,测量下列四组数据,较适宜的是( D )A .γ,c ,αB .b ,c ,αC .c ,α,βD .b ,α,γ[解析] 本题中a 、c 、β这三个量不易直接测量,故选D .3.一船向正北航行,看见正西方向有相距10 n mlie 的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°方向上,另一灯塔在船的南偏西75°方向上,则这艘船的速度是每小时( C )A .5 n mlieB .5 3 n mlieC .10 n mlieD .10 3 n mlie[解析] 如图,依题意有∠BAC =60°,∠BAD =75°,∴∠CAD =∠CDA =15°,从而CD =CA =10, 在Rt △ABC 中,求得AB =5, ∴这艘船的速度是50.5=10(n mlie/h).4.某观察站C 与两灯塔A 、B 的距离分别为300 m 和500 m ,测得灯塔A 在观察站C 北偏东30°,灯塔B 在观察站C 正西方向,则两灯塔A 、B 间的距离为( C )A .500 mB .600 mC .700 mD .800 m[解析] 根据题意画出图形如图.在△ABC 中,BC =500,AC =300,∠ACB =120°, 由余弦定理得,AB 2=AC 2+BC 2-2AC ·BC cos120° =3002+5002-2×300×500×(-12)=490 000,∴AB =700(m).5.要直接测量河岸之间的距离(河的两岸可视为平行),由于受地理条件和测量工具的限制,可采用如下办法:如图所示,在河的一岸边选取A 、B 两点,观察对岸的点C ,测得∠CAB =45°,∠CBA =75°,且AB =120 m 由此可得河宽为(精确到1m)( C )A .170 mB .98 mC .95 mD .86 m[解析] 在△ABC 中,AB =120,∠CAB =45°,∠CBA =75°,则∠ACB =60°,由正弦定理,得BC =120sin45°sin60°=406.设△ABC 中,AB 边上的高为h ,则h 即为河宽, ∴h =BC ·sin ∠CBA =406×sin75°≈95(m).6.甲船在湖中B 岛的正南A 处,AB =3 km ,甲船以8 km/h 的速度向正北方向航行,同时乙船从B 岛出发,以12 km/h 的速度向北偏东60°方向驶去,则行驶15 min 时,两船的距离是( B )A .7 kmB .13 kmC .19 kmD .10-3 3 km[解析] 由题意知AM =8×1560=2,BN =12×1560=3,MB =AB -AM =3-2=1,所以由余弦定理,得MN 2=MB 2+BN 2-2MB ·BN cos120°=1+9-2×1×3×(-12)=13,所以MN =13 km .二、填空题7.在相距2km 的A ,B 两点处测量目标点C ,若∠CAB =75°,∠CBA =60°,则A ,C 两点之间的距离是__6__km .[解析] 如图所示,由题意易知C =45°,由正弦定理得AC sin60°=2sin45°,从而AC =222·32=6(km).8.一只蜘蛛沿东北方向爬行x cm 捕捉到一只小虫,然后向右转105°,爬行10 cm 捕捉到另一只小虫,这时它向右转135°爬行回它的出发点,则x =__1063__cm .[解析] 如图,由题意知,∠BAC =75°,∠ACB =45°.∠B =60°, 由正弦定理,得x sin ∠ACB =10sin B ,∴x =10sin ∠ACB sin B =10×sin45°sin60°=1063.三、解答题9.如图,我炮兵阵地位于地面A 处,两观察所分别位于地面点C 和D 处,已知CD =6 000 m .∠ACD =45°,∠ADC =75°,目标出现于地面B 处时测得∠BCD =30°,∠BDC =15°.求炮兵阵地到目标的距离.(结果保留根号)[解析] 在△ACD 中,∠CAD =60°, AD =CD ·sin45°sin60°=63CD .在△BCD 中,∠CBD =135°,BD =CD ·sin30°sin135°=22CD ,∠ADB =90°.在Rt △ABD 中,AB =AD 2+BD 2=426CD =1 00042(m).10.一艘船以32.2 n mile/h 的速度向正北航行.在A 处看灯塔S 在船的北偏东20°的方向,30 min 后航行到B 处,在B 处看灯塔在船的北偏东65°的方向,已知距离此灯塔6.5 n mile 以外的海区为航行安全区域,这艘船可以继续沿正北方向航行吗?[解析] 在△ASB 中,∠SBA =115°,∠S =45°.由正弦定理,得SB =AB sin20°sin45°=16.1sin20°sin45°≈7.787(n mile).设点S 到直线AB 的距离为h ,则h =SB sin65°≈7.06(n mile).∵h >6.5 n mile ,∴此船可以继续沿正北方向航行.B 级 素养提升一、选择题1.已知船A 在灯塔C 北偏东85°且到C 的距离为2 km ,船B 在灯塔C 西偏北25°且到C 的距离为 3 km ,则A 、B 两船的距离为( D )A .2 3 kmB .3 2 kmC .15 kmD .13 km[解析] 如图可知∠ACB =85°+(90°-25°)=150°,AC =2,BC =3,∴AB 2=AC 2+BC 2-2AC ·BC ·cos150°=13, ∴AB =13.2.一船自西向东匀速航行,上午10时到达一座灯塔P 的南偏西75°距塔68 n mile 的M 处,下午2时到达这座灯塔的东南方向的N 处,则这只船的航行速度为( A )A .1762 n mile/hB .34 6 n mile/hC .1722n mile/hD .34 2 n mile/h[解析] 如图所示,在△PMN 中,PM sin45°=MNsin120°,∴MN =68×3222=346,∴v =MN 4=1762(n mile/h).3.如图,货轮在海上以40 km/h 的速度沿着方位角(从指北方向顺时针转到目标方向线的水平角)为140°的方向航行.为了确定船的位置,船在B 点观测灯塔A 的方位角为110°,航行12 h 到达C 点,观测灯塔A 的方位角是65°,则货轮到达C 点时,与灯塔A 的距离是( B )A .10 kmB .10 2 kmC .15 kmD .15 2 km[解析] 在△ABC 中,BC =40×12=20( km),∠ABC =140°-110°=30°,∠ACB =(180°-140°)+65°=105°,则A =180°-(30°+105°)=45°. 由正弦定理,得AC =BC ·sin ∠ABC sin A =20·sin30°sin45°=102( km).二、填空题4.海上一观测站测得方位角240°的方向上有一艘停止航行待修的商船,在商船的正东方有一艘海盗船正向它靠近,速度为每小时90 n mile.此时海盗船距观测站107 n mile ,20 min 后测得海盗船距观测站20 n mlie ,再过__403__min ,海盗船到达商船.[解析] 如下图,设开始时观测站、商船、海盗船分别位于A 、B 、C 处,20 min 后,海盗船到达D 处,在△ADC 中,AC =107,AD =20,CD =30,由余弦定理,得cos ∠ADC =AD 2+CD 2-AC 22AD ·CD =400+900-7002×20×30=12.∴∠ADC =60°,在△ABD 中,由已知得∠ABD =30°, ∠BAD =60°-30°=30°, ∴BD =AD =20,2090×60=403(min).5.如图,一艘船上午8∶00在A 处测得灯塔S 在它的北偏东30°处,之后它继续沿正北方向匀速航行,上午8∶30到达B 处,此时又测得灯塔S 在它的北偏东75°处,且与它相距4 2 n mile ,则此船的航行速度是__16__n mile/h .[解析] 在△ABS 中,∠A =30°,∠ABS =105°, ∴∠ASB =45°,∵BS =42,BS sin A =ABsin ∠ASB ,∴AB =BS ·sin ∠ASBsin A =42×2212=8,∵上午8∶00在A 地,8∶30在B 地, ∴航行0.5小时的路程为8 n mile , ∴此船的航速为16 n mile/h . 三、解答题6.如图,为了解某海域海底构造,在海平面内一条直线上的A 、B 、C 三点进行测量,已知AB =50 m ,BC =120 m ,于A 处测得水深AD =80 m ,于B 处测得水深BE =200 m ,于C 处测得水深CF =110 m ,求∠DEF 的余弦值.[解析] 由题意可得DE 2=502+1202=1302, DF 2=1702+302=29 800, EF 2=1202+902=1502, 由余弦定理,得cos ∠DEF =1665.C 级 能力拔高1.为了测量两山顶M 、N 间的距离,飞机沿水平方向在A 、B 两点进行测量,A 、B 、M 、N 在同一个铅垂平面内(如图).能够测量的数据有俯角和A 、B 间的距离.请设计一个方案,包括:①指出需要测量的数据(用字母表示,并在图中标出);②用文字和公式写出计算M 、N 间的距离的步骤.[解析] 方案一:①需要测量的数据有:点A 到点M 、N 的俯角α1、β1;点B 到点M 、N 的俯角α2、β2;A 、B 间的距离d (如图).②第一步:计算AM ,由正弦定理,得AM =d sin α2sin α1+α2;第二步:计算AN ,由正弦定理,得AN =d sin β2sin β2-β1;第三步:计算MN ,由余弦定理,得 MN =AM 2+AN 2-2AM ·AN cos α1-β1.方案二:①需要测量的数据有:点A 到点M 、N 的俯角α1、β1;点B 到点M 、N 的俯角α2、β2;A 、B 间的距离d (如图).②第一步:计算BM ,由正弦定理,得BM =d sin α1sin α1+α2;第二步:计算BN ,由正弦定理,得BN =d sin β1sin β2-β1;第三步:计算MN ,由余弦定理,得 MN =BM 2+BN 2+2BM ·BN cos β2+α2.2.已知海岛B 在海岛A 的北偏东45°方向上,A 、B 相距10 n mile ,小船甲从海岛B 以2 n mile/h的速度沿直线向海岛A 移动,同时小船乙从海岛A 出发沿北偏西15°方向也以2 n mile/h 的速度移动.(1)经过1 h 后,甲、乙两小船相距多少海里?(2)在航行过程中,小船甲是否可能处于小船乙的正东方向?若可能,请求出所需时间,若不可能,请说明理由.[解析] 经过1 h 后,甲船到达M 点,乙船到达N 点, AM =10-2=8,AN =2,∠MAN =60°,所以MN 2=AM 2+AN 2-2AM ·AN cos60°=64+4-2×8×2×12=52.所以MN =213.所以经过1 h 后,甲、乙两小船相距213海里.(2)设经过t (0<t <5)h 小船甲处于小船乙的正东方向,则甲船与A 距离为AE =(10-2t )n mile ,乙船与A 距离为AF =2t n mile ,∠EAF =60°,∠EF A =75°,则由正弦定理,得AF sin45°=AE sin75°,即2tsin45°=10-2t sin75°,则t =10sin45°2sin75°+2sin45°=103+3=53-33<5.答:经过53-33小时小船甲处于小船乙的正东方向.。
我国南宋著名数学家秦九韶也发现了与海伦公式等价的从三角形三边求面积的公式,他把这种方法称为“三斜求积”. 在他的著作《数书九章》里有一个题目:“问有沙田一段,有三斜,其小斜一十二里,中斜一十四里,大斜一十五里. 里法三百步. 欲知为田几何? 答曰:田积三百一十五顷.” 这道题实际上是已知三角形的三边长,求三角形面积. 《数书九章》中的求法是:“以小斜幂并大斜幂减中斜幂 ,余半之,自乘于上. 以小斜幂乘大斜幂减上,余四约之,为实,一为从隅,开平方,得积.” 译成现代式子是])2([41222222b a c a c S -+-= 这个式子称为秦九韶“三斜求积”公式.通过上述证明可以看出:秦九韶公式与海伦公式的本质是一样的! 从中充分说明我国古代已具有很高的数学水平.秦九韶 (约公元 1 2 0 2~ 1 2 61年 ) ,字道古,字道古,祖籍为鲁郡(今山东兖州),与李冶、杨辉、朱世杰并称宋元数学四大家,是我国古代数学家杰出代表之一. 著有《数书九章》,全书为十八卷,共 81题,分九大类. 系统总结和发展了高次方程的数值解法(在必修三《算法初步》中有“秦九韶算法”)和一次同余问题的解法,提出了相当完备的“正负开方术”和“大衍求一术”,对数学发展产生了广泛的影响,奠定了其时人难以望其项背的数学地位.他被外国科学史家赞誉为“他那个民族,那个时代,并且确实也是所有时代最伟大的数学家之一”. 如果将秦九韶和意大利文艺复兴时期的风云人物相比,竟有几分相似:他多才多艺,懂得星占、数学、音乐、建筑,还擅长诗文,会骑术、剑术、踢球等.4. 海伦公式的应用示例海伦公式除了可以解决“已知三角形三边长求面积”的问题外,还有什么应用呢?例1 三边长a ,b ,c 的三角形,满足c>a>b ,2a=b+c ,且它的周长是12,面积是6,试判断这个三角形的形状.分析:由已知得,a=4,b+c=8,p=6,于是。